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The relativistic solutions of the Klein-Gordon equation comprising an interaction of the generalized inversely quadratic Yukawa
potential mixed linearly with the hyperbolic Schiöberg molecular potential is achieved employing the idea of parametric
Nikiforov-Uvarov and the Greene-Aldrich approximation scheme. The energy spectra and the corresponding normalized wave
functions are derived regarding the hypergeometric function in a closed form for arbitrary ℓ-state. Numerical results of the
energy eigenvalue are proposed. Moreover, special circumstances of this potential are reviewed, and their energy eigenvalues
were assessed. Subsequently, the Tsallis entropy and Rényi entropy both in position and momentum spaces are defined under
the desired potential. The impacts of these entropies on the angular momentum quantum number are explored in detail.

1. Introduction

In recent years, different researches have centered on the
investigations of the quantum mechanical issues with vari-
ous physical potentials because they incorporate all of the
basic data required to correctly characterize physical quan-
tum models [1–3]. It is worthy of note that the investigation
of the relativistic wave equation especially the Klein-Gordon
equation has raised fundamentally more thought of numer-
ous researchers as well as its considerable impact in quan-
tum mechanics. These equations may explicitly predict the
particles’ treatment, which lead to the study of relativistic
effects in various branches of physics and chemistry [4, 5].
The Klein-Gordon equation is a notable relativistic wave
equation that depicts the movement of spinless particles
because of its square terms [6–8]. It is also realized that the
specific feasible actual possibilities via the Klein-Gordon
equations are uncommon, with the exception of some out-
standing solvable quantum systems, for example, the hydro-
gen atom and harmonic oscillator, while the case of states
with arbitrary angular momentum, which do not exhibit
accurate solutions, is understood either mathematically or
by approximation methods [9, 10]. In this manner, numer-

ous quantum modes should be considered by approximation
schemes, and the decision of these utilized approximation
layouts relies upon their adaptability to the desired potential
[11, 12]. Because of their various applications, solutions of
the relativistic and nonrelativistic wave equations have been
utilized in various quantum potential interactions utilizing
different techniques [13, 14]. These methods incorporate 1/
N shifted expansion procedure [15], Nikiforov-Uvarov
approach [16, 17], asymptotic iteration method [18], factor-
ization method [19, 20], formula technique [21], supersym-
metric approach [22, 23], ansatz methodology [24], Laplace
transform approach [25, 26], functional analysis approach
[27, 28], proper quantization rule [29], and others [30, 31].

The hypergeometric Nikiforov-Uvarov method has indi-
cated its capacity to ascertain the specific energy levels of
bound states for many solvable quantum frameworks [32].
The parametric adaptation of this approach is employed to
acquire the bound-state solutions of the D-dimensional
radial Klein-Gordon equation [33]. It is supported by its
acceptable execution through comparisons with various
techniques and a direct, precise, and user-friendly approach.

Using exponential-type potentials, various quantum
mechanical wave equations have been extensively studied
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[34, 35]. It has been contended that these types of potentials
are much more efficient than their competitors, which exist
in Coulomb, or inverse forms and have significant roles in
solid-state physics, nuclear physics, and other fascinating
domains [36, 37]. In the study of potentials with hypergeo-
metric wave functions, a suitable form of a composed
exponential-type potential is presumed, which grants
obtaining various exponential potentials. Such potentials
can be comprehensively utilized as interaction models of
diatomic molecules. The desired combined potential encom-
passes the generalized inversely quadratic Yukawa potential
with a molecular hyperbolic potential, which is given by

VSGIQYP = −Τe−2σr
2
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+ 2 −
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+Q2eσr
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where Τ, σ, and Q are the coupling strength, the screening
parameter, and a constant (an inverse length), respectively,
where σ < 1 and Η along with ϱ are two adjustable positive
parameters representing the properties of the potential
where 0 ≤ ϱ ≤ 1.

This combination might describe the effective potential
of a many-body system since it incorporates the notable
potential models as special cases. This model can be utilized
in a variety of fields such as atomic, solid-state, plasma, and
quantum field theory, where it has a minimum value 0 and
can attain infinity when r = 0. Hence, this potential repre-
sents better treatment than other exponential potentials in
some cases and is able to modify comparatively the efficiency
of other potentials. In this manner, the study of quantum
systems linked with these forms of potentials seems substan-
tial in proposing several frameworks for quantum chemistry
and molecular physics. The current investigation was
inspired by the idea that this type of potential could be used
as a mathematical example to impressively depict the char-
acteristics of diatomic molecules, despite the fact that there
has been little research into this linear combination of
diatomic molecular potential energy functions, particularly
within the framework of the Klein-Gordon equation. Subse-
quently, the accomplishment of quantum mechanics in the
depiction of the physics of atomic and subatomic particles
cannot be overstated [13, 36, 38–42].

