
Research Article
Investigating Some Diatomic Molecules Bounded by the
Two-Dimensional Isotropic Oscillator plus Inverse Quadratic
Potential in an External Magnetic Field

O. J. Oluwadare ,1 E. O. Ilesanmi,1 T. O. Abiola,1 O. Olubosede,1 E. A. Odo,1 S. O. Ajibade,2

and K. J. Oyewumi2

1Department of Physics, Federal University Oye-Ekiti, PMB 373, Ekiti State, Nigeria
2Department of Physics, University of Ilorin, PMB 1515 Ilorin, Kwara State, Nigeria

Correspondence should be addressed to O. J. Oluwadare; oluwatimilehin.oluwadare@fuoye.edu.ng

Received 9 May 2022; Revised 29 June 2022; Accepted 26 July 2022; Published 10 September 2022

Academic Editor: Matteo Beccaria

Copyright © 2022 O. J. Oluwadare et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

We investigate the nonrelativistic magnetic effect on the energy spectra, expectation values of some quantum mechanical
observables, and diamagnetic susceptibility for some diatomic molecules bounded by the isotropic oscillator plus inverse
quadratic potential. The energy eigenvalues and normalized wave functions are obtained via the parametric Nikiforov-Uvarov
method. The expectation values square of the position hr2i, square of the momentum hp2i, kinetic energy hTi, and potential
energy hVi are obtained by applying the Hellmann-Feynman theorem, and an expression for the diamagnetic susceptibility X
is also derived. Using the spectroscopic data, the low rotational and low vibrational energy spectra, expectation values, and
diamagnetic susceptibility X for a set of diatomic molecules (I2, H2, CO, and HCl) for arbitrary values, Larmor frequencies are
calculated. The computed energy spectra, expectation values, and diamagnetic susceptibility X were found to be more
influenced by the external magnetic field strength and inverse quadratic potential strength g than the vibrational frequencies
and the masses of the selected molecules.

1. Introduction

Several studies in quantum mechanics, solid state physics,
condensed matter physics, nuclear physics, chemical phys-
ics, molecular physics, and other related areas have proven
to an outstanding degree that potential models are very
important models for stimulating atomic and molecular
interaction since it is capable of predicting and describing
some behavior of atoms and molecules. It also provides an
insight into the understanding of molecular spectra, vibra-
tions and dynamics [1, 2], spin-orbit interaction, relativistic
corrections and diamagnetic susceptibility [3, 4], optical
properties [5, 6], interband light absorption and interband
optical transitions [7, 8], energy and relativistic effects in
weakly bound nuclei [9–11], external magnetic fields and/
or Aharonov-Bohm flux fields [12–17], interactions between
the magnetic and electric fields [18], thermal and/or thermo-

dynamic properties [19–23], spin and pseudospin symme-
tries [24], and two-body effects [25–28] among others.

One of the important potential models in this regard is
the so-called isotropic oscillator plus inverse quadratic
potential (IOPIQP) or anharmonic oscillator potential,
which has been explored by some authors in both the rela-
tivistic and nonrelativistic domains of quantum mechanics
[29–32], [33, 34]. An isotropic oscillator (three-dimensional
harmonic oscillator) plus inverse quadratic potential may be
defined [29–34] as

V rð Þ = 1
2 μω

2r2 + g
r2
, ð1Þ

where g is the potential strength, μ represents the mass of
the vibrating molecules, and ω is the angular frequency with
which the molecules vibrate in the presence of a magnetic
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field. Oyewumi [29] employed the hyperradial equation for
the isotropic harmonic oscillator plus inverse quadratic
potential and presented the normalized hyperradial and
hyperangular solutions, and the solutions depend on the
dimension as well as the potential parameters. The hidden
symmetries and thermodynamic properties for a harmonic
oscillator plus inverse square potential have been exposed
by Dong et al. [30], while Arda and Sever reported the exact
solutions of Schrödinger for this potential within the frame-
work of the Laplace transform technique [31].

In the same vein, Abdelmadjid [32] also studied the
exact nonrelativistic quantum spectrum systems for the iso-
tropic harmonic oscillator plus inverse quadratic potential
within the formalisms of both Boopp’s shift method and
standard perturbation theory in both noncommutativity of
the two-dimensional real space and phase (NC-2D: RSP)
and presented the exact corrections for the spectrum and
the associated noncommutative anisotropic Hamiltonian.
Again, due to the unflinching interest, Abdelmadjid [33]
looked into the effect of both noncommutativity of the
three-dimensional space and phase on the Schrödinger
equation with an isotopic harmonic oscillator plus inverse
quadratic potential and reported the exact degenerated spec-
trum associated for noncommutative space and phase.

Furthermore, Dianawati et al. [34] investigated the
Schrödinger equation with quantum deformation for a
three-dimensional harmonic oscillator plus inverse qua-
dratic potential via the hypergeometric method. The energy
spectra which were calculated and visualized by MATLAB
R2013a were found to depend on the quantum deformation
and quantum number.

