Research Article

Effects of Variations of SUSY Breaking Scale on Neutrino Parameters at Low Energy Scale under Radiative Corrections

Kh. Helensana Devi, K. Sashikanta Singh, and N. Nimai Singh

1Department of Physics, Manipur University, Imphal 795003, India
2Research Institute of Science and Technology, Imphal 795003, India

Correspondence should be addressed to Kh. Helensana Devi; helensanakhumanthem2@manipuruniv.ac.in

Received 1 June 2022; Revised 21 August 2022; Accepted 6 October 2022; Published 16 November 2022

The paper addresses the effects of the variations of the SUSY breaking scale m_s in the range (2-14) TeV on the three neutrino masses and mixings, in running the renormalization group equations (RGEs) for different input values of high energy seesaw scale M_R, and in both normal and inverted hierarchical neutrino mass models. The present investigation is a continuation of the earlier works based on the variation of m_s scale. Two approaches are adopted one after another—bottom-up approach for running gauge and Yukawa couplings from low to high energy scale, followed by the top-down approach from high to low energy scale for running neutrino parameters defined at high energy scale, along with gauge and Yukawa couplings. A self-complementarity relation among three mixing angles is also employed in the analysis and it is found to be stable under radiative correction. Significant effect due to radiative corrections on neutrino parameters with the variation of SUSY breaking scale m_s is observed. For comparison of the results, variation of $\tan \beta$ for different M_R is also considered.

1. Introduction

Neutrino physics has registered significant progress in recent years with the measurements of nonzero θ_{13} [1–3] and the Dirac CP phase [4, 5], thus indicating a possibility for a sizable CP violation in neutrino sector. The T2K team [5] has concluded with 3σ confidence level that the Dirac Phase δ_{CP} lies somewhere between -3.41 and -0.03 for normal hierarchy (NH) and between -2.54 and -0.32 for inverted hierarchy (IH). The interval includes the CP-conserving value of $-\pi = -22/7 = -3.14$ in case of NH, so that the CP conservation is disfavored only at the modest 2σ confidence level. Next generation of neutrino detectors, such as Hyper-Kamiokande in Japan, DUNE in USA, and JUNO in China, may be able to get 5σ confidence level for confirmation of CP violation in neutrino sector. Neutrino oscillations [6–8] have been well studied with the precise measurements of neutrino oscillation mass parameters and mixing angles. But till date, there are still some unsettled questions in neutrino physics such as the correct mass hierarchical order whether normal or inverted, absolute neutrino mass scale, nature of neutrinos whether Dirac or Majorana type, the exact high energy scale of seesaw mechanism, and the supersymmetric breaking scale if all it exists, to mention a few. The information related to the absolute neutrino masses has been continuously updating with the recent Planck data on cosmological upper bound [9, 10] on the sum of three absolute neutrino masses $\Sigma m_i < 0.12$ eV, neutrinoless double beta decay [11, 12] results with the upper limit on the effective Majorana neutrino mass $\langle m_{\beta\beta} \rangle < (0.36 - 0.156)$ eV from the KamLAND-Zen experiment [13] in Japan, and KATRIN [14] result on direct kinematic measurement with the upper bound $m_{\nu_e} < 0.8$ eV. Neutrino mass model, if any, is bound to be consistent with these upper bounds on absolute neutrino masses. On theoretical front, the presence of supersymmetry (SUSY) [15–17] enables us to ensure the stability of hierarchy between the weak and GUT scales with the possible cancellation of quadratic term in radiative corrections to the Higgs boson mass. It is needed to have a precise unification point of three gauge couplings at high
GUT scale around 2×10^{16} GeV [18–20]. It can also provide a natural mechanism for understanding the electroweak symmetry breaking (EWSB) [21, 22] and Higgs physics. Minimal Supersymmetric Standard Model (MSSM) [23] is thus a straightforward extension of the Standard Model (SM) with minimum number of new parameters. All the particles in the same supersymmetric multiplet would have the same mass if the supersymmetry is an exact symmetry. So far, there is no clear evidence for the presence of supersymmetric particles in the ongoing Large Hadron Collider (LHC), and LHC has almost reached its maximum energy of about 14 TeV [24, 25]. Third run of LHC reaches 13.6 TeV slightly higher than that of 13 TeV of the second run [26]. While the existence of supersymmetric particles has been continuously ruling out in LHC, the supersymmetric breaking scale (m_susy) still remains as an unknown parameter. There are speculations that SUSY particles may have a supersymmetric self-complementarity relation [34] with varying SUSY breaking scale (m_break) still remains as an unknown parameter.

Table 1: Latest experimental data for fermion masses, gauge coupling constants, and Weinberg mixing angle.

<table>
<thead>
<tr>
<th>Mass (GeV)</th>
<th>Coupling constants</th>
<th>Weinberg mixing angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>m_τ (m_ρ) = 91.1876</td>
<td>$\alpha_{em}(m_\rho) = 127.952 \pm 0.009$</td>
<td>$\sin^2 \theta_W(m_\rho) = 0.23121 \pm 0.00017$</td>
</tr>
<tr>
<td>$m_t(m_t) = 172.76$</td>
<td>$\alpha_s(m_Z) = 0.1179 \pm 0.009$</td>
<td></td>
</tr>
<tr>
<td>$m_b(m_b) = 4.18$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$m_e(m_e) = 1.77$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The present investigation is a continuation of our previous work on neutrino masses and mixings with varying SUSY breaking scale in the running of RGEs [18, 22, 32, 35–38]. We shall address both normal hierarchical and inverted hierarchical neutrino mass models in both approaches—in the first place, the bottom-up approach for running gauge and Yukawa couplings from low to high energy scale; and in the second place, the top-down approach for running neutrino parameters defined at high energy scale, along with gauge and Yukawa couplings, from high to low energy scale.