Spin and pseudo-spin symmetry have made a profit in
recent studies due to their applications in nuclear physics
and other related areas [43–46]. Recently, a large number
of studies have demonstrated their advantages in acquiring
the solutions of the Dirac equations for various generic
potentials within the spin and pseudo-spin symmetric limit
[47–52], but only a few investigations have been conducted
within the framework of the Klein-Gordon structure. The
objective of this research is to figure out the energy spectrum
and wave function visualization for the Klein-Gordon equa-
tion at the spin symmetry limit using the Nikiforov-Uvarov
technique and the Greene-Aldrich approximation scheme.

In this context, what is required in this paper is catego-
rized as follows. In Section 2, the parametric Nikiforov-

Uvarov method for a generally second-order differential
equation is briefly discussed. Section 3 employs the basic
concept of the parametric Nikiforov-Uvarov approach via
the Greene-Aldrich approximation scheme to obtain ℓ
-wave approximate analytical solutions of the D-dimen-
sional radial Klein-Gordon equation and the normalized
radial wave functions in terms of generalized hypergeo-
metric functions for the desired potential within the spin
symmetry limit. Entropic measures propose well-organized
implementations to smooth the path for realizing connec-
tions in quantum frameworks [53–55]. Two basic theoretic
quantities, such as the Rényi entropy [56, 57] and the Tsallis
entropy [58, 59], are commonly used in information theory
as a measure of entanglement. They have numerous pur-
poses in optical lattice theory, statistical mechanics, and var-
ious realms of mathematics and physics and are calculated in
Section 4. Section 5 is devoted to a brief discussion, while the
conclusions are outlined in the last section.

2. Parametric Nikiforov-Uvarov Methodology

A numerous category of differential equations can be
solved by the Nikiforov-Uvarov approach in mathematical
physics, which relies on attenuating a second-order linear
differential equation to a generalized equation of hyper-
geometric type [16]. Many accomplishments have been
documented in the successful application of this technique
to obtain viable results for various wave equations in a
quantum framework [60, 61]. The parametric form of this
approach was introduced in order to have an efficient
application [17] and can easily solve any differential equa-
tions of the form
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According to this approach, the eigenfunctions are
expressed as

ψ pð Þ =N n,ℓ p
ω12 1 − ω3pð Þ−ω12−ω13/ω3P ω10−1,ω11/ω3−ω10−1ð Þ

n 1 − 2ω3pð Þ,
ð3Þ

where P ðα,βÞ
n ðxÞ and N n,ℓ are the orthogonal Jacobi poly-

nomial [62] and the normalization constant, respectively.
Furthermore, the parametric energy eigenvalues are given
as
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3. D-Dimensional Klein-Gordon Equation

The Klein-Gordon equation with a scalar potential SðrÞ and
a vector potential VðrÞ in D-dimensions is given by [63, 64]
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ð6Þ

where ∇2
D represents the Laplace operator in D-dimensions
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where D represents the spatial dimensionality where D

≥ 2, ℏ is the reduced Planck constant, and μ, c, and En,ℓ
are the rest mass of the particle, the speed of light, and the
relativistic energy of the system, respectively. The attractive
scalar potential is usually observed under static field condi-
tions, whereas the repulsive vector potential is observed
under dynamic conditions. The scalar potential SðrÞ is
regarded as an extra quantity added to the particle mass μ.
Also, the total wave function in D-dimension can be given
as Ψðr,ΩDÞ = r1−D/2Un,ℓðrÞYℓ,mðΩDÞ, where Yℓ,mðΩDÞ is
the generalized spherical harmonic function. Employing
the eigenvalues of the generalized angular momentum oper-
ator, K2