It is in the light of the relevance of this potential model that
we are motivated to examine the two-dimensional radial
Schrödinger equation with the isotropic harmonic oscillator
plus inverse quadratic potential in an external magnetic field
via the parametric Nikiforov-Uvarov method, obtain the
eigensolutions, and discuss the behavior of energy spectra,
expectation values of some quantum mechanical observables,
and diamagnetic susceptibility for some selected diatomic
molecules bounded by this interaction potential model.

The sensitivity of the bounded molecules in an external
magnetic field (using arbitrary values of Larmor frequen-
cies), low rotational and vibrational levels, and inverse qua-
dratic potential strength would be adequately investigated.
The situation where Larmor frequency ωL = 0 implies the
absence of an external magnetic field, whereas Larmor fre-
quencies ωL > 0 indicate the presence of an external mag-
netic field. The case of the low vibrational energy level
ðn = 0, 1, 2, 3Þ, low rotational energy level ðm = 0,+1Þ, and
inverse quadratic potential strengths ðg = 0, 1Þ would be
examined.

Other methods that can be used to solve the aforemen-
tioned bound state problems include the wave function
ansatz method [13], asymptotic iteration method [16], for-
mula method [17], Euler-Maclaurin approximation [23],
Laplace transform technique [31, 35], and supersymmetric
approach [36], among others. In Section 2, we give a review
of the parametric Nikiforov-Uvarov method. Section 3 con-
tains nonrelativistic eigensolutions, expectation values of

some quantum mechanical observables, and diamagnetic
susceptibility of the isotropic harmonic oscillator plus
inverse quadratic potential in an external magnetic field.
The results are discussed extensively in Section 4, while the
concluding remarks are given in Section 5.

2. Review of the Parametric Nikiforov-
Uvarov Method

The parametric Nikiforov-Uvarov method is a straightfor-
ward, consistent, and efficient analytical technique for ana-
lyzing second-order linear differential equations arising
from bound state problems. The choice of this method is
due to the fact that it has been proven to an outstanding
degree and is well reported to give excellent results in com-
parison with other methods in the literature [12]. According
to Nikiforov and Uvarov [37], the second-order linear differ-
ential equation reduces to the generalized equation of hyper-
geometric type [37, 38]. With an appropriate coordinate
transformation z = zðrÞ, the equation takes the form

ψnl ′′ zð Þ + �τ zð Þ
σ zð Þψnl ′ zð Þ + �σ zð Þ

σ2 zð Þψnl zð Þ = 0, ð2Þ

where σðzÞ and �σðzÞ are polynomials, at most in the second
degree, and �τðzÞ is a first-degree polynomial.

To solve equation (2), one needs to break the wave func-
tion ΨðzÞ into parts as

ψnl zð Þ = ϕ zð Þy zð Þ: ð3Þ

Therefore, equation (2) reduces to the hypergeometric-
type equation:

σ zð Þy′′ zð Þ + τ zð Þy′ zð Þ + λy zð Þ = 0, ð4Þ

where

τ zð Þ = �τ zð Þ + 2π zð Þ, ð5Þ

satisfies the condition τ′ðzÞ < 0, has a negative derivative,
and is related to the function ϕðsÞ by

π zð Þ = σ zð Þ d
dz

ln ϕ zð Þ½ �: ð6Þ

The parameter λ is defined by

λ = λn = −nτ′ zð Þ − n n − 1ð Þ
2 σ′′

� �
  n = 0, 1, 2,⋯ð Þ: ð7Þ

The energy eigenvalues can be calculated from equation
(7). In order to calculate the energy eigenvalues, we need
first to determine λ by using the first derivative of πðzÞ
and defining

λ = k + π′ zð Þ: ð8Þ
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By solving the resulting quadratic equation for πðzÞ, we
obtain the following expression:

π zð Þ = σ′ − �τ

2

 !
±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ′ − �τ

2

 !2

− �σ + kσ

vuut : ð9Þ

Here, πðzÞ is a polynomial with the parameter z and the
prime denotes the first derivative of the functions σðzÞ and
τðzÞ, respectively. The determination of k is the essential
point in the calculation of πðzÞ: It can be obtained by setting
the discriminant of the square root to zero [37]; therefore, a
general quadratic expression for k can be obtained. On sub-
stitution of the values of k, π′ðzÞ, τ′ðzÞ, and σ′′ into equa-
tions (7) and (8) and equating (7) and (8), one can
evaluate the energy equation for any potential. The wave
function ϕðsÞ in equation (2) satisfies the condition

ϕ′ zð Þ
ϕ zð Þ = π zð Þ

σ zð Þ , ð10Þ

which can be evaluated using the Rodrigues relation. The
polynomial solutions ynðzÞ are given by

yn zð Þ = Cn

ρ zð Þ
dn

dzn
σn zð Þρ zð Þ½ �, ð11Þ

where Cn is a normalization constant and the weight func-
tion ρðzÞ satisfies the following relation:

d
ds

σ zð Þρ zð Þ½ � = τ zð Þρ zð Þ: ð12Þ

A more generalized form of equation (2) for any poten-
tial may be presented as [39]

