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Interaction of dark energy in the anisotropic locally rotationally symmetric (LRS) Bianchi type-I metric is investigated in the
context of modified f ðR, TÞ theory of gravity, where R is the Ricci scalar and T is the trace of stress energy momentum tensor.
We choose the particular form of the functional f ðR, TÞ = f1ðRÞ + f2ðTÞ; then, we find the exact solutions of the field equations
by applying inhomogeneous equation of state, p = ωρ −ΛðtÞ, and a generalized form of hybrid expansion law. The transition of
deceleration to acceleration is observed in this model. It is also observed that the universe shows accelerated expansion at late
epoch. The derived model overlaps with ΛCDM at late time which is in agreement with present observation. Energy
conditions of the derived model are also investigated. From the plot, we observe the age of universe ðt0 ≈ 13:821GyrÞ for the
observed H0 ≈ 70:07Kms‐1Mpc‐1. The physical and geometrical behaviours of these models are also discussed.

1. Introduction

The examination of observational data suggests that our
universe is undergoing a phase of accelerated expansion.
This result is based on the observation of high shift type
SN Ia supernovae [1, 2], cosmic microwave background
(CMBR) data [3], and large-scale structure [4]. The obser-
vation also suggests that there had been a transition of
the universe from the earlier deceleration phase to the
recent acceleration phase [5]. There are two approaches to
describe this late time acceleration of universe. One of the
approaches to define the source of this acceleration is a
new type of energy, which has large negative pressure, com-
monly known as dark energy. This dark energy has the
ability to work against gravity and provide late accelerated
expansion of the universe [6]. Hence, dark energy is a
prime candidate to explain the accelerated expansion of
the universe. According to different measurements, dark
energy contributes about 73% of the total mass energy of
the Universe. While the rest 23% and 4% are occupied by
dark matter, another component of the universe which is
useful in explaining the structure formation of the universe,

and baryonic matter, respectively. In physical cosmology
and astronomy, the simplest candidate for the dark energy
is the cosmological constant ðΛÞ. But it has a serious prob-
lem with the fine tuning and cosmic coincidence problem,
from the theoretical point of view. Due to these reasons
the cosmological constant with dynamical nature is
favoured over the constant cosmological constant. There-
fore, numerous models of dark energy such as the quintes-
sence phantom model, tachyon model, Chaplygin gas, and
holographic dark energy have been proposed to study the
mysterious nature of dark energy.

The general theory of relativity is the best suited theory
to explain the evolution of the Universe, and ΛCDM is the
most natural model of the universe. Modifications of general
relativity are attracting more and more attention to explain
late time acceleration and dark energy. Many alternative the-
ories are developed in order to accommodate the late accel-
erated expansion of the universe. Among these alternative
theories, f ðR, TÞ is interesting and beneficial for study of
the universe. The second approach is to modify the left-
hand side of Einstein’s field equation to obtain the alterna-
tive theories of gravity.
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These modified gravity theories become an alternative to
the conventional cosmology as it can describe the late time
cosmic speed up process of expansion. Some of such theories
are f ðRÞ gravity [7–9], f ðτÞ gravity [10, 11] where τ is tor-
sion scalar, f ðGÞ gravity [12, 13] where G is Gauss-Bonnet
scalar, and f ðR, TÞ gravity [14] where R is the Ricci scalar
and T is the trace of the energy momentum tensor. Among
all of such theories, the f ðR, TÞ gravity theory is the modifi-
cation of the f ðRÞ theory and became an interesting theory
for the cosmologists. He also explicitly specified few classes
of f ðR, TÞ modified gravity through the form of arbitrary
function. Physical and geometrical properties of anisotropic
cosmological model for a specific class of f ðR, TÞ are inves-
tigated [15–17].