The present work is confined to the question of stability of neutrino mass models for both normal and inverted hierarchy with the variation of m_τ scale and other input parameters $\tan \beta$ and M_R scale. Another important applications of RGEs are as follows. In Section 2, we give a brief discussion of gauge and Yukawa coupling RGEs mainly on bottom-up and top-down runnings. In Section 3, we present the numerical analysis and results. In Section 4, we study the effects of variations on neutrino parameters for different values of $\tan \beta$. Summary and Discussion are presented in Section 5. We give relevant RGEs for gaug, Yukawa, and quartic Higgs couplings in two-loops for both the SM and MSSM in Appendix A and RGEs of neutrino parameters in Appendix B.

2. Renormalization Group Equations (RGEs)

We study the radiative corrections to neutrino oscillation parameters using the Renormalisation Group Equations (RGEs) [18, 31, 39] with and without SUSY in two different steps using the low energy observational input values, bottom-up running from low to high energy scale for gauge and Yukawa couplings, and top-down running from high to low energy scale for neutrino mass parameters and mixing angles, along with gauge and Yukawa couplings which are already evaluated at high energy scale M_R.

2.1. Bottom-Up Running

In the bottom-up running of the RGEs, we divide it into three regions, $m_Z < \mu < m_t$, $m_t < \mu < m_b$, and $m_b < \mu < M_R$. We use the recent experimental data [8, 40] as initial input values at low energy scale, given in Table 1.

The values of gauge couplings, α_s for SU(2)$_L$ and α_t for U(1)$_Y$, are calculated by using $\sin^2 \theta_W(m_Z) = \alpha_{em}(m_Z)/\alpha_s(m_Z)$ and matching condition,

$$
\frac{1}{\alpha_{em}(m_Z)} = \frac{5}{3} \frac{1}{\alpha_s(m_Z)} + \frac{1}{\alpha_t(m_Z)}.
$$

Advances in High Energy Physics
We can also express the gauge couplings α_i's [18] in terms of normalized couplings g_i's as $g_i = \sqrt{4\pi\alpha_i}$, where $i = 1, 2, 3$ denote electromagnetic, weak, and strong couplings, respectively. RGEs at one-loop level [41] is used for evolution of the three gauge coupling constants from m_Z scale to m_t scale, as given below

$$\frac{1}{a_i(\mu)} = \frac{1}{a_i(m_Z)} - \frac{b_i}{2\pi} \ln \frac{\mu}{m_Z},$$

(2)

where $m_Z \leq \mu \leq m_t$ and $b_i = (5.30, -0.50, -4.00)$ for non-SUSY case. For fermion masses to define at m_t scale, we use QED-QCD rescaling factor η [42], $m_i(m_t) = m_i(m_t)/\eta$, and $m_\tau(m_t) = m_\tau(m_t)/\eta_\tau$, where $\eta = 1.53$ and $\eta_\tau = 1.015$. We then convert them to Yukawa couplings, $h_i(m_t) = m_i(m_t)/v_0$, $h_\tau(m_t) = m_\tau(m_t)/v_0\eta_\tau$, and $h_\tau(m_t) = m_\tau(m_t)/v_\tau\eta_\tau$, where $v_0 = 174$ GeV is the vacuum expectation value (VEV) of SM Higgs field. The calculated numerical values for fermion masses, Yukawa, and gauge couplings at m_t scale are given in Table 2.

We study the effect of variation of SUSY breaking scale (m_t) on gauge and Yukawa couplings for running from m_t to the M_R scale using RGEs, which are given in Appendix A. At m_t scale, the following matching conditions are applied at the transition point from SM ($m_t < \mu < m_t$) to MSSM ($m_t < \mu < M_R$) as

$$g_i(SUSY) = g_i(SM)$$

$$h_i(SUSY) = \frac{h_i(SM)}{\sin \beta} = h_i(SM) \times \frac{1 + \tan^2 \beta}{\tan \beta},$$

$$h_\tau(SUSY) = \frac{h_\tau(SM)}{\cos \beta} = h_\tau(SM) \times \frac{1 + \tan^2 \beta}{\tan \beta},$$

$$h_\tau(SUSY) = \frac{h_\tau(SM)}{\cos \beta} = h_\tau(SM) \times \frac{1 + \tan^2 \beta}{\tan \beta}.$$ (3)

Third generation Yukawa coupling constants are highly affected by input value of tan β as shown in Equation (3). A detailed numerical analysis shows that high scale value of h_τ always decreases with input value on SUSY breaking scale m_t in the range (2-14) TeV for low and high tan $\beta = 25, 35, 40, 45,$ and 55. However, high scale values of h_b and h_t behave in different patterns. In fact h_b at high scale M_R increases with the increase of m_t scale for low value of tan $\beta = 25$, but it decreases with m_t scale for higher values of tan $\beta = 40 - 55$. For h_t, it has a similar trend with h_b but with a little difference in the range of tan β. In fact h_t at high scale increases with the increase of m_t scale for both low and moderate values of tan $\beta = 25, 40$, but it again decreases with m_t for higher value of tan $\beta = 55$. For specific case used in the present calculation at input value of tan $\beta = 40$, both h_t and h_b decrease with the increase of m_t scale, but h_t increases with the increase of m_t scale. This analysis is reflected in Tables 3–6.

The output for Yukawa and gauge couplings at M_R scale are given in Table 3 for $M_R = 10^{13}$ GeV, Table 4 for $M_R = 10^{14}$ GeV, Table 5 for $M_R = 10^{15}$ GeV, and Table 6 for $M_R = 10^{16}$ GeV, respectively, for common value of tan $\beta = 40$. These values are needed for the next top-down running as input values at high energy scale.