DðΩDÞ, where K2
DðΩDÞYℓ,mðΩDÞ = ℓðℓ +D − 2ÞYℓ,m

ðΩDÞ, the radial part of the D-dimensional Klein-Gordon
Equation (6) is written as
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where ℘ = ℓ +D − 3/2, and ℓ represents the angular momen-
tum quantum number. With the equal scalar and vector
potentials being taken as the determined potential Equation
(1), where Q = 1, the following second-order Schrödinger-
like equation may be obtained as
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which cannot be solved analytically even for the s-wave case.
In order to solve Equation (9) for arbitrary ℓ-state and also
to consider the Columbic characteristic ð1/rÞ of the Yukawa
potential, the following Greene and Aldrich approximation
scheme for σ≪ 1 might be used as [10, 65]

1
r2

≈
4σ2e−2σr

1 − e−2σrð Þ2
: ð10Þ

As comparison, the behavior of 1/r2 and the recom-
mended approximate term are shown in Figure 1. It is obvi-
ous that this approximation is most suitable for the low
values of σ that are considered in this work. Consequently,
this approximation will be used throughout the present
study.

Substituting Equation (10) into Equation (9) and intro-
ducing coordinate transformation of the form h = e−2σr , the
generalized hypergeometric-type equation reads as

d2Un,ℓ hð Þ
dh2

+
1
h
dUn,ℓ hð Þ

dh
+

1
h2 1 − hð Þ2 −ℊ1h

2 + ℊ2h − ℊ3
� �

Un,ℓ hð Þ = 0,

ð11Þ

where

ℊ1 =
−4Tσ2 − 4Tσ + ϱ + 1ð Þ2H + 1/2 c2μ − En,ℓ

� �
− T

� �
c2μ + En,ℓ
� �

2c2ℏ2σ2
,

ℊ2 =
1

2c2ℏ2σ2
c4μ2 + −2℘ℏ2 ℘+1ð Þσ2 − 4Tμσ − 2μ ϱ2H −H + T

� �� �
c2

�
− 2En,ℓ ϱ2H + 2Tσ −H +

En,ℓ
2

+ T
� ��

,

ℊ3 =
ϱ − 1ð Þ2H + 1/2 c2μ − En,ℓ

� �
− T

� �
c2μ + En,ℓ
� �

2c2ℏ2σ2
: ð12Þ

By comparing Equation (11) with Equation (2), one can
obtain the following parametric coefficients as

ω1 = ω2 = ω3 = 1,
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The D-dimensional relativistic energy spectra for the
Schiöberg-generalized inversely quadratic Yukawa potential
model can be obtained explicitly by substituting Equation
(13) into Equation (4) as
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In addition, the corresponding wave function for the
proposed potential is obtained by substituting Equation
(13) into Equation (3) as
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n 1 − 2hð Þ, ð15Þ

where

ζ =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μc2 − En,ℓ + 2 ϱ − 1ð Þ2Η − 2T
� �

μc2 + En,ℓð Þ
q

2cℏσ
,

ρ =
cℏσ+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 ℘+1/2ð Þ2ℏ2 − 8Tμ
� �

c2 − 8En,ℓT
� �

σ2 + 8ϱ2 μc2 + En,ℓð ÞΗ
q

2cℏσ
,

ð16Þ

where Ρ
ðχ,ςÞ
n denotes the Jacobi polynomials, which have

been used extensively in mathematical analysis and practical
applications. Using the orthogonality property of the Jacobi
polynomials [62],
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and the normalization coefficient N n can be expressed as
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The solution of the Schrödinger equation can be
obtained directly from the solution of the relativistic Klein-
Gordon equation by making some certain transformations.
Thus, employing the following mapping within the nonrela-
tivistic limits [25], where σ < 1 and 0 ≤ ϱ ≤ 1,

μc2 + En,ℓ ⟶ 2μc2,

En,ℓ − μc2 ⟶ En,ℓ
N:R:,

ð19Þ

the corresponding D-dimensional nonrelativistic energy
relation for the potential model Equation (1) is attained as
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4. Information-Theoretic Measures