In physical cosmology, the scale factor is the key param-
eter to describe the different evolutionary epochs of the uni-
verse. Power law expansion and exponential expansion of
the universe are executed with different forms of scale factor.
Phase transition in the evolution of the universe from decel-
eration phase to acceleration phase is also observed in uni-
verse with hybrid expansion law. In this paper, we
developed a generalized form of the hybrid expansion law
and we also observed the transition phase of the evolution
of Universe. Bianchi types IIX cosmological models becomes
very interesting since these are homogeneous and aniso-
tropic, and the process of isotropization of the universe is
investigated through the evolution of the universe. The sim-
plicity of the field equations made Bianchi space times useful
in constructing models of spatially homogeneous and aniso-
tropic cosmologies. Though the present universe is homoge-
neous and isotropic on a larger scale, it is generally believed
that the early universe was highly anisotropic and was iso-
tropized later with the cosmic expansion. The simplest is
the Bianchi type-I universe which is spatially homogeneous
and anisotropic flat universe. Hence, many researchers have
been encouraged to study the Bianchi type-I universe as it
behaves like FRW universe at late times. Bianchi type-VI0
metric is discussed with ghost dark energy and found that
the model behaves likeΛCDM at the late phase of cosmic time
[18]. Viscous fluid cosmological model is explored with time-
dependent inhomogeneous equation of state in the FRW cos-
mological model [19]. The anisotropic cosmological model is
studied in f ðR, TÞ gravity choosing the functional form of
f ðR, TÞ = f1ðRÞ + f2ðTÞ, and they found the cosmological
parameters constrained with observational parameters [20].
Bianchi type-I metric with hybrid expansion law is studied
in the framework of Lyra’s manifold [21]. Anisotropic cosmo-
logical models are investigated in the f ðR, TÞ theory of gravity
with quadratic functional form [22]. In the recent years, Bian-
chi universe gains massive interest among the researchers
through the observational cosmology. From the WMAP data
[23], it is revealed that the standard cosmological model
requires positive and dynamic cosmological parameters that
resemble the Bianchi universe. Mishra et al. [24–26] also
investigated cosmological models with hybrid expansion law
which produce a time-varying deceleration parameter that
stimulates the cosmic transition.

With the motivation of the above discussions, we intend
to explore a LRS Bianchi type-I cosmological model within

the framework of f ðR, TÞ gravity whose functional form is
f ðR, TÞ = λR + λT , where λ is an arbitrary constant. We
solve the generalized Einstein field equation by assuming
inhomogeneous equation of state p = ωρ −ΛðtÞ and general-
ized form of hybrid expansion law. This paper is organized
as follows: we formulate the gravitational field equations of
f ðR, TÞ theory in Section 2. In Section 3, field equations
and respective solutions corresponding to f ðR, TÞ are
shown. In Section 4, we present our model with hybrid
expansion law. In Section 5, we discuss the energy condi-
tions. Our concluding remark is given in Section 6.

2. The General Formulation of f ðR, TÞ Gravity
By applying the Hilbert-Einstein variational action, the field
equations of f ðR, TÞ theory of gravitation are derived. Harko
et al. [14] use the following form of the action for f ðR, TÞ
modified gravity

S = 1
16π

ð
f R, Tð Þ ffiffiffiffiffiffi

−g
p

d4x+
ð
Lm

ffiffiffiffiffiffi
−g

p
d4x: ð1Þ

Here, f ðR, TÞ stands for arbitrary function of Ricci scalar
(R) and the trace (T) of the stress energy momentum tensor.
We define the stress energy momentum tensor ðTijÞ as

Tij = −
2ffiffiffiffiffiffi−gp δ

ffiffiffiffiffiffi−gp
Lm

� �
δgij

, ð2Þ

where the matter Lagrangian density is given by Lm which is
governed by the metric tensor component. Therefore, stress
energy momentum tensor becomes

Tij = gijLm − 2 ∂Lm
∂gij

: ð3Þ

Taking the variation of action S with respect to metric
tensor gij, we derive the field equation of f ðR, TÞ gravity as

f R R, Tð ÞRij −
1
2 f R, Tð Þgij + gij□−∇i∇j

� �
f R R, Tð Þ

= 8πTij − f T R, Tð ÞTij − f R R, Tð ÞΘij,
ð4Þ

where Θij = gαβðδTαβ/δgijÞ. Using the value of the matter
Lagrangian Lm and using the value of Tij, we have

