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We reassess an alternative CPT-odd electrodynamics obtained from a Palatini-like procedure. Starting from a more general
situation, we analyze the physical consistency of the model for different values of the parameter introduced in the mass tensor.
We show that there is a residual gauge invariance in the model if the local transformation is taken to vary only in the direction
of the Lorentz-breaking vector. This residual gauge invariance can be extended to all models whose only source of gauge
symmetry breaking is such a mass term.

1. Introduction

It has been more than two decades that the investigation of
Lorentz-violating models got the attention of the commu-
nity of quantum field theory physicists. Indeed, it is believed
that the usual symmetries of special relativity will be broken
in the limit of very high energy physics as an effect of quan-
tum gravity issues [1–5]. This possibility was first discussed
in the papers of Kostelecký and Samuel [1, 2], but it gained
great dimension when Carroll, Field, and Jackiw proposed
a modification of the classical electrodynamics by the inclu-
sion of a Chern-Simons-like term in the photon sector [6].
This term violates both CPT and Lorentz symmetries and
gives rise to a wide range of interesting physical effects,
which were intensively studied. Many papers treated features
of the model like its physical consistency [7, 8], the possibil-
ity of the CFJ term being radiatively generated [9–19], and
many other aspects [20–27].

Further, a general description of Lorentz violation in
quantum field theories was provided by the Standard Model
Extension (SME) [28–31]. The SME, which includes the

Carroll-Field-Jackiw (CFJ) term, establishes a set of constant
tensors as the parameters of Lorentz violation, whose small
magnitudes are strongly constrained by experiments [32].
These constant tensors would arise from spontaneous
Lorentz symmetry breaking at very high energies [28]. It is
important to note that the SME preserves SUð3Þ × SUð2Þ ×
Uð1Þ gauge symmetry and the renormalizability.

One aspect that has been gaining increasing attention is
the inclusion of massive photons in models that violate
Lorentz symmetry. In general, it is believed that the fact that
photons are massless is a direct consequence of gauge invari-
ance of quantum electrodynamics (QED). Nevertheless,
many studies of the physics beyond the Maxwell electromag-
netism have been performed, mainly in the context of Proca
model [33–37]. Although studies using astrophysical sources
and laboratory experiments put very strong constraints in
the photon mass [38–51], it may be possible that it has a very
tiny but nonvanishing rest mass mγ. It is interesting to note
that the usual CFJ model already accommodates an effective
mass for the photon which is proportional to the absolute
value of the Lorentz-breaking vector [52, 53]. Still, in the
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context of electrodynamics with the Carroll-Field-Jackiw
term, an explicit mass term for the photon was used to repair
unitarity problems for a time-like background vector [54].

On the other hand, models with Lorentz-violating (LVI)
mass terms present remarkable peculiarities, like the ones
pointed out in [55, 56], in which the gauge field has two
massive degrees of freedom but the static force between
charged particles is Coulomb-like. Many aspects like the
quantum induction of Lorentz-breaking mass terms for the
photon [57], the construction of a Stueckelberg Lagrangian
in a generalized Rξ gauge [58], and spontaneous gauge sym-
metry breaking in a Lorentz-violating gauge-Higgs model
[59] were investigated. In [60], some aspects of this kind of
gauge symmetry breaking were focused in a study of dual
models.

An alternative way of generating Lorentz-violating mass
terms was investigated in [61], in which a Palatini-like for-
mulation of the CFJ model was performed. Interestingly, this
formulation, with the participation of the CFJ term, caused
the emergence of an unusual mass contribution in the pho-
ton Lagrangian density. While the usual Proca mass term
breaks only gauge invariance, the present mass contribution
breaks Lorentz symmetry and, supposedly, gauge invariance.
These results looked intriguing, since the model from which
we begin, in which Fμν is treated as an independent field, has
no any evidence of violation of gauge symmetry. In this
paper, we study a more general version of the massive model
obtained in [61] and show that there is a residual gauge
invariance in the model obtained from the Palatini-like
formulation.