2.2. Top-Down Running

In this running, we use the values of Yukawa and gauge couplings which are found at M_R scale as initial inputs given in Tables 3–6. In this work, the high energy seesaw scale is the starting point for running the RGEs and it ends at electroweak scale. We give the sum of three neutrino masses $\Sigma|m_i|$ in the range, 0.114 eV -0.121 eV for NH case and 0.1056 eV -0.1072 eV for IH case. The input values of neutrino masses and three mixing angles are indeed arbitrary in order to study the stability of neutrino mass model under RGEs running at low scale, with variations of other free parameters such as tan β, SUSY breaking scale m_t, and high energy scale M_R. We select our input values in Tables 7–8 with the aim to produce low energy values of neutrino oscillation parameters consistent with observational data. In our work, we focus on the high energy seesaw scale at $M_R = 10^{14}$ GeV; but for comparison, it has been supplemented by other values of high energy.
Table 5: Values of Yukawa and gauge couplings $t_R = \ln(10^{15} \text{ GeV}) = 34.53$ for tan $\beta = 40$, for different choices of m_1 scale.

<table>
<thead>
<tr>
<th>m_1 (TeV)</th>
<th>h_1</th>
<th>h_9</th>
<th>g_1</th>
<th>g_2</th>
<th>g_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0.6084</td>
<td>0.2829</td>
<td>0.3579</td>
<td>0.6574</td>
<td>0.7026</td>
</tr>
<tr>
<td>4</td>
<td>0.5891</td>
<td>0.2798</td>
<td>0.3601</td>
<td>0.6521</td>
<td>0.6971</td>
</tr>
<tr>
<td>6</td>
<td>0.5809</td>
<td>0.2784</td>
<td>0.3613</td>
<td>0.6494</td>
<td>0.6944</td>
</tr>
<tr>
<td>8</td>
<td>0.5735</td>
<td>0.2771</td>
<td>0.3624</td>
<td>0.6468</td>
<td>0.6917</td>
</tr>
<tr>
<td>10</td>
<td>0.5701</td>
<td>0.2766</td>
<td>0.3629</td>
<td>0.6455</td>
<td>0.6903</td>
</tr>
<tr>
<td>12</td>
<td>0.5668</td>
<td>0.2760</td>
<td>0.3635</td>
<td>0.6443</td>
<td>0.6890</td>
</tr>
<tr>
<td>14</td>
<td>0.5637</td>
<td>0.2754</td>
<td>0.3640</td>
<td>0.6430</td>
<td>0.6877</td>
</tr>
</tbody>
</table>

Table 6: Values of Yukawa and gauge couplings evaluated at $t_R = \ln(10^{16} \text{ GeV}) = 36.84$ for tan $\beta = 40$, for different choices of m_i scale.

<table>
<thead>
<tr>
<th>m_1 (TeV)</th>
<th>h_1</th>
<th>h_9</th>
<th>g_1</th>
<th>g_2</th>
<th>g_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0.5854</td>
<td>0.2676</td>
<td>0.3494</td>
<td>0.6893</td>
<td>0.7089</td>
</tr>
<tr>
<td>4</td>
<td>0.5661</td>
<td>0.2647</td>
<td>0.3518</td>
<td>0.6831</td>
<td>0.7032</td>
</tr>
<tr>
<td>6</td>
<td>0.5580</td>
<td>0.2634</td>
<td>0.3529</td>
<td>0.6801</td>
<td>0.7004</td>
</tr>
<tr>
<td>8</td>
<td>0.5680</td>
<td>0.2687</td>
<td>0.3622</td>
<td>0.6770</td>
<td>0.6664</td>
</tr>
<tr>
<td>10</td>
<td>0.5473</td>
<td>0.2618</td>
<td>0.3547</td>
<td>0.6757</td>
<td>0.6963</td>
</tr>
<tr>
<td>12</td>
<td>0.5441</td>
<td>0.2613</td>
<td>0.3553</td>
<td>0.6742</td>
<td>0.6949</td>
</tr>
<tr>
<td>14</td>
<td>0.5410</td>
<td>0.2608</td>
<td>0.3559</td>
<td>0.6727</td>
<td>0.6936</td>
</tr>
</tbody>
</table>

Table 7: Input set of neutrino parameters at high energy scale M_R for NH case. θ_{12} is used from SC relation, $\theta_{13} = q \times (\theta_{13} + \theta_{12})$ with $q = 1.1$. This is common for all cases of m_i scale.

<table>
<thead>
<tr>
<th>Input parameters</th>
<th>Seesaw scale (tan $\beta = 40$)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10^{16} GeV</td>
</tr>
<tr>
<td>m_1 (eV)</td>
<td>0.0262</td>
</tr>
<tr>
<td>m_2 (eV)</td>
<td>-0.0263</td>
</tr>
<tr>
<td>m_3 (eV)</td>
<td>-0.0615</td>
</tr>
<tr>
<td>$\Sigma</td>
<td>m_1</td>
</tr>
<tr>
<td>θ_{12}^ρ</td>
<td>32.46</td>
</tr>
<tr>
<td>θ_{13}^ρ</td>
<td>7.39</td>
</tr>
<tr>
<td>$\psi_{1}^\rho = \psi_{2}^\rho = \psi^\rho$</td>
<td>180</td>
</tr>
<tr>
<td>δ_{CP}^ρ</td>
<td>240</td>
</tr>
</tbody>
</table>

The sum of the three neutrino masses should satisfy the latest Planck cosmological data $|\Sigma |m_1| < 0.12$ eV,

(i) The neutrino mass model should be nearly quasidegenerate at least in m_1 and m_2 in order to get high value of θ_{13}, and m_3 should be nonzero.