ψnl ′′ zð Þ + β1 − β2z
z 1 − β3zð Þ
� �

ψnl ′ zð Þ + −ρ2z
2 + ρ1z − ρ0

z2 1 − β3ð Þ2
" #

ψnl zð Þ = 0,

ð13Þ

which satisfies the wave functions of equation (3). By com-
paring equation (2) with equation (13), we have the follow-
ing polynomials:

�τ zð Þ = β1 − β2z,
σ zð Þ = z 1 − β3zð Þ,
�σ zð Þ = −ρ2z

2 + ρ1z − ρ0:

ð14Þ

Substituting equation (13) into equation (9), one obtains

π zð Þ = β4 + β5z ±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β6 − kβ3ð Þz2 + β7 + kð Þz + β8

q
, ð15Þ

with the following parametric constants:

β4 =
1
2 1 − β1ð Þ,

β5 =
1
2 β2 − 2β3ð Þ,

β6 = β2
5 + ρ2,

β7 = 2β4β5 − ρ1,
β8 = β2

4 + ρ0:

ð16Þ

According to the Nikiforov-Uvarov method, the dis-
criminant of equation (15) must be set to zero so that the
expression for k can be quadratically obtained as

k± = − β7 + 2β3β8ð Þ ± 2
ffiffiffiffiffiffiffiffiffiffi
β8β9

q
, β9 = β3 β7 + β3β8ð Þ + β6:

ð17Þ

Since the negative value of k (that is k−) gives the bound
state solution, we consider

k− = − β7 + 2β3β8ð Þ − 2
ffiffiffiffiffiffiffiffiffiffi
β8β9

q
: ð18Þ

Inserting equation (18) into (15), we have

π zð Þ = β4 + β5z −
ffiffiffiffiffi
β9

q
+ β3

ffiffiffiffiffi
β8

q� �
z −

ffiffiffiffiffi
β8

q� �
, ð19Þ

having its first derivative as

π′ zð Þ = β5 −
ffiffiffiffiffi
β9

q
+ β3

ffiffiffiffiffi
β8

q� �
: ð20Þ

Putting equations (14) and (15) into equation (5), one
obtains

τ zð Þ = β1 + 2β4 + 2β5 − β2ð Þz − 2
ffiffiffiffiffi
β9

q
+ β3

ffiffiffiffiffi
β8

q� �
z −

ffiffiffiffiffi
β8

q� �
,

ð21Þ

and its first derivative becomes

τ′ zð Þ = − β2 − 2β5ð Þ − 2
ffiffiffiffiffi
β9

q
+ β3

ffiffiffiffiffi
β8

q� �� �
: ð22Þ

By applying equation (16) to equation (22), we have

τ′ zð Þ = −2β3 − 2
ffiffiffiffiffi
β9

q
+ β3

ffiffiffiffiffi
β8

q� �� �
< 0: ð23Þ

By applying equations (18) and (20) in equation (8), we
have
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λ = − β7 + 2β3β8ð Þ − 2
ffiffiffiffiffiffiffiffiffiffi
β8β9

q
+ β5 −

ffiffiffiffiffi
β9

q
+ β3

ffiffiffiffiffi
β8

q� �
:

ð24Þ

With equations (14) and (22), the parameter λn in equa-
tion (7) becomes

λn = β2n − 2nβ5 + 2n
ffiffiffiffiffi
β9

q
+ β3

ffiffiffiffiffi
β8

q� �
+ n n − 1ð Þβ3  n = 0, 1, 2,⋯ð Þ:

ð25Þ

Equating equations (24) and (25), one obtains the bound
state energy equation for any potential [37–40] as

β2n − 2n + 1ð Þβ5 + 2n + 1ð Þ
ffiffiffiffiffi
β9

q
+ β3

ffiffiffiffiffi
β8

q� �

+ n n − 1ð Þβ3 + β7 + 2β3β8 + 2
ffiffiffiffiffiffiffiffiffiffi
β8β9

q
= 0:

ð26Þ

Using equations (10)–(12), the wave function parame-
ters can be evaluated as

ρ zð Þ = zβ10 1 − β3zð Þβ11 ,

φ zð Þ = zβ12 1 − β3zð Þβ13 , β12 > 0, β13 > 0,

ynl zð Þ = P β10,β11ð Þ
nl 1 − 2β3zð Þ, β10 > −1, β11 > −1,

ð27Þ

in such a way that the associated wave function in equation
(3) becomes

ψnl zð Þ =Nnlz
β12 1 − β3zð Þβ13P β10,β11ð Þ

nl 1 − 2β3zð Þ, ð28Þ

where Pðμ,vÞ
nl ðxÞ, μ > −1, v > −1, and x ∈ ½−1, 1�, are Jacobi

polynomials with the following parametric constants:

β10 = β1 + 2β4 + 2
ffiffiffiffiffi
β8

q
− 1 > −1,

 β11 = β2 − 2β5 + 2
ffiffiffiffiffi
β9

q
+ β3

ffiffiffiffiffi
β8

q� �
> −1, β3 ≠ 0,

β12 = β4 +
ffiffiffiffiffi
β8

q
> 0,

 β13 = β5 −
ffiffiffiffiffi
β9

q
− β3

ffiffiffiffiffi
β8

q� �
, β3 ≠ 0: ð29Þ

By considering a special case where β3 = 0, then the asso-
ciated wave function reduces to the form [39, 40]

lim
β3⟶0

P β10,β11ð Þ
nl 1 − 2β3zð Þ = Lβ10

nl β11zð Þ,

lim
β3⟶0

1 − β3zð Þβ13 = eβ13z ,

ψnl zð Þ =Nnlz
β12eβ13zLβ10

nl β11zð Þ,

ð30Þ

where Lβ10
nl ðzÞ is well known as a Laguerre polynomial.

3. Nonrelativistic Eigensolutions of the
Isotropic Oscillator plus Inverse Quadratic
Potential in an External Magnetic Field

For a charged particle moving in a uniform magnetic field,
the Hamiltonian of the system may be defined ([16] and
the references therein) as

H = 1
2μ p + e

c
A

� �2
+ V rð Þ, ð31Þ

where m is the mass of the charged particle, e is the elec-
tronic charge, p is the momentum of the charged particle,
A = ð1/2ÞB × r is the vector potential in the symmetric gauge,
c is the velocity of light, and VðrÞ is the cylindrical potential
representing the potential in equation (1). The Hamiltonian
for this system can be evaluated, in the CGS system and in
atomic units ℏ = e = 1, as

H = 1
2μ −i∇+ 12B × r
� �2

+V rð Þ, ð32Þ

and the Schrödinger equation yields

Hφ = 1
2μ −i∇+ 1

2B × r
� �2

φ + V rð Þφ = i∂tφ = Eφ: ð33Þ

Since this problem involves two dimensions, therefore, it
is sufficient enough to study in polar coordinates ðr, ϕÞ
within the plane and to employ the following ansatz for
the eigenfunction:

φ r, ϕð Þ = eimϕffiffiffiffiffiffi
2π

p R rð Þffiffi
r

p , m = 0,±1,±2,⋯: ð34Þ

Consequently, the radial wave function RðrÞ must satisfy
the following radial Schrödinger equation [16, 17]:

d2R rð Þ
dr2

+ 2 E −Veff rð Þ½ �R rð Þ = 0, ð35Þ

with the effective potential Veff ðrÞ defined as

Veff rð Þ =mωL +
1
2ω

2
Lr

2 + m2 − 1/4ð Þ
2r2 +V rð Þ, ð36Þ

where ωL = B/2c, m, and E symbolize the Larmor frequency,
the eigenvalue of the angular momentum, and the energy
spectra of the vibrating molecules, respectively. By using
the VðrÞ as the isotropic oscillator plus inverse quadratic
potential (IOPIQP), the effective potential influenced by an
external magnetic field becomes

Veff rð Þ =mωL +
m2 − 1/4ð Þ	 


/2
	 


+ g

r2
+ 1
2 ω2

L + μω2� �
r2,

ð37Þ
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where μ and ω represent the mass and angular frequency of
the vibrating molecules bounded by the IOPIQP, and the
molecular constants for the selected diatomic molecules in
this study are displayed in Table 1. Inserting equation (37)
into equation (35) and applying a variable z = r2, equation
(35) can be transformed as

R′′ zð Þ + 1
2z

� �
R′ zð Þ + −ρ1z

2 + ρ2z − ρ3
z2

� �
R zð Þ = 0: ð38Þ

Comparing equation (38) with equation (13), we obtain
the following analytical expressions:

β1 =
1
2 ,

β2 = β3 = 0,

ρ1 =
ω2
L + μω2

4 ,

ρ2 =
E −mωL

2 ,

ρ3 =
m2 + 2g − 1/4ð Þ

4 :

ð39Þ

Using equations (16) and (29), other values of paramet-
ric constants βiði = 4, 5, 6,⋯Þ and their analytical values
required for the derivation of energy eigenvalues and eigen-
functions are obtained and displayed in Table 2.

Using the analytical values in Table 2 for the parametric
constants βiði = 1, 2, 3,⋯Þ in equations (26) and (30), the
energy eigenvalues and the normalized radial eigenfunctions
for the IOPIQP in the presence of an external magnetic field
are obtained, respectively, as

E =mωL +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
L + μω2

q
2n + 1 +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 + 2g

p� �
, ð40Þ

R rð Þ = 2n!γ2δ+2
n + 2δ + 1ð Þ!