The concept of information theory plays a significant role in
contemporary theoretical physics, while it has not been
much discussed in the current research union. As has been
demonstrated, the information-theoretic technique, which
offers novel subjects, proposes wide insight into many other
physical problems [66, 67]. The use of these problem-solving
viewpoints, which best characterize the energy characterisa-
tion of these systems, exposes the information-based dem-
onstration of molecular states to debate. According to
statistical mechanics, the entropic uncertainty relation oper-
ates similarly to the Heisenberg uncertainty [68].
Information-theoretic measures have been used to explore
numerous unique distributions that define the quantum
mechanical states of various possible models [69]. Among
them, the Rényi entropy [56, 68] and the Tsallis entropy
[59, 68] via the given potential are the subjects of our study
in this paper. It is known that suggested entropies in the
position space represent the uncertainties in the localization
of a particle in space, whereas the momentum space entro-
pies measure the uncertainties in estimating the momentum
of the particle. These entropies are tightly related to basic
and experimentally measurable variables like kinetic energy
and magnetic susceptibility, making them useful in studying
the structure and dynamics of atomic and molecular systems
[70]. One of the primary distinctions is that the Rényi
entropy is additive, whereas the Tsallis entropy is nonaddi-
tive (or nonextensive). Supplementary comparison analyses
may be found, for example, in [70] between these entropies.

4.1. Rényi Entropy. As a beneficial extension of the Shannon
entropy, the Rényi entropy [56] was offered by Rényi in 1960
as a class of information-theoretic measures, which included
many of its features and demonstrated numerous purposes.
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Its applications in physics include, but are not limited to, in,
quantum entanglement [71, 72], quantum communication
protocols [73], and quantum measurement [74]. Applying
the transformation h = e−2σr , the Rényi entropy is given as
[56]

S
Rpð Þ

η δð Þ = 1
η − 1

Ln
2π
σ

ð0
1
δ hð Þη 1

h
dh, ð21Þ

where η denotes the entropic index. The Rényi entropy mea-
sures the sensitivity of the system to the deviation from the
equilibrium. If the η parameter is larger than unity, the
related entropy decreases, implying that the object is pro-
vided with more information on such a configuration than
its equilibrium equivalent. The rate of change of the entropy
with the Rényi parameter simply illustrated the sensitivity of
the system to the degree of nonequilibricity. The Rényi
entropy in the position space is mathematically specified as

S
Rpð Þ

η δð Þ = 1
1 − η

Ln
2π
σ

ð1
0
δ zð Þη 1

1 −z
dz, ð22Þ

where z = 1 − e−2σr and δðzÞ denotes the probability density
as

δ zð Þ =N n
2 1 −zð Þ2ζz2ρ P 2ζ,2ρ−1ð Þ

n 2z − 1ð Þ
� �2

: ð23Þ

By inserting the probability density, Equation (23), into
Equation (22), the Rényi entropy in the position space is
modified as

S
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n + ρð Þ 2n + 2ρ + 2ζ − 1ð ÞΓ 2 ζ + ρð Þ + nð Þ

 !
:
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In order to obtain the corresponding Rényi entropy in
the momentum space, one can take t = 1 − 2e−2σr . Therefore,
Equation (21) is more precisely written as

S Rmð Þ
η γð Þ = 1

1 − η
Ln

2π
σ

ð1
−1
γ tð Þη 1

1 − t
dt: ð25Þ
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6

Figure 1: Plot of 1/r2 and its approximation in Equation (10) with
σ = 0:01, 0.05, 0.1, and 0.3.

300

200

100

0
2 4 6

r
σ= 0.10
σ= 0.15
σ= 0.20

V(r)

8 10

Figure 2: Sketch of the composed-potential as a function of r
ðr > 0Þ for Η = 20, T = 1, and ϱ = 0:1 with σ = 0:1, 0.15, and 0.2:
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Figure 3: Behavior of energy spectral with respect to n with μ = c
= ℏ = 1, Η = 20, ϱ = 0:1, Τ = 15, and D = 5 for σ = 0:07, 0.09, and
0.1.
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By considering the appropriate probability density γðtÞ,
Equation (23), and substituting it into Equation (25), the
compact form of the Rényi entropy in the momentum space
is explicitly represented by

S Rmð Þ
η γð Þ = 1

1 − η
Ln

π

σ

4σ n + 2ρð Þ ρ + n + ζð ÞΓ 2ζ + n + 1ð ÞΓ 2ζ + ρ + n + 1ð Þ
Γ n + 2ρ + 2ζ + 1ð Þ ρ + nð Þ

� �η� �
:

ð26Þ

It is worth mentioning that when η = 1, the Shannon
entropy and Kullback–Leibler divergence are recovered [75].