The paper is organized as follows: in Section 2, general
discussions on the model are presented and the gauge field
propagator is obtained; in Section 3, we carry out an analysis
of the field equations; we study tree-level unitarity of the
model in Section 4; in Section 5, we investigate the presence
of a residual gauge invariance in the massive model; conclu-
sions and final remarks are presented in Section 6.

2. General Discussions on the Model

Let us consider the following Lagrangian density of a
Lorentz-breaking extension of spinorial quantum electrody-
namics (QED),

L = −
1
4 FμνF

μν + αμκμAν∂βAσε
μνβσ + 1

2 μ
2AμMμνA

ν

− JμA
μ +L F ,

ð1Þ

with

Mμν = κ2ημν − ρκμκν, ð2Þ

in which α and ρ are dimensionless constants, μ is a
mass parameter and κμ is a background constant pseudovec-
tor that causes the violation of Lorentz symmetry. Besides,
Fμν = ∂μAν − ∂νAμ, J

μ = e�ψγμψ is the conventional matter
current and L F is the pure fermionic Lagrangian density.
The gauge invariance of the model is apparently explicitly

broken due to the presence of the mass term, ð1/2Þμ2Aμ

MμνA
ν, which also includes a Lorentz-breaking part. It is

worth to note that such a term is usually called nonminimal,
since it accommodates nonminimal couplings to the curva-
ture in field theories in curved space-time [62–65].

This particular LVI extension of QED, in which the
background vector of the Carroll-Field-Jackiw (CFJ) term
is responsible for the mass tensor, was obtained in [61], with
α = −1, ρ = 1, and μ2 = 1. This was accomplished through a
Palatini-type procedure, in which the Fμν tensor and the
gauge field were initially considered to be independent.
The result was an unusual situation, in which the breaking
of Lorentz’s invariance induces a violation, at least apparent,
of the gauge symmetry.

The breaking of gauge symmetry may cause problems to
the consistency of the theory, as the violation of unitarity,
with deleterious effects in the renormalizability of the model.
A common procedure in cases like that is the searching for a
hidden gauge symmetry, like the solution of Stueckelberg
[66, 67], in which a mixed term that includes a scalar field
is added to the Lagrangian density, such that gauge symme-
try is restored. It is noteworthy that the idea of the Stueckel-
berg mechanism was extended to the Standard Model to give
mass to the physical photon through the hypercharge Uð1ÞY
[68, 69]. Another approach is the application of a dualiza-
tion method in order to obtain a gauge theory which
describes the same physics as the original model. In both
cases, it is assumed that the model of interest is a gauge-
fixed version of a gauge theory. We will perform further
investigations on the possibility of finding a hidden gauge
symmetry in the present model. Let us first analyze general
features of the model (1).

The quadratic part of the Lagrangian density in the vec-
torial field Aμ can be written as

LG = 1
2A

μOμνA
ν, ð3Þ

with

Oμν = □+μ2κ2
� �

θμν + μ2κ2ωμν − 2αμSμν − ρμ2Λμν, ð4Þ

where θμν = ημν − ∂μ∂ν/□ and ωμν = ∂μ∂ν/□ are the trans-
versal and longitudinal spin projectors, respectively, and
the operators

Sμν = εμναβκ
α∂β andΛμν = κμκν ð5Þ

are dependent on the background vector κμ. The wave
operator Oμν is invertible. However, as we intend to define
a closed algebra which includes the operators θμν, ωμν, Λμν,
and Sμν, it is necessary to include new operators, as Equation
(6) indicates. It should be noted that no new term, such as a
gauge-fixing, is being added to the wave operator. Since we
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have

SμαS
α
ν = κ2□−λ2

� �
θμν − λ2ωμν + λ Σμν + Σνμ

� �
−□Λμν ≡ f μν,

ð6Þ

with

Σμν = κμ∂ν, λ ≡ Σμ
μ = κμ∂

μ, ð7Þ

we include the operators Σμν and Σνμ in the algebra,
which is displayed in Table 1.