One can also express the neutrino mass eigenvalues after absorbing the Majorana CP phases as $|m_1 e^{i\varphi_1}, m_2 e^{i\varphi_2}, m_3\rangle$. As discussed in ref. [33], from the presence of a term $|m_1 e^{i\varphi_1} + m_3 e^{i\varphi_3}|/|\Delta m_{31}^2|$ in the evolution of θ_{13}, a nonzero value of the difference $|\psi_1 - \psi_2|$ of the Majorana phases damps the RG equation. The damping becomes maximal if this difference equals π, which corresponds to an opposite CP parity of the two nearly degenerate mass eigenstates m_1 and m_2. A similar term $|m_1 e^{i\varphi_1} + m_3|/|\Delta m_{31}^2|$ is also present in the evolution equation of θ_{13}, and this implies opposite CP parity between m_1 and m_3, though they are not so degenerate. Under this consideration, we make our input choice of CP parity as $|m_1 e^{i\varphi_1}, m_2 e^{i\varphi_2}, m_3\rangle$ in the present work. The RGEs for evolution of θ_{13} is also directly proportional to a term $A_{13} = (m_3 + m_1)/(m_3 - m_1)$ which is highly sensitive for the nearly degenerate masses between m_1 and m_2 [22, 33]. Any possible singularity in the running of RGEs may be avoided with the choice of opposite CP parity between m_1 and m_2 for nearly degenerate case. In this work, we take two Majorana phases ψ_1 and ψ_2 at 180°, which are constrained to be equal for simplicity ($\psi_1 = \psi_2 = \psi$), and the Dirac CP phase δ_{CP} angle at 240°. Our main aim is to study the neutrino oscillation parameters against varying m_i for different M_R scale.

Using all the necessary mathematical frameworks, we analyze the radiative nature of neutrino parameters like neutrino masses, mixings, and CP phases in the top-down approach with the variations of m_i scale at different M_R scale. The respective RGEs which are given in Appendix B. The input sets are given in Tables 7 and 8.

3. Numerical Analysis and Results

The effects of the variation of m_i on the outputs of neutrino mass parameters and mixing angles are given in
Tables 9–12, along with the graphical representations in Figure 1 for normal hierarchical (NH) model, and in Tables 13–16 and Figure 2 for inverted hierarchical (IH) case. In each case, we also present the results for variation of high energy seesaw scale (10^{13} - 10^{16} GeV). Similar patterns with the variations of seesaw scale are observed in all the Figures 1 and 2.

The neutrino oscillation parameters are found to be almost stable with the variation of m_s at low energy scale except Δm_{21}^2 which is found to be very sensitive with the
change of m_s scale. One difference between NH and IH model is that in NH case, all the low energy parameters Δm^2_{31}, Δm^2_{21}, θ_{12}, and θ_{13} are found to increase with the increase of m_s scale, but in IH case, Δm^2_{21}, θ_{23}, and δ_{CP} decrease with m_s. The low energy values of $\Sigma|m_i|$ are below the latest Planck data $\Sigma|m_i| < 0.12$ eV, where the values for NH are smaller than those of IH case.

4. Effects of the Simultaneous Variation of m_s and $\tan \beta$ Values

In this section, we again study how the estimated low energy values of neutrino oscillation parameters behave with the simultaneous variations of m_s and $\tan \beta$ over a wide range. As a representative case, we consider only one seesaw scale

Figure 1: Effects on the low energy output results in θ_{ij}, $|\Delta m^2_{ij}|$, and δ_{CP} with variation of m_s for IH case at $\tan \beta = 40$. Four different choices of M_R scale are presented.
We consider the range of $\tan \beta = 25 - 55$ along with the range of $m_s = (2 - 14) \text{TeV}$. Significant effects of the variation of $\tan \beta$ for a given m_s value have been observed as shown in Tables 17 and 18 and Figures 3 and 4. The following observations on the low energy neutrino oscillation parameters can be drawn.

(i) All the three mixing angles are observed to increase with increasing values of $\tan \beta$ and m_s for both NH and IH cases.

For NH case, both Δm_{21} and $|\Delta m_{31}|$ decrease with increasing value of $\tan \beta$, but increase with increasing m_s. For IH case, Δm_{21} increases but $|\Delta m_{31}|$ decreases with the increase of both $\tan \beta$ and m_s.
For NH case, δ_{CP} decreases with increasing $\tan \beta$ but increases with increasing m_s, whereas for IH case, δ_{CP} decreases with the increase of both $\tan \beta$ and m_s.

5. Summary and Discussion
To summarize, the present work is a continuation of the earlier investigations [18, 32] on the effect of the variations of SUSY breaking scale m_s in the running of RGEs for neutrino masses and mixing parameters from high to low energy scale. Among many other applications of RGEs on neutrino physics such as magnification of neutrino mixings at low energy scale in quark-lepton unification hypothesis at high energy scale, generation of suitable radiative corrections to validate the tribimaximal or golden ratio neutrino mixings at high scale, and radiative origin of reactor mixing angle.
and solar neutrino mass-squared parameter at low energy; the present work focuses only on the question of the stability of neutrino mass models for both NH and IH, under RGEs analysis with the variations of SUSY breaking scale m_s and input value of $\tan \beta$.