4.2. Tsallis Entropy. In order to generalize the Boltzmann-
Gibbs theory [76] and open the way of describing quantum
subjects such as quantum optics and quantum communica-
tion [77], the Tsallis entropy was reported by Tsallis [75] in
1988. Tsallis entropy is often used in nonextensive systems,
including nonergodic structures and processes; see, e.g., ref-
erence [73] for more details. By implementing the conver-
sion h = e−2σr , the Tsallis entropy becomes

S
T pð Þ

η δð Þ = 1
η − 1

1 −
2π
σ

ð1
0
δ hð Þη 1

h
dh

� �
, ð27Þ

and is indicated in position space by

S
T pð Þ

η δð Þ = 1
η − 1

1 −
2π
σ

ð1
0
δ zð Þη 1

1 −z
dz

� �
, ð28Þ

where z = 1 − e−2σr . By taking the probability density Equa-
tion (23) and inserting it into Equation (28), one can obtain
the analogous entropy as

S
T pð Þ

η δð Þ = 1
η − 1

1 −
2π
σ
∙

22ζ+ρ+1σ n + ρ + ζð Þ
n + ρð Þ 2ζ + 2ρ + 2n + 1ð Þ

  

∙
2ζ n + 2ρð ÞΓ 2ζ + nð ÞΓ 2ζ + ρ + n + 1ð Þ

Γ 2 ζ + ρð Þ + nð Þ
�η�

:

ð29Þ

Introducing t = 1 − 2e−2σr and substituting Equation
(23) into Equation (27), the corresponding Tsallis entropy
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Figure 4: Variation of the energy En,ℓ in terms of n with μ = c = ℏ
= 1, Η = 20, ϱ = 0:1, Τ = 10, and σ = 0:1 for D = 3, 5, and 7.
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in the momentum space may further be represented as

S T mð Þ
η γð Þ = 1

η − 1
1 −

π

σ
×

4σ n + 2ρð Þ n + ρ + ζð ÞΓ 2ζ + n + 1ð ÞΓ 2ζ + ρ + n + 1ð Þ
n + ρð ÞΓ 2ζ + 2ρ + n + 1ð Þ

� �η� �
:

ð30Þ

It should be pointed out that, subject to the limit at η = 1,
one can resume the usual Boltzmann-Gibbs entropy [59].

5. Discussion

Figure 2 depicts the variation of the generalized inversely
quadratic Yukawa potential blended directly with the hyper-
bolic Schiöberg molecular potential in terms of internuclear
separation with respect to the different screening parame-
ters. It should be noted that around r = 1, the figure
decreases swiftly while for r > 1, it gradually increases.

In Figure 1, the treatment of 1/r2 and the suggested
approximation are figured with different screening parame-
ters, σ. The pattern tends to gather asymptotically for vari-
ous values of the screening parameters, which serves as a
good approximation of the system.

For the behavior of the energies in terms of the quantum
number n for different screening parameters, the dimension
of the system and the potential molecular parameter are
plotted, respectively, in Figures 3–5. In all cases, the energy
curves increase as the quantum number increases. It can be
observed that when each of the potential parameters
increases, a molecule impacted by this type of potential
exhibits almost identical behavior.

Figure 6 depicts the fluctuation of the energy eigenvalue
with regard to the potential parameter T , where the energy
of the system decreases monotonically with the increase in
the potential parameter.

Figure 7 indicates the approximate energy Enℓ, as far as
the screening parameter, σ, within the proposed potential.
It can be noticed that as the screening parameter, σ, expands,
the approximate energy increases monotonically with
increasing n.

It can be observed from Figure 8 that the energy
increases smoothly with increasing σ as the dimension of
the system is increased D = 3, 5, and 7.
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Figure 7: Contribution of the σ-parameters to the energy spectra
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Figures 9 and 10 illustrate the Rényi entropy in position
space and momentum space in terms of the angular momen-
tum quantum number for D = 3, respectively. In both cases,
the Rényi entropy grows as the angular momentum quan-
tum number increases.

It can be concluded from Figures 11 and 12 that the
Tsallis entropy decreases with increasing angular momen-
tum quantum number in both position space and momen-
tum space.

One can acquire from Table 1 that the energy eigenvalue
in the nonrelativistic regime increases as the dimension of
the system increments for practically all the states, while
the energy turns out to be more negative in value and
bounded as the screening parameter decreases in each state.
It is fascinating to consider that the presented potential,
Equation (1), shows some different highlights.