Θij = −2Tij + gijLm − 2gαβ ∂2Lm
∂gij∂glm

: ð5Þ

We consider the perfect fluid model governed by energy
density ρ and pressure p of the fluid with four-velocity ui

= ð0, 0, 0, 1Þ satisfying uiuj = 1 and ui∇juj = 0. We take the
energy momentum tensor of perfect fluid in the form

Tij = ρ + pð Þuiuj − pgij: ð6Þ
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We take the matter Lagrangian Lm = −p. Then, equation
(5) becomes

Θij = −2Tij − pgij: ð7Þ

The field equations of the f ðR, TÞ theory of gravity also
related to the physical behaviours of the matter field through
the tensor Θij. Harko et al. [14] introduced the three classes
which are given as

f R, Tð Þ =
R + 2f Tð Þ,
f1 Rð Þ + f2 Tð Þ,
f1 Rð Þ + f2 Rð Þf3 Tð Þ:

8>><
>>: ð8Þ

3. Metric and Field Equations

In this paper, we choose the case f ðR, TÞ = f1ðRÞ + f2ðTÞ for
LRS Bianchi type-I metric to develop our model. The LRS
Bianchi type-I metric of this model is given as

ds2 = dt2 − A2 tð Þ dx2 + dy2
� �

− B2 tð Þdz2, ð9Þ

Here, A and B are metric potentials which are functions
of time. This metric has symmetric plane in xy plane and
symmetry axis are along z axis. The volume of the universe
is given by V = A2B = a3, where a is the scale factor. And
the Hubble parameter is given by

H = 1
3 2Hx +Hzð Þ, ð10Þ

where Hx = Hy = _A/A and Hz = _B/B.
Then we take f ðR, TÞ = λR + λT , where λ is an arbitrary

constant. Setting ðgij□−∇i∇jÞ = 0, equation (4) reduces to

Rij −
1
2Rgij = p + 1

2T
� �

gij +
8π + λ

λ

� �
Tij: ð11Þ

Using the energy momentum tensor of the matter
Lagrangian for perfect fluid obtained in equation (6) and
field equations obtained in equation (11), the expressions
of gravitational field equations for the metric in equation
(9) are calculated by

_A
A

 !2

+ 2
_A
A

_B
B
= p + 1

2T
� �

+ αρ, ð12Þ

€A
A

+
€B
B
+

_A
A

_B
B
= p + 1

2T
� �

− αp, ð13Þ

2
€A
A

+
_A
A

 !2

= p + 1
2T

� �
− αp, ð14Þ

where an overhead dot and the double overhead dots hereaf-
ter denote the first and second differentiations with respect

to cosmic time ′t ′, respectively, and α = ð8πλ + λÞ/λ. The
trace of the stress energy momentum tensor T in our derived
model is given by T = ρ − 3p. We consider a universe filled
with anisotropic dark energy obeying the inhomogeneous
equation of state in the form p = ωρ −ΛðtÞ, where −1 ≤ ω
≤ 1 and ΛðtÞ is a time-dependent cosmological constant.
This equation of state, with wðtÞ a function of time, was
examined in [27]. The above field equations (12)–(14) can
be written in terms of Hx and Hz as

Hx
2 + 2HxHz =

1
2Λ + 1

2 ρ 1 − ω + 2αð Þ, ð15Þ

_Hx + _Hz +Hx
2 +Hz

2 +HxHz =
1
2 + α

� �
Λ + 1

2 ρ 1 − ω − 2ωαð Þ,

ð16Þ

2 _Hx + 3Hx
2 = 1

2 + α

� �
Λ + 1

2 ρ 1 − ω − 2ωαð Þ: ð17Þ

On solving equations (13) and (14), we get

A = c21/3a exp
c1
3

ð
dt
a3

� �
, ð18Þ

B = c2−2/3a exp
−2c1
3

ð
dt
a3

� �
, ð19Þ

where c1 and c2 are constants of integration. The cosmolog-
ical term, energy density, and pressure are obtained from
equations (15)–(17)