We thus obtain, after a straightforward but lengthy cal-
culation, the vector field propagator, <AμAν > = iðO−1Þμν,
in momentum-space:

AμAν

� �
= i
D

− p2 − μ2κ2
� �

θμν +
1

μ2κ2
D + λ2

~D
p2H + 4α2μ2 ~D
� �" #

ωμν

(

+ 2iαμSμν −
λH
~D

Σμν + Σνμ

� �
−
μ2

~D
−κ2H + 4α2 ~D
� �

Λμν

�
,

ð8Þ

with

D = p2 − μ2κ2
� �2 + 4α2μ2 κ2p2 − λ2

� �
,

~D = − κ2p2 − ρλ2
� �

+ μ2κ4 1 − ρð Þ,
H = −ρ p2 − μ2κ2

� �
+ 4α2μ2κ2 1 − ρð Þ:

ð9Þ

The operators, in momentum-space, are given by

θμν = ημν − ωμν, ωμν =
pμpν
p2

, Sμν = εμναβκ
αpβ, ð10Þ

Σμν = κμpν andΛμν = κμκν: ð11Þ

We recognize above the propagator for the model of
[61], if we fix α = −1, ρ = 1, and μ2 = 1. Interesting that the
dispersion relations extracted from the denominator D,
responsible for the massive modes, are not affected by the
constant ρ. This parameter only influences the modes com-
ing from ~D. In [61], the physical consistency of the modes of
propagation of the vector field was studied in detail. For
now, let us study the effects of the constant ρ on the model
and, for comparison, let us fix α = −1 and μ2 = 1.

3. Field Equations

Since in [61], it was shown that only a spacelike κμ produces
meaningful modes of propagation of the vector field, we
restrict ourselves here to the analysis of this case. Let us con-
sider a referential frame in which we have a purely spacelike

background vector given by κμ = ð0, κ!Þ, with jκ!j2 = t2, and
choose the direction of the z-axis as the one towards which

the κ
!

vector is pointed. So, we have the poles

p20 = p2⊥ + pz + tð Þ2 ≡m2
+ and p20 = p2⊥ + pz − tð Þ2 ≡m2

−, ð12Þ

due to the denominator D, and

p20 = p2⊥ + 1 − ρð Þ p2z − t2
� �

≡ ~m2, ð13Þ

due to the denominator ~D, where p
!
⊥ is the component

of p orthogonal to the z-axis.
We first examine the solutions of the field equation in

momentum-space,

−p2 + κ2
� �

Aμ + p · Að Þpμ − ρ κ · Að Þκμ + 2iεμναβAνκαpβ = 0,
ð14Þ

with Aμ = ðϕ, AÞ. The contraction of the above equation
with pμ gives us the gauge condition ðp · AÞ = ðρλ/κ2Þðκ · AÞ
, which, after the substitution in (14), furnishes us

−p2 + κ2
� �

Aμ + ρ
λ

κ2
pμ − κμ

� �
κ ·Að Þ + 2iεμναβAνκαpβ = 0,

ð15Þ

in which λ = Σ
μ
μ, according to the definitions of (10) for

the operators in momentum-space. For our spacelike κμ,
we have

− p2 + t2
� �

Aμ − ρ pzpμ + t2δ3μ
	 


Az + 2itεμν3βAνpβ = 0: ð16Þ

In addition, let us define the x-axis as the direction
aligned with the component of A which is orthogonal to κ

!
,

so that Ay = 0. For the z-component of the field equation,
we have

p20 − p2⊥ − 1 − ρð Þ p2z − t2
� �� �

Az = 0: ð17Þ

We see that the pole p20 = ~m2 automatically satisfies the
equation above. For Az ≠ 0, the poles p20 =m2