The numerical analysis in the present investigation is confined to the effects on the variations of three important free parameters in the ranges—high energy seesaw scale $M_R = (10^{13} - 10^{16})$ GeV, the SUSY breaking scale $m_s = (2-14)$ TeV, and $\tan \beta = (25-55)$. As a special

| m_s (TeV) | $\theta_{23}/^0$ | $\theta_{13}/^0$ | $\Delta m^2_{21} (10^{-5} \text{eV}^2)$ | $|\Delta m^2_{31}| (10^{-3} \text{eV}^2)$ | $\delta_{CP}/^0$ |
|-------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| 2 | 4.18 | 5.23 | 6.56 | 2.14 | 2.04 |
| 4 | 4.36 | 5.36 | 6.76 | 2.36 | 2.09 |
| 6 | 4.77 | 5.85 | 6.88 | 2.41 | 2.14 |
| 8 | 4.80 | 5.96 | 6.88 | 2.42 | 2.14 |
| 10 | 5.61 | 6.02 | 6.88 | 2.52 | 2.14 |
| 12 | 5.74 | 6.02 | 6.88 | 2.63 | 2.14 |
| 14 | 5.79 | 6.02 | 6.88 | 2.63 | 2.14 |

Table 17: Effects on the neutrino oscillation parameters at low scale, on varying m_s and $\tan \beta$ for NH case ($M_R = 10^{14} \text{GeV}$).
representative case, we choose $M_R = 10^{14}$ GeV for $\tan \beta = 40$ in both NH and IH models. For simplicity of comparison, the results for other choices of M_R are also presented. To study the stability criteria of neutrino mass model, we start with arbitrary high energy scale input values of neutrino masses and mixings which satisfy certain conditions including Planck cosmological bound. The input value for the Dirac CP phase angle is taken at 240°.

Table 18: Effects on the neutrino oscillation parameters at low energy scale, on varying m_s and $\tan \beta$ for IH case ($M_R = 10^{14}$ GeV).

<table>
<thead>
<tr>
<th>m_s(TeV)</th>
<th>$\tan \beta = 55$</th>
<th>$\tan \beta = 45$</th>
<th>$\tan \beta = 40$</th>
<th>$\tan \beta = 35$</th>
<th>$\tan \beta = 25$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>44.58</td>
<td>44.46</td>
<td>44.44</td>
<td>44.41</td>
<td>44.38</td>
</tr>
<tr>
<td>4</td>
<td>44.62</td>
<td>44.49</td>
<td>44.46</td>
<td>44.42</td>
<td>44.39</td>
</tr>
<tr>
<td>6</td>
<td>44.64</td>
<td>44.50</td>
<td>44.47</td>
<td>44.43</td>
<td>44.39</td>
</tr>
<tr>
<td>8</td>
<td>44.66</td>
<td>44.51</td>
<td>44.48</td>
<td>44.44</td>
<td>44.40</td>
</tr>
<tr>
<td>10</td>
<td>44.67</td>
<td>44.52</td>
<td>44.48</td>
<td>44.44</td>
<td>44.40</td>
</tr>
<tr>
<td>12</td>
<td>44.68</td>
<td>44.52</td>
<td>44.49</td>
<td>44.44</td>
<td>44.40</td>
</tr>
<tr>
<td>14</td>
<td>44.69</td>
<td>44.53</td>
<td>44.49</td>
<td>44.44</td>
<td>44.40</td>
</tr>
</tbody>
</table>

$\theta_{12},^0$					
2	32.078	32.058	32.048	32.026	32.001
4	32.083	32.061	32.051	32.029	32.008
6	32.088	32.068	32.052	32.031	32.016
8	32.096	32.071	32.056	32.036	32.021
10	32.101	32.076	32.061	32.042	32.026
12	32.108	32.081	32.064	32.044	32.031
14	32.111	32.083	32.067	32.046	32.033

$\theta_{13},^0$					
4	8.379	8.363	8.351	8.342	8.332
6	8.381	8.364	8.352	8.345	8.334
10	8.385	8.369	8.354	8.348	8.338

$\Delta m^2_{21}(10^{-5}\text{eV}^2)$					
2	12.48	7.98	5.68	5.55	4.38
4	13.95	9.08	6.30	6.08	4.93
6	14.42	9.43	6.75	6.45	5.13
8	15.15	10.05	7.05	6.89	5.44
10	15.38	10.25	7.25	7.09	5.54
12	15.73	10.53	7.37	7.12	5.74
14	15.95	10.74	7.49	7.22	5.81

$	\Delta m^2_{31}	(10^{-3}\text{eV}^2)$					
2	2.32	2.41	2.46	2.47	2.51		
4	2.28	2.35	2.44	2.45	2.49		
6	2.25	2.29	2.42	2.44	2.47		
8	2.23	2.27	2.41	2.43	2.46		
10	2.22	2.25	2.40	2.42	2.45		
12	2.21	2.24	2.40	2.42	2.43		
14	2.20	2.22	2.39	2.41	2.42		

$\delta_{CP},^0$					
2	239.899	239.932	239.95	239.960	239.978
4	239.897	239.922	239.94	239.956	239.976
6	239.896	239.918	239.93	239.953	239.974
8	239.891	239.914	239.93	239.946	239.972
10	239.884	239.912	239.93	239.944	239.969
12	239.881	239.911	239.93	239.942	239.965
14	239.879	239.909	239.92	239.937	239.962
for all cases and two Majorana phase angles at 180° for simplicity. In order to avoid any possible singularity in running RGEs for nearly quasidegenerate case, we considered Majorana CP conserving parity in the mass eigenvalues $(m_1, -m_2, -m_3)$. Majorana phases are more insensitive as compared to δ_{CP} against RGEs analysis and we omit to report these results. We conclude with the following important points of our results.