The peculiar cases of Equation (1), obtained by selecting
the appropriate controlling parameters, can readily suggest
distinguished interaction potential patterns. Based on this,
one can realize that at Η = 0, and Equation (1) simplifies
to the short-range generalized inversely quadratic Yukawa
potential. This is regarded as a compelling model with appli-
cations in different branches of condensed matter and
nuclear physics due to its ability to characterize the strong
interaction between nucleons [78]. While the radial variable
r approaches to zero, it behaves similarly to a Yukawa poten-
tial, but the first term in R.H.S. in Equation (1) moderates its
treatment at the origin. In this manner, the approximate
analytical solutions of ℓ-state D-dimensional Klein-Gordon
equation in the relativistic framework are obtained as

2σ n+
1
2

� �
ℏc 4ℏ2c2 ℘+ 1

2

� �2
− 8T c2μ + En,ℓ

� � !

+ 2 n +
1
2

� �
ℏc − c2μ + En,ℓ

� �
−c2μ + En,ℓ + 2T
� �� �

+ σ
2
ffiffiffi
2

p

σℏ2c2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−

℘+1/2ð Þ2ℏ2
2

+ Tμ
� �

c2 + En,ℓT
� �

−c2μ + En,ℓ + 2Tð Þ c2μ + En,ℓð Þ
s0

@
0
@

+2 ℘+1ð Þ℘+ n + 1ð Þn + 1
2

� �
ℏ2 + 4Tμ

�
c2 + 4En,ℓTÞ = 0:

ð31Þ

In particular, the results, when setting H = 0, have good
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Figure 10: Variation of the Rényi entropy for the momentum
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m ðγÞ with respect to the angular momentum quantum
number ℓ with μ = c = ℏ = 1, Η = 20, T = 10, ϱ = 0:1, and σ = 0:01
for D = 3:
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accuracy with those obtained in [53] in the nonrelativistic
limit for D = 3.

However, when Η = 0 and in the low screening region
where σ⟶ 0, the Mie-type potential [79] is obtained,
whose energy spectra, in accordance with Equation (31),
are given by

−
1

2cℏ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2μ − En,ℓ−T

p ℏc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ℏ2c2 ℘+1/2ð Þ2 − 4T c2μ + En,ℓð Þ

ℏ2c2
+ 2n + 1

s0
@

1
A

0
@

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2μ − En,ℓ − T

p
+ 2T

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2μ + En,ℓ

p �
= 0:

ð32Þ

In addition, the outcomes are in good agreement with
those provided in [80], taking D = 3 in the nonrelativistic
limit for the ℓ-wave case, and they agree with those given
in [81] for the Mie-type potential.

Setting Τ = 0 yields the modified hyperbolic-type poten-
tial, suggested by Schiöberg as an important diatomic molec-
ular potential [82]. This is strongly associated with the
Morse [83], Kratzer [84], Coulomb [85, 86], harmonic oscil-
lator [87, 88], and other potential functions as specific cases
and is widely used in various applications such as quantum
statistical theory [89], conformal field theory [90], nuclear

structure [91], and chemical physics [92]. Thus, given this
condition, the energy eigen-spectrum may be calculated as

1
2c2ℏ2σ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2μ + En,ℓ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ϱ − 1ð Þ2H + c2μ − En,ℓ

q
+ 2σ n +

1
2

� �
cℏ

� ��

� 8ϱ2 c2μ + En,ℓ
� �

H+4σ2c2ℏ2 ℘+ 1
2

� �2
+ 2ℏ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2μ + En,ℓ

p
σ n +

1
2

� �
c

r

� 2 ϱ − 1ð Þ2H + c2μ − En,ℓ + 2ℏ2 ℘2 + n2+℘+n + 1
2

� �
σ2 + 4Hμϱ ϱ − 1ð Þ

� �
c2

r
+ 4HEn,ℓϱ ϱ − 1ð ÞÞ = 0:

ð33Þ

It is shown that the result given in this manner is consis-
tent with the one obtained by Ortakaya in [93] for the Schrö-
dinger equation within the hyperspherical coordinates.

6. Conclusions

The approximate ℓ-state solutions for the D-dimensional
Klein-Gordon equation with a Schiöberg-generalized
inversely quadratic Yukawa potential are investigated in this
paper. The treatment of the respective energy eigenvalues is
discussed as a function of various potential parameters. Par-
ticular samples of the potential and their analogous energy
relations were concluded, which are compatible with those
discussed in the literature. Two fundamental theoretic quan-
tities, the Rényi entropy and the Tsallis entropy, are obtained
which are useful in describing the synthetic reactivity of
particles.
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