� �1/2
r2δ+3/2e− 1/2ð Þγr2L2δ+1n γr2

	 

, ð41Þ

where δ = −ð1/2Þ + ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðm2/4Þ + ðg/2Þp
, γ =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
L + μω2

p
, and

L2δ+1n ðγr2Þ is the associated Laguerre polynomial.

3.1. Expectation Values (r−2, p2, T , and V) of the Isotropic
Oscillator plus Inverse Quadratic Potential in an External
Magnetic Field. The Hellmann-Feynman theorem (HFT) is
one of the useful techniques for obtaining expectation values
of some quantum mechanical observables for any arbitrary
values of quantum numbers [41, 42]. Suppose that the Ham-
iltonian HðαÞ for a particular quantum mechanical system
depends on parameter α such that EnlðαÞ and ψnmðαÞ are
the eigenvalues and the eigenfunctions, respectively. There-
fore, the Hellmann-Feynman theorem (HFT) states that

∂Enm αð Þ
∂α

= ψnm αð Þ ∂H αð Þ
∂α


ψnm αð Þ

� �
, ð42Þ

provided that the normalized eigenfunctions ψnmðαÞ are
continuous, differentiable with respect to parameter α. The
effective Hamiltonian of the isotropic oscillator plus inverse
quadratic potential in an external magnetic field is given as

H = −
1
2
d2

dr2
+mωL +

m2 − 1/4ð Þ	 

/2

	 

+ g

r2
+ 1
2 ω2

L + μω2� �
r2:

ð43Þ

To find the expectation value of r2, we let α = ω such that
equation (42) becomes

∂Enm ωð Þ
∂ω

= ψn ωð Þ ∂H ωð Þ
∂ω


ψn ωð Þ

� �
: ð44Þ

Taking the first derivative of the effective Hamiltonian
HðωÞ in equation (43) with respect to vibrational frequency
ω, one obtains

∂H ωð Þ
∂ω

= μω r2
� �

: ð45Þ

Table 1: Molecular parameters for this study [21].

Molecules Vibrational frequencies ω × 1013 s−1 Mass μ in a.m.u.

CO 6.471 6.8606719

HCl 8.814 0.9801045

I2 0.642 63.45223502

H2 12.960 0.50391

Table 2: The values of parametric constants required for the
derivation of energy eigenvalues and eigenfunctions.

Parametric constants Analytical values

β4
1
4

β5 0

β6
ω2
L + μω2

4
β7

mωL − E
2

β8
m2 + 2g

4

β9
ω2
L + μω2

4
β10

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 + 2g

p
> −1

β11

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
L + μω2

q
β12

1 + 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 + 2g

p
4 > 0

β13 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
L + μω2

4

r
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Taking the first derivative of the energy eigenvalues EðωÞ in
equation (40) with respect to vibrational frequency ω, we have

∂Enm ωð Þ
∂ω

=
μω 2n + 1 +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 + 2g

p� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
L + μω2

p : ð46Þ

With equations (45) and (46) in equation (44), it is easy for

one to evaluate hr2i as

r2
� �

=
2n + 1 +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 + 2g

p� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
L + μω2

p : ð47Þ

In principle and with α = μ in equation (44), the expecta-
tion values of p2, T, and V can be obtained, respectively, as

Table 4: Energy spectra for HCl molecules bounded by the isotropic oscillator plus inverse quadratic potential for arbitrary Larmor
frequencies ωL.

n m = 0, ωL = 0 m = 1, ωL = 0 m = 0, ωL = 5 m = 1, ωL = 5 m = 0, ωL = 10 m = 1, ωL = 10
g = 0

0 3.55519 7.11039 6.1351 17.2702 10.6132 31.2263

1 10.6656 14.2208 18.4053 29.5404 31.8395 52.4527

2 17.7760 21.3312 30.6755 41.8106 53.0659 73.6790

3 24.8864 28.4416 42.9457 54.0808 74.2922 94.9054

g = 1
0 8.5830 9.71297 14.8114 21.7614 25.6225 38.9957

1 15.6934 16.8234 27.0816 34.0316 46.8488 60.2221

2 22.8038 23.9337 39.3518 46.3018 68.0751 81.4484

3 29.9142 31.0441 51.6220 58.5720 89.3015 102.675

Table 3: Energy spectra for CO molecules bounded by the isotropic oscillator plus inverse quadratic potential for arbitrary Larmor
frequencies ωL:.

n m = 0, ωL = 0 m = 1, ωL = 0 m = 0, ωL = 5 m = 1, ωL = 5 m = 0, ωL = 10 m = 1, ωL = 10
g = 0