Figure 3: Effects on the low energy output results in θ_{ij}, $|\Delta m^2_{ij}|$, and δ_{CP} with variation of m_s for NH case at $M_R = 10^{14}$ GeV. Five different choices of $\tan \beta$ are presented.
The input value of \(\tan \beta \) sharply affects the evolution pattern of the third generation Yukawa coupling constants \((h_t, h_b, \text{and} \ h_\tau) \) with energy scale. It has been observed that \(h_t \) at \(M_R \) scale always decreases with the increase of SUSY breaking scale \(m_s \) for both low and large \(\tan \beta \) values. However, the high energy scale values of \(h_b \) and \(h_\tau \) are observed

Figure 4: Effects on the low energy output results in \(\theta_{ij}, |\Delta m_{ij}|, \) and \(\delta_{\text{CP}} \) with variation of \(m_s \) for IH case at \(M_R = 10^{14} \) GeV. Five different choices of \(\tan \beta \) are presented.
to increase with the increase in m_s scale for low tan β values, but decrease with m_s for larger tan β values. For moderate tan β values, h_b decreases with m_t again but h_t increases with m_t.

(i) The effect of the variation of m_s scale on neutrino oscillation parameters at low energy scale is very mild except Δm^2_{21} which is very sensitive with m_t and tan β values. Both low energy scale values of $|\Delta m^2_{21}|$ and Δm^2_{21} increase with the increase in m_s for NH case. However, Δm^2_{21} increases with the increase of m_s, but $|\Delta m^2_{21}|$ decreases with m_t for IH case. The low energy scale values of three mixing angles (θ_{12}, θ_{13}, and θ_{23}) have mild increasing trend with the increase of m_s scale for both NH and IH cases. The Dirac CP phase δ_{CP} at low energy scale increases with the increase in m_t for NH but it decreases with m_s for IH case.

The simultaneous variations of m_s and tan β on low scale neutrino oscillation parameters have significant effects. It is observed that all the low energy values of mixing angles (θ_{12}, θ_{13}, and θ_{23}) increase with the increase in m_t and tan β values for both NH and IH. Both low energy values of Δm^2_{21} and $|\Delta m^2_{21}|$ decrease with the increase of tan β, but they increase with m_t for NH. For IH case, Δm^2_{21} increases and $|\Delta m^2_{21}|$ decreases with the increase of m_s and tan β. The Dirac CP phase δ_{CP} decreases with the increase of tan β but increases with the increase of m_t for NH case. For IH case, the low energy value of δ_{CP} decreases with the increase of both tan β and m_t.

The complementarity relation (SC) is found to satisfy at high and low energy scale under RGEs with the variations of both tan β and m_t scale.

The numerical analysis in the present work shows the stability of both NH and IH neutrino mass models with the variation of SUSY breaking scale m_t, and also the other two input parameters M_R scale tan β for a wide range of input values. The present analysis can be applied to check the validity at low energy scale of certain mixing patterns such as tribimaximal [51–54] and golden ratio mixing patterns defined at high energy scale [34, 55–58].

Appendix

A. RGEs for Gauge Couplings [39]

The two-loop RGEs for gauge couplings are given by

$$\frac{dg_i}{dt} = \frac{b_i}{16\pi^2} g_i^3 + \frac{1}{(16\pi^2)^2} \left[\sum_{j=1}^{3} b_{ij} g_i g_j^2 - \sum_{j=\tau,\tau',\tau''} a_{ij} g_i g_j^2 h_j^2 \right],$$

(A.1)

where $t = \ln \mu$, and b_i, b_{ij}, a_{ij} are β function coefficients in

MSSM,

$$b_i = (6.6, 1.0, -3.0), b_{ij} = \begin{pmatrix} 7.96 & 5.40 & 17.60 \\ 1.80 & 25.00 & 24.00 \\ 2.20 & 9.00 & 14.00 \end{pmatrix},$$

$$a_{ij} = \begin{pmatrix} 5.2 & 2.8 & 3.6 \\ 6.0 & 6.0 & 2.0 \\ 4.0 & 4.0 & 0.0 \end{pmatrix},$$

(A.2)

and, for non-supersymmetric case, we have

$$b_i = (4.100, -3.167, -7.00), b_{ij} = \begin{pmatrix} 3.98 & 2.70 & 8.8 \\ 0.90 & 5.83 & 12.0 \\ 1.10 & 4.50 & -26.0 \end{pmatrix},$$

$$a_{ij} = \begin{pmatrix} 0.85 & 0.5 & 0.5 \\ 1.50 & 1.5 & 0.5 \\ 2.00 & 2.0 & 0.0 \end{pmatrix},$$

(A.3)

A.1. Two-Loop RGEs for Yukawa Couplings and Quartic Higgs Coupling [39]. For MSSM,

$$\frac{dh_t}{dt} = \frac{h_t}{16\pi^2} \left(6h_t^2 + h_b^2 - \sum_{i=1}^{3} c_i g_i^2 \right) + \frac{h_t}{(16\pi^2)^2} \left[\sum_{i=1}^{3} \left(c_i b_i + \frac{c_i^2}{2} \right) g_i^4 + g_i^2 g_j^2 + \frac{136}{45} g_1^2 g_3^2 + 8g_2^2 g_3^2 + \left(\frac{6}{5} g_1^2 + 6g_2^2 + 16g_3^2 \right) h_t^2 \right],$$

$$\frac{dh_b}{dt} = \frac{h_b}{16\pi^2} \left(6h_b^2 + h_t^2 + h_t - \sum_{i=1}^{3} c_i g_i^2 \right) + \frac{h_b}{(16\pi^2)^2} \left[\sum_{i=1}^{3} \left(c_i b_i + \frac{c_i^2}{2} \right) g_i^4 + g_i^2 g_j^2 + \frac{8}{5} g_i^2 g_j^2 + 8g_2^2 g_3^2 + \left(\frac{2}{5} g_1^2 + 6g_2^2 + 16g_3^2 \right) h_t^2 + \frac{4}{5} g_i^2 h_t^2 \right]$$

$$+ \frac{6}{5} g_1 h_t^2, -22h_t^2 - 3h_t^2 - 5h_t^2} - 5h_t^2 h_t^2 - 3h_t^2 h_t^2, \right]$$