Λ = 1
α α + 1ð Þ ωα − ω + 3α + 1ð ÞHx

2 + ω + 2α − 1ð Þ _Hx

	
+ 2ωα + ω − 1ð ÞHxHz



,

ð20Þ

ρ = 1
α α + 1ð Þ α − 1ð ÞHx

2 − _Hx + 2α + 1ð ÞHxHz

	 

, ð21Þ

p = −
1

α α + 1ð Þ 3α + 1ð ÞHx
2 + 2ω + 2α − 1ð Þ _Hx −HxHz

	 

:

ð22Þ

4. Model with Generalized Hybrid
Expansion Law

Many authors [24–26] also investigated cosmological
models with hybrid expansion which stimulates the cosmic
transition from deceleration to acceleration epoch. In order
to obtain a generalized hybrid universe, we consider a gener-
alized hybrid scale factor of the universe in the form [28, 29]

a tð Þ = b0t
met

1−m , ð23Þ
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where b0 ≥ 0 and m ≥ 0 are constants. This form of scale fac-
tor is called generalized hybrid expansion law (GHEL). In
particular cases, one can obviously obtains power law and
exponential expansions of the universe with m = 1 and m
= 0, respectively. Thus, power law and exponential law cos-
mologies are special cases of the hybrid expansion law cos-
mology which is in the valid interval 0 <m < 1. This hybrid
expansion law also provides the transition phase of deceler-
ation phase to accelerating phase of the universe as in
[24–26]. Volume of the universe (V) is given by V = a3ðtÞ.
This gives the scale factor as

a tð Þ = b0
1/3tm/3et

1−m/3: ð24Þ

For this scale factor, the deceleration parameter is found
to be

q = −1 + 3m t−2 + 1 −mð Þt− m+1ð Þ� �
mt−1 + 1 −mð Þt−m½ �2

: ð25Þ

Here, q approaches to −1 which shows that the present
universe approaches to the epoch of accelerating expansion
as t⟶∞. Using equation (24) in (18) and (19), we obtain

A = c2b0e
c1c3/b0

� �1/3
tm/3e t1−m/3ð Þ− c1e

−t1−m /3b0 1−mð Þ
� �

,

B = c2
−2b0e

−2c1c3/b0
� �1/3

tm/3e t1−m/3ð Þ+ 2c1e−t
1−m /3b0 1−mð Þ

� �
:

ð26Þ

This shows that the scale factors expand along x, y, and z
axes with different rates of expansion. Also, the expression of
directional Hubble parameters, Hubble parameter, anisot-
ropy parameter, expansion scalar, and the shear scalar
becomes

Hx =
m
3 t−1 + 1 −m

3 t−m + c1
3b0

e−t
1−m

t−m,

Hz =
m
3 t−1 + 1 −m

3 t−m −
2c1
3b0

e−t
1−m

t−m,

H = m
3 t−1 + 1 −m

3 t−m,

Δ = 1
3〠

3

i=1

Hi −H
H

� �2
= 2c12

b0
2

e−t
1−m

t−m

mt−1 + 1 −mð Þt−m
" #2

,

θ = 3H =mt−1 + 1 −mð Þt−m,

σ2 = 1
2 〠

3

i=1
Hi

2 − 3H2
 !