0 6.90572 13.8114 8.52578 22.0516 12.1527 34.3055

1 20.7172 27.6229 25.5773 39.1031 36.4582 58.6109

2 34.5286 41.4343 42.6289 56.1547 60.7637 82.9164

3 48.3488 55.2457 59.6805 73.2062 85.0691 107.222

g = 1
0 16.6719 18.8668 20.5831 28.2929 29.3393 43.2019

1 30.4833 32.6782 37.6346 45.3444 53.6448 67.5074

2 44.2947 46.4896 54.6862 62.3960 77.9502 91.8128

3 58.1062 60.3011 71.7377 79.4475 102.256 116.118

p2
� �

= −
μ2ω2 2n + 1 +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 + 2g

p� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
L + μω2

p ,

Th i = −
μω2 2n + 1 +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 + 2g

p� �
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
L + μω2

p ,

Vh i = mωL +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
L + μω2

q
2n + 1 +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 + 2g

p� �
+

μω2/2
	 


2n + 1 +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 + 2g

p� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
L + μω2

p
2
4

3
5:

ð48Þ
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3.2. Diamagnetic Susceptibility of the Isotropic Oscillator plus
Inverse Quadratic Potential in an External Magnetic Field.
The diamagnetic susceptibility is given [3, 21] as

X = −
Nze2

6μc2 r2
� �

, ð49Þ

where N is the Avogadro number, z is the atomic number, e
is the electronic charge, c is the speed of light, and μ is the
effective mass of the vibrating molecules in this study. It
has been found that diamagnetism is a fundamental mag-
netic phenomenon that explains the tendency of electric
charges to partially shield the interior of a body from an

Table 7: Expectation values hr2i for CO, HCl, I2, and H2 molecules bounded by the isotropic oscillator plus inverse quadratic potential for
arbitrary Larmor frequencies ωL with g =m = 1.

CO HCl

n ωL = 0 ωL = 5 ωL = 10 ωL = 0 ωL = 5 ωL = 10
0 0.395622 0.320446 0.224810 0.768467 0.445315 0.257421

1 0.685237 0.555028 0.389382 1.331020 0.771308 0.445866

2 0.974852 0.789611 0.553954 1.893580 1.097300 0.634311

3 1.264470 1.024190 0.718526 2.456140 1.423290 0.822756

I2 H2

0 1.31122 0.504369 0.267461 0.728875 0.437199 0.255824

1 2.27110 0.873593 0.463256 1.262450 0.757251 0.443100

2 3.23098 1.242820 0.659051 1.796020 1.077300 0.630377

3 4.19087 1.612040 0.854846 2.329600 1.397350 0.817653

Table 6: Energy spectra for H2 molecules bounded by the isotropic oscillator plus inverse quadratic potential for arbitrary Larmor
frequencies ωL.

n m = 0, ωL = 0 m = 1, ωL = 0 m = 0, ωL = 5 m = 1, ωL = 5 m = 0, ωL = 10 m = 1, ωL = 10
g = 0

0 3.74831 7.49662 6.24899 17.4980 10.6794 31.3588

1 11.2449 14.9932 18.7470 29.9959 32.0382 52.7176

2 18.7416 22.4899 31.2449 42.4939 53.3971 74.0765

3 26.2382 29.9865 43.7429 54.9919 74.7559 95.4353

g = 1
0 9.04922 10.2406 15.0864 22.0725 25.7824 39.1767

1 16.5458 17.7372 27.5844 34.5705 47.1412 60.5355

2 24.0425 25.2338 40.0823 47.0685 68.5000 81.8943

3 31.5391 32.7304 52.5803 59.5665 89.8588 103.253

Table 5: Energy spectra for I2 molecules bounded by the isotropic oscillator plus inverse quadratic potential for arbitrary Larmor
frequencies ωL.

n m = 0, ωL = 0 m = 1, ωL = 0 m = 0, ωL = 5 m = 1, ωL = 5 m = 0, ωL = 10 m = 1, ωL = 10
g = 0

0 2.08359 4.16718 5.41677 15.8335 10.2148 30.4295

1 6.25077 8.33437 16.2503 26.6671 30.6443 50.859

2 10.4180 12.5015 27.0838 37.5006 51.0738 71.2886

3 14.5851 16.6687 37.9174 48.3341 71.5033 91.7181

g = 1
0 5.03023 5.69248 13.0772 19.7989 24.6606 37.9072

1 9.19742 9.85966 23.9108 30.6324 45.0901 58.3368

2 13.3646 14.0268 34.7443 41.4659 65.5197 78.7663

3 17.5318 18.1940 45.5778 52.2995 85.9492 99.1958
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Table 10: Expectation values h�Vi for CO, HCl, I2, and H2 molecules bounded by the isotropic oscillator plus inverse quadratic potential for
arbitrary Larmor frequencies ωL with g =m = 1.