where $t = \ln \mu$, and b_i, b_{ij}, a_{ij} are β function coefficients in
\[
\frac{dh_i}{dt} = \frac{h_t}{16\pi^2} \left(3h_i^2 - \frac{3}{2}h_i^2 + Y_2(S) - \sum c_i' g_i^2 \right) \\
+ \frac{h_t}{(16\pi^2)^2} \left[\left(\frac{1187}{600} \right) g_i^4 - \frac{23}{4} g_i^4 - 108 g_i^4 \right] \\
- \frac{9}{20} g_i^2 g_i^2 + \frac{19}{15} g_i^2 g_i^2 + 9 g_i^2 g_i^2 \\
+ \left(\frac{223}{80} \right) g_1^2 + \frac{135}{16} g_1^2 + 16 g_1^2 \right) h_i^2 \\
- \left(\frac{43}{80} \right) g_1^2 - \frac{9}{16} g_1^2 + 16 g_1^2 \right) h_i^2 + \frac{5}{2} Y_4(S) \\
- 2\lambda (3h_i^2 + h_i^2) + \frac{3}{2} h_i^2 + \frac{5}{4} h_i^2 h_i^2 + \frac{11}{4} h_i^2 \\
+ Y_2(S) \left[\frac{5}{4} h_i^2 - \frac{9}{4} h_i^2 \right] - \eta_4(S) + \frac{3}{2} \lambda^2 \right],
\]

\[
\frac{dh_i}{dt} = \frac{h_t}{16\pi^2} \left(\frac{3}{2} h_i^2 + Y_2(S) - \sum c_i' g_i^2 \right) \\
+ \frac{h_t}{(16\pi^2)^2} \left[\left(\frac{1371}{200} \right) g_i^4 - \frac{23}{4} g_i^4 - \frac{27}{20} g_i^4 \right] \\
+ \left(\frac{387}{80} \right) g_i^2 + \frac{135}{16} g_i^2 \right) h_i^2 + \frac{5}{2} Y_4(S) - 6\lambda h_i^2 \\
+ \left(\frac{3}{2} \right) h_i^2 - \frac{9}{4} Y_4(S) h_i^2 - \eta_4(S) + \frac{3}{2} \lambda^2 \right],
\]

where

\[
c_i = \left(\frac{13}{15}, 3, \frac{16}{13} \right), c_i' = \left(\frac{7}{15}, 3, \frac{16}{3} \right),
\]

\[
c_i'' = \left(\frac{9}{5}, 3, 0 \right).
\]

For non-supersymmetric case,

\[
\frac{dh_i}{dt} = \frac{h_b}{16\pi^2} \left(\frac{3}{2} h_i^2 - \frac{3}{2} h_i^2 + Y_2(S) - \sum c_i' g_i^2 \right) \\
+ \frac{h_b}{(16\pi^2)^2} \left[\left(\frac{127}{600} \right) g_i^4 - \frac{23}{4} g_i^4 - 108 g_i^4 \right] \\
- \frac{27}{20} g_i^2 g_i^2 + \frac{31}{15} g_i^2 g_i^2 + 9 g_i^2 g_i^2 \\
- \left(\frac{79}{80} \right) g_i^2 + \frac{9}{16} g_i^2 + 16 g_i^2 \right) h_i^2 \\
+ \left(\frac{187}{80} \right) g_i^2 + \frac{135}{16} g_i^2 + 16 g_i^2 \right) h_i^2 + \frac{5}{2} Y_4(S) \\
- 2\lambda (3h_i^2 + 3h_i^2) + \frac{3}{2} h_i^2 - \frac{5}{4} h_i^2 h_i^2 + \frac{11}{4} h_i^2 \\
+ Y_2(S) \left[\frac{5}{4} h_i^2 - \frac{9}{4} h_i^2 \right] - \eta_4(S) + \frac{3}{2} \lambda^2 \right],
\]

\[
\frac{dh_i}{dt} = \frac{h_b}{16\pi^2} \left(\frac{3}{2} h_i^2 + Y_2(S) - \sum c_i' g_i^2 \right) \\
+ \frac{h_b}{(16\pi^2)^2} \left[\left(\frac{1371}{200} \right) g_i^4 - \frac{23}{4} g_i^4 - \frac{27}{20} g_i^4 \right] \\
+ \left(\frac{387}{80} \right) g_i^2 + \frac{135}{16} g_i^2 \right) h_i^2 + \frac{5}{2} Y_4(S) - 6\lambda h_i^2 \\
+ \left(\frac{3}{2} \right) h_i^2 - \frac{9}{4} Y_4(S) h_i^2 - \eta_4(S) + \frac{3}{2} \lambda^2 \right],
\]

where

\[
Y_2(S) = 3h_i^2 + 3h_i^2 + h_i^2, \\
Y_4(S) = \frac{1}{3} \left[3\Sigma c_i' g_i^2 h_i^2 + 3\Sigma c_i' g_i^2 h_i^2 + 3\Sigma c_i' g_i^2 h_i^2 \right], \\
H(S) = 3h_i^4 + 3h_i^4 + h_i^4, \\
\eta_4(S) = \frac{9}{4} \left[3h_i^4 + 3h_i^4 + h_i^4 - \frac{3}{2} h_i^2 h_i^2 \right],
\]

and \(\lambda = m^2 / v^2 \) is the Higgs self-coupling, \(m_h = 125.78 \pm 0.26 \text{ GeV} \) is the Higgs mass [59], and \(v_0 = 174 \text{ GeV} \) is the vacuum expectation value.