= c1
2

3b02
e−2t

1−m
t−2m:

ð27Þ

Using the values of Hx and Hz in equations (20)–(22),
we obtain the cosmological term, energy density, and pres-
sure as follows:

Λ = 1
3α α + 1ð Þ α ω + 1ð Þm2 − ω + 2α − 1ð Þm� �

t−2
	

+ α ω + 1ð Þ 1 −mð Þ2 − α + 1ð Þ ω + 1ð Þ c1
2

b0
2 e

−2t1−m



−2 ω − 1ð Þ 1 −mð Þ c1
b0

e−t
1−m
�
t−2m

+ 2ωα −w + 1ð Þm 1 −mð Þ − 2 ω − 1ð Þmc1
b0

e−t
1−m


 �
t− m+1ð Þ

i
,

ρ = 1
3α α + 1ð Þ m mα + 1ð Þt−2 + α 1 −mð Þ2 − α + 1ð Þ c1

2

b0
2 e

−2t1−m

 �

t−2m
�

+ 2α + 1ð Þm 1 −mð Þt− m+1ð Þ
�
,

ð28Þ

0 1 2 3 4 5

–0.5

0.0

0.5

t

q

Figure 1: Time variation of deceleration parameter (q).
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Figure 2: Time variation of Hubble parameter and Hubble
directional parameter.
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p = −
1

3α α + 1ð Þ αm2 − 2ω + 2α − 1ð Þm� �
t−2

	
+ α 1 −mð Þ2 + α + 1ð Þ ω + 1ð Þ c1

2

b0
2 e

−2t1−m



+ 2 1 − ωð Þ 1 −mð Þ c1
b0

e−t
1−m
�
t−2m

+ 1 − 2ωð Þm 1 −mð Þ + 2 1 − ωð Þmc1
b0

e−t
1−m


 �
t− m+1ð Þ

�
:

ð29Þ

Here, we plot the dark energy model ðω = −1Þ for α = 1
, c1 = 0:85, b0 = 1:2 and m = 0:06, 0:12, 0:16. It is observed
that the deceleration parameter q is positive at early stage
of the universe and negative for late time universe for 0 <
m < 1 which indicates that the universe exhibits transition
phase from deceleration to acceleration. The nature of the
deceleration parameter is shown in Figure 1. From
Figure 2, it is evident that the directional Hubble parameters
are exceptionally large at the beginning of the universe and
decrease monotonically with its age. Hubble constant ðH0Þ

is measured to be about 70 − 76Kms‐1Mpc‐1 by a variety of
techniques. The best current results using Cepheids and
the Hubble Space Telescope come from the SHOES team
which measure a value of about 73:5Kms‐1Mpc‐1. Recent
measurements based on red giant stars give a value of 70 −
72Kms‐1Mpc‐1. Recently, Plank 2018 results VI shows the
present value of Hubble constant ðH0Þ as 67:4 ± 0:5Kms‐1
Mpc‐1 and present age of universe to be 13:802 ± 0:024Gyr
. From this plot of Hubble constant vs. time in Figure 2 for
the valid values m = 0:12, we obtain the age of the universe
ðt0 ≈ 13:821GyrÞ for the observed H0 ≈ 70:07Kms‐1Mpc‐1
which is in agreement with the observational values of
[30]. By using the value of t0 in equation (25) for m =
0:134, we calculated the values of present deceleration
parameter ðq0Þ as q0 ≈ −1 which is in agreement with pres-
ent observation. In Figure 3, we see that the anisotropic
parameter approaches zero as t tends to infinity. It means
that our universe approaches isotropy at late epoch of its
evolution. These scenarios provide information that our uni-
verse is highly anisotropic in the past and becomes isotropic
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Figure 5: Time variation of density ðρÞ.
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later. The expansion scalar shows that the universe initially
evolves with an infinite expansion and decreases monotoni-
cally at late times. It is evident that the cosmological con-
stant term Λ is positive and becomes very small as shown
in Figure 4. Also, the energy density is positive and is a
decreasing function of time from the Figure 5.