CO HCl

n ωL = 0 ωL = 5 ωL = 10 ωL = 0 ωL = 5 ωL = 10
0 28.3002 35.9337 48.5623 14.5695 24.5757 40.6225

1 49.0173 58.5788 76.7919 25.2350 38.9060 63.0398

2 69.7345 81.2238 105.022 35.9006 53.2364 85.4571

3 90.4516 103.869 133.251 46.5662 67.5668 107.874

I2 H2

0 8.53872 20.8937 38.4878 15.3609 25.1438 40.9738

1 14.7895 32.5287 59.3423 26.6058 39.8901 63.6483

2 21.0403 44.1637 80.1969 37.8507 54.6365 86.3227

3 27.2910 55.7987 101.051 49.0957 69.3828 108.997

Table 9: Expectation values h�Ti for CO, HCl, I2, and H2 molecules bounded by the isotropic oscillator plus inverse quadratic potential for
arbitrary Larmor frequencies ωL with g =m = 1.

CO HCl

n ωL = 0 ωL = 5 ωL = 10 ωL = 0 ωL = 5 ωL = 10
0 -9.43338 -7.64086 -5.36046 -4.85649 -2.81426 -1.62682

1 -16.3391 -13.2344 -9.28460 -8.41168 -4.87444 -2.81774

2 -23.2448 -18.8279 -13.2087 -11.9669 -6.93462 -4.00866

3 -30.1505 -24.4214 -17.1329 -15.5221 -8.99480 -5.19957

I2 H2

0 -2.84624 -1.09482 -0.580571 -5.12029 -3.07129 -1.79714

1 -4.92983 -1.89629 -1.00558 -8.86860 -5.31962 -3.11274

2 -7.01342 -2.69775 -1.43059 -12.6169 -7.56796 -4.42834

3 -9.09701 -3.49922 -1.85559 -16.3652 -9.81600 -5.74390

Table 8: Expectation values h�p2i for CO, HCl, I2, and H2 molecules bounded by the isotropic oscillator plus inverse quadratic potential for
arbitrary Larmor frequencies ωL with g =m = 1.

CO HCl

n ωL = 0 ωL = 5 ωL = 10 ωL = 0 ωL = 5 ωL = 10
0 -2.14868e-25 -1.74039e-25 -1.22098e-25 -1.58027e-26 -9.15745e-27 -5.29359e-27

1 -3.72163e-25 -3.01445e-25 -2.11479e-25 -2.73712e-26 -1.58612e-26 -9.16877e-27

2 -5.29457e-25 -4.28850e-25 -3.00861e-25 -3.89396e-26 -2.25649e-26 -1.30440e-26

3 -6.86752e-25 -5.56256e-25 -3.90242e-25 -5.0508e-26 -2.92686e-26 -1.69191e-26

I2 H2

0 -5.99593e-25 -2.30637e-25 -1.22304e-25 -8.56614e-27 -5.13820e-27 -3.00659e-27

1 -1.03852e-24 -3.99475e-25 -2.11837e-25 -1.48370e-26 -8.89963e-27 -5.20756e-27

2 -1.47746e-24 -5.68313e-25 -3.01369e-25 -2.11078e-26 -1.26611e-26 -7.40853e-27

3 -1.91639e-24 -7.37151e-25 -3.90902e-25 -2.73787e-26 -1.64225e-26 -9.60951e-27
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external magnetic field and that diamagnetic materials pos-
sess magnetic effects due to an external field that alters elec-
tron motion within the atoms [21]. Using equation (47) in
(49) defines the diamagnetic susceptibility for the isotropic
oscillator plus inverse quadratic potential in an external
magnetic field as

χ = −
Nze2

6μc2
2n + 1 +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 + 2g

p� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
L + μω2

p
2
4

3
5, ð50Þ

where all the symbols have been explained accordingly. The
corresponding magnetic moment μB can be expressed as

μB = −
e2

6μc2 r2
� �

B = −
2e2ωL
6μc

2n + 1 +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 + 2g

p� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
L + μω2

p
2
4

3
5:
ð51Þ

4. Results and Discussions

In order to verify the reliability, validity, and consistency of
our results, using the molecular constants in Table 1 [21],
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Figure 1: The expectation value of the square of the position r2 as a function of Larmor frequencies ωL for various numbers of states n with
g =m = 1.

Table 11: Diamagnetic susceptibilities X for CO, HCl, I2, and H2 molecules bounded by the isotropic oscillator plus inverse quadratic
potential for arbitrary Larmor frequencies ωL with g =m = z = e = 1.

CO HCl

n ωL = 0 ωL = 5 ωL = 10 ωL = 0 ωL = 5 ωL = 10
0 -3.87265e+31 -3.13677e+31 -2.20061e+31 -5.26560e+32 -3.05133e+32 -1.76387e+32