The beta function coefficients for non-SUSY case are given below

\[
c_i = (0.85, 2.25, 8.00), c_i' = (0.25, 2.25, 8.00), \text{ and } c_i'' = (2.25, 2.25, 0.00).
\]
B. RGEs for Three Neutrino Mixing Angles and Phases [33]: (Neglecting Higher Order of θ_1)

\[
\dot{\theta}_{12} = - \frac{C_{Yr}^2}{32\pi^2} \sin 2\theta_{12} \sin 2\theta_{23} \left| m_1 e^{i\varphi_1} + m_2 e^{i\varphi_2} \right|^2 \frac{m_3}{\Delta m_{31}^2},
\]

\[
\dot{\theta}_{13} = \frac{C_{Yr}^2}{32\pi^2} \sin 2\theta_{12} \sin 2\theta_{23} \left(\frac{m_3}{\Delta m_{31}^2(1 + \xi)} \right) \times \left[m_1 \cos (\psi_1 - \delta) - (1 + \xi)m_2 \cos (\psi_2 - \delta) - \xi m_3 \sin \delta \right],
\]

\[
\dot{\theta}_{23} = - \frac{C_{Yr}^2}{32\pi^2} \sin 2\theta_{23} \left(\frac{m_3}{\Delta m_{31}^2} \right)^2 \left[\frac{1}{2} \left| c_{12}^2 + \frac{m_1 e^{i\varphi_1} + m_3 e^{i\varphi_2}}{1 + \xi} \right|^2 \right],
\]

\[
\Delta m_{21}^2 = m_2^2 - m_1^2, \quad \Delta m_{31}^2 = m_3^2 - m_1^2, \quad \text{and} \quad \xi = \Delta m_{31}^2 / \Delta m_{21}^2.
\]

B.1 RGES for the Three Phases [33]. For Dirac phase δ,

\[
\dot{\delta} = \frac{C_{Yr}^2}{32\pi^2} \delta^{(-1)} + \frac{C_{Yr}^2}{8\pi^2} \delta^{(0)},
\]

where

\[
\delta^{(-1)} = \sin 2\theta_{12} \sin 2\theta_{23} \frac{m_3}{\Delta m_{31}^2(1 + \xi)} \times \left[m_1 \sin (\psi_1 - \delta) - (1 + \xi)m_2 \sin (\psi_2 - \delta) + \xi m_3 \sin \delta \right],
\]

\[
\delta^{(0)} = \frac{m_1 m_2 s_{12}}{\Delta m_{31}^2} \sin (\psi_1 - \psi_2) + m_3 s_{12} \sin (2\theta_{12} - \delta - \psi_2) \frac{m_3 c_{12}^2}{\Delta m_{31}^2(1 + \xi)} + m_3 c_{12} \sin (2\theta_{23} - \delta - \psi_1) \frac{m_3 c_{23}^2}{\Delta m_{31}^2(1 + \xi)}.
\]

For Majorana phase ψ_1 [33],

\[
\psi_1 = \frac{C_{Yr}^2}{8\pi^2} \left[m_3 \cos 2\theta_{23} \frac{m_3 s_{12}^2}{\Delta m_{31}^2(1 + \xi)} \sin \psi_1 + (1 + \xi)m_2 c_{12}^2 \sin \psi_2 \right] + \frac{C_{Yr}^2}{8\pi^2} \frac{m_1 m_2 c_{12}^2}{\Delta m_{31}^2} \sin (\psi_1 - \psi_2).
\]

For Majorana phase ψ_2,

\[
\psi_2 = \frac{C_{Yr}^2}{8\pi^2} \left[m_3 \cos 2\theta_{23} \frac{m_1 s_{12}^2}{\Delta m_{31}^2(1 + \xi)} \sin \psi_1 + (1 + \xi)m_2 c_{12}^2 \sin \psi_2 \right] + \frac{C_{Yr}^2}{8\pi^2} \frac{m_1 m_2 c_{12}^2}{\Delta m_{31}^2} \sin (\psi_1 - \psi_2).
\]

B.2 RGES for Neutrino Mass Eigenvalues [33].

\[
m_1 = \frac{1}{16\pi^2} \left[\alpha + C_{Yr}^2 \left(2s_{12}^2 s_{23}^2 + F_1 \right) \right] m_1,
\]

\[
m_2 = \frac{1}{16\pi^2} \left[\alpha + C_{Yr}^2 \left(2s_{12}^2 s_{23}^2 + F_2 \right) \right] m_2,
\]

\[
m_3 = \frac{1}{16\pi^2} \left[\alpha + 2C_{Yr}^2 c_{13} c_{23} m_3 \right],
\]

where

\[
F_1 = -s_{13} \sin 2\theta_{12} \sin 2\theta_{23} \cos \delta + 2s_{13}^2 c_{12}^2 s_{23}^2,
\]

\[
F_2 = s_{13} \sin 2\theta_{12} \sin 2\theta_{23} \cos \delta + 2s_{13}^2 c_{12}^2 s_{23}^2.
\]

For MSSM case,

\[
\alpha = - \frac{6}{5} g_1^2 - 6g_2^2 + 6y_1^2,
\]

\[
C = 1.
\]

For SM case,

\[
\alpha = -3g_1^2 + 2g_2^2 + 6y_1^2 + 6y_2^2 + \lambda,
\]

\[
C = \frac{3}{2}.
\]

and λ is the Higgs self-coupling in the SM.

Data Availability

Data related to this work can be accessed through my zenodo doi:10.5281/zenodo.6585877

Disclosure

This article is submitted to arXiv:2205.10005. This paper has been returned to draft for the presentation of the manuscript in Research Gate:https://www.researchgate.net/publication/360781986_Effects_of_variations_of_SUSY_breaking_scale_on_neutrino_parameters_at_low_energy_scale_under_radiative_corrections.

Conflicts of Interest

The authors declare that there is no conflict of interest regarding the publication of this paper.
References