5. Energy Conditions and Some
Observational Parameters

For observational investigation, we consider aðtÞ = 1/1 + z,
where z is the redshift. This relation gives the expression
between time and redshift as

t = m
1 −m

� �1/ 1−mð Þ
W

1 −m
m

1
b0 1 + zð Þ3

 ! 1−mð Þ/m2
4

3
5
1/ 1−mð Þ

,

ð30Þ

where W denotes the Lambert W function. Using (24), we
can express the parameters of the derived model in terms
of the redshift. Such a relation is useful for testing the model
with observational data. The essence of dark energy models
can be found out through the state finder diagnostic pair
fj, sg which gives us an idea about the geometrical nature
of the model. The pair fj, sg are defined as [31, 32]

j =   a⃛

aH3

= 1 + −m/9ð Þ + 2m/9ð Þð Þt−3 − 6m2 1 −mð Þt− m+2ð Þ − 3m 1 −mð Þ2t− 2m+1ð Þ

mt−1 + 1 −mð Þt−mf g3
,

s = j − 1
3 q − 3/2ð Þð Þ

= 2 −m/9ð Þ + 2m/9ð Þð Þt−3 − 6m2 1 −mð Þt− m+2ð Þ − 3m 1 −mð Þ2t− 2m+1ð Þ

3 mt−1 + 1 −mð Þt−mf g −5mt−1 − 5 1 −mð Þt−m + 6mt−2 + 6m 1 −mð Þt− m+1ð Þ� � :
ð31Þ

In the above definition of s, there is 3/2 in the place of
1/2 in the original definition s = ðj − 1Þ/3ðq − ð1/2ÞÞ [32] to
avoid divergence of s when q = 1/2. Figure 6 shows that the
model behaves like ΛCDM model for n⟶∞ as fj, sg
becomes ð1, 0Þ for 0 <m < 1. The energy conditions in gen-
eral relativity are null energy condition (NEC), weak energy
condition (WEC), strong energy condition (SEC), and dom-
inant energy condition (DEC) which are expressed, respec-
tively, as

NEC⇔ ρ + p ≥ 0,
WEC⇔NEC and ρ ≥ 0,

SEC⇔ ρ + 3p ≥ 0
DEC⇔ ρ − p ≥ 0:

ð32Þ
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From Figures 7–10, we observe that ρ + p > 0, ρ > 0, ρ
+ 3p < 0, and ρ − p > 0. In this model, the null energy condi-
tion (NEC), weak energy condition (WEC), and dominant
energy condition (DEC) are satisfied but the strong energy
condition (SEC)is violated. The same is suggested by various
researchers [33, 34].

6. Conclusion

In this paper, we have established the solution of Einstein’s
field equations for LRS Bianchi-I space time using inhomo-
geneous equation of state p = ωρ −ΛðtÞ. In this model, V
⟶∞ as t⟶∞ which represents the accelerated expan-
sion of the universe. The physical behaviours of the dynamic
cosmological parameters depend on the value of m, and we
discuss the model with hybrid expansion for 0 <m < 1. The
expansion scalar shows that the expansion rate is infinite at
the beginning and decreases monotonically at late times.
As the deceleration parameter changes from a positive to
negative value with time, the model exhibits a transition
phase from deceleration to acceleration, which is an impor-
tant feature for the evolution of Universe. It is fascinating to
find that the model exhibits an initial singularity with high
anisotropy. The anisotropic parameter approaches zero as t
tends to infinity which shows that our universe approaches
isotropy at late times. The cosmological constant term and
the energy density decrease monotonically with time which
is in agreement with observations. Thus our model becomes
spatially homogeneous, isotropic, and flat at late times. Fur-
thermore, it is found that the values of Statefinder pair
becomes ðj = 1, s = 0Þ at late epoch. This shows that our

derived model approaches to the ΛCDM model at late
epoch. From Figure 2, we obtain the age of the universe ðt0
≈ Þ13:821Gyr for the observed H0 ≈ 70:07Kms1Mpc‐1
which is in agreement with the observations. By using the
value of t0 in equation (25) for m = 0:12, we calculated ðq0Þ
as q0 ≈ −1 which is in agreement with present observation.

Also in this model, the strong energy condition (SEC) is
violated while null energy conditions (NEC), weak energy
conditions (WEC), and dominant energy condition (DEC)
are satisfied which are agreeable with the present time.
Although the models obtained here are simple, it may be
useful in the investigation of the evolution of the universe.
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