1 -6.70762e+31 -5.43304e+31 -3.81157e+31 -9.12028e+32 -5.28506e+32 -3.05511e+32

2 -9.54260e+31 -7.72932e+31 -5.42252e+31 -1.29750e+33 -7.51880e+32 -4.34635e+32

3 -1.23776e+32 -1.00256e+32 -7.03348e+31 -1.68297e+33 -9.75253e+32 -5.63759e+32

I2 H2

0 -1.38779e+31 -5.33822e+30 -2.83079e+30 -9.71393e+32 -5.82668e+32 -3.40944e+32

1 -2.40372e+31 -9.24607e+30 -4.90308e+30 -1.68250e+33 -1.00921e+33 -5.90532e+32

2 -3.41966e+31 -1.31539e+31 -6.97536e+30 -2.39361e+33 -1.43575e+33 -8.40121e+32

3 -4.43559e+31 -1.70618e+31 -9.04765e+30 -3.10472e+33 -1.86229e+33 -1.08971e+33
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we present the computed results for the energy spectra,
expectation values hr2i, hp2i, hTi, and hVi, and diamagnetic
susceptibility X for the selected molecules bounded by the
isotropic oscillator plus inverse quadratic potential with
varying Larmor frequencies ωL for the case of the low vibra-
tional energy level ðn = 0, 1, 2, 3Þ, low rotational energy level
ðm = 0,+1Þ, and inverse quadratic potential strength ðg = 0,
1Þ in Tables 3–11. Figures 1–4 show the variation of expec-
tation values for some quantum mechanical observables as
a function of Larmor frequencies ωL for various rotational
energy levels ðn = 0, 1, 2, 3Þ with g =m = 1 for the selected
molecules in Table 2. Figure 5 shows the variation of dia-
magnetic susceptibility as a function of Larmor frequencies
ωL for various rotational energy levels n with g =m = z = e
= 1 for the molecules in Table 1. In all the calculations, we
have also employed the following recently used conversions:
1 a:m:u: = 1:66 × 10−27 kg, c = 3:00 × 108 m/s, and N = 6:02
× 1023 moles. All our results are in their standard units.

It was observed that energy spectra increase with the
increase in the magnetic field strength (Larmor frequency),
vibrational level, and inverse quadratic potential strength g
for all the selected molecules. See Tables 3–6. This observa-
tion suggests that the energy spectra of the selected mole-
cules would be affected significantly by the external
magnetic field. The expectation value hr2iwhich is positive
increases with increasing rotational energy level n but
decreases monotonically towards zero with the increase in
magnetic field strengths for all the selected molecules for g
=m = 1. See Table 7 and Figure 1. The expectation value h
p2iwhich is negative decreases with increasing rotational
energy level n but increases with the increase in magnetic
field strengths and tends to converge at a very high magnetic
field strength (Larmor frequencies ωL > 10) for all the
selected molecules for g =m = 1. See Table 8 and Figure 2.

The expectation value hTiwhich is negative decreases
with increasing rotational energy level n but increases
monotonically with the increase in magnetic field strengths
and tends to converge at a very high magnetic field strength
(Larmor frequencies ωL > 10) for all the selected molecules
for g =m = 1. See Table 9 and Figure 3. The expectation
value hViwhich is positive increases with increasing rota-
tional energy level n as well as the magnetic field strength.
A clear divergence is noticeable at all values of magnetic field
strength for all the selected molecules for g =m = 1. See
Table 10 and Figure 4.

The diamagnetic susceptibility Xwhich is negative
increases monotonically with increasing rotational energy
level n as well as the magnetic field strength and tends to
converge at any ωL > 10 for all the selected molecules for g
=m = z = e = 1. See Table 11 and Figure 5.

5. Concluding Remarks

We have studied the two-dimensional radial Schrödinger
equation with the isotropic harmonic oscillator plus inverse
quadratic potential in an external magnetic field via the
parametric Nikiforov-Uvarov method. The energy eigen-
value equation, normalized wave function, expressions for

expectation values square of the position hr2i, square of the
momentum hp2i, kinetic energy hTi, and potential energy h
Vi, and diamagnetic susceptibility X for the interaction
potential model have been obtained. The computed results
for the energy spectra, expectation values hr2i, hp2i, hTi,
and hVi, and diamagnetic susceptibility X for some diatomic
molecules bounded by the isotropic harmonic oscillator plus
inverse quadratic potential for low vibrational and rotational
levels are found to have strong dependence on the magnetic
field strengths as well as the inverse quadratic potential
strength g.

The expectation values hr2i, hp2i, and hTi and diamag-
netic susceptibility X as a function of Larmor frequencies
ωL for all the molecules tend to converge at a very high mag-
netic field strength ðωL > 10Þ. This may signify a case where
low vibrational and rotational energy levels cease to have any
significant effect on the expectation values of hr2i, hp2i, and
hTi and diamagnetic susceptibility X for all the molecules,
despite the increasing magnetic field strength. A divergence
is noticeable for the expectation value of potential energy h
Vi which signifies that the rotational and vibration energy
levels will continue to have a meaningful effect as long as
the magnetic field strength increases. Also, as the magnetic
field strength increases, diamagnetic susceptibility X
increases, which may likely increase the tendency of the
magnetic field to shield or alter the vibrational motion of
the molecules bounded by the potential model in this study.

Using the results obtained in this work, one can study
the thermodynamic properties of the system, Shannon
entropy, and Fisher information for the first and second
excited states. And this would be our focus in the subsequent
research work.
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