± are con-
strained to equal ~m2, which means, for a nonnull ρ,

pz + tð Þ2 = 1 − ρð Þ p2z − t2
� �

⇒ pz

=
−t, if 0 < ρ1

ρ − 2
ρ

� �
t, if ρ > 1 or ρ < 0

8><
>: , for ~m2 =m2

+,

pz − tð Þ2 = 1 − ρð Þ p2z − t2
� �

⇒ pz

=
t, if 0 < ρ1

2 − ρ

ρ

� �
t, if ρ > 1 or ρ < 0

8><
>: , for ~m2 =m2

−:

ð18Þ

It is not possible that these two poles satisfy these
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conditions at the same time for an arbitrary ρ, if t ≠ 0. The
other equations of motion for Az ≠ 0, with p20 = ~m2 and, con-
sequently, p2 + t2 = −ρðp2z − t2Þ, are written as

−ρ p2z − t2
� �

Ax + ρpxpzAz + 2itpyϕ = 0,
ρpypzAz + 2it p0Ax − pxϕð Þ = 0,

ρ p2z − t2
� �

ϕ − ρp0pzAz − 2itpyAx = 0:

8>><
>>: ð19Þ

We try a solution with ϕ = 0, for which, after some
manipulation of equations (19), we obtain

p20 − p2y
	 


Ax = 0: ð20Þ

If Ax ≠ 0, we are left with the constraints px = 0 and pz
= ±t, which correspond to the two modes ~m2 =m2

+
(pz = −t) and ~m2 =m2

− (pz = t). For the first mode, the elec-
tromagnetic field is polarized as A = ðAx, 0, AzÞ and propa-
gates in the direction p = ð0, py ,−tÞ, such that p · A = −tAz

and p · A = tAz . The gauge condition, however, imposes
one more restriction:

p · Að Þ = ρλ

κ2
κ · Að Þ⇒ p · Að Þ = ρtAz: ð21Þ

So, this solution fixes ρ = 1. For the mode with ~m2 =m2
−,

the conclusions are the same, only with the change in the
sign of the pz component.

If Ax = 0, taking into account the other equations, we
necessarily have pz = 0, such that ~m2 = p2⊥ − ð1 − ρÞt2. Since,
the poles m2

± satisfy the 3-component of field equations for
pz = ±ðρ − 2Þt/ρ, we have that, if ρ = 2, the three poles are
reduced to one p20 = ~m2 =m2

± = p2⊥ + t2, with the possible
nonphysical consequences of a multiple pole.

In the case Az = 0, the mode p20 = ~m2 is not excluded. It is
not possible, however, to fix ϕ = 0. In order to obtain a solu-
tion which is valid for all values of ρ, we obtain the con-
strainings py = 0 and pz = ±t, which satisfy one of the two

conditions: p20 = ~m2 =m2
+ or p20 = ~m2 =m2

−.
In summary, in this section, we investigated how the

solutions of the field equations are affected by the poles of
the model. In the next section, we will look at the physical

nature of these poles subject to specific conditions imposed
by the field equations.

4. Tree-Level Unitarity Analysis

It is enlightening that we make an analysis of the physical
nature of the poles. With this purpose, we investigate the
tree-level unitarity of the model. It can be investigated
through the propagator, when saturated by conserved cur-
rents,

SP = Jμ AμAν

� �
J∗ν: ð22Þ

The current conservation in momentum-space is written
as pμ J

μ = 0, such that

p · J = p0 J0 − p · J = 0⇒ J0 =
p · J
p0

,

Jμ J∗μ = J0j j2 − J⊥j j2 − Jzj j2 = 1
p20

p · Jj j2 − p20 J⊥j j2 + Jzj j2� �� �
:

ð23Þ

Unitarity requires that the imaginary part of the residue
of the saturated propagator in a physical pole is nonnegative
(see [70, 71]). This requirement can be checked by calculat-
ing the residue matrix in the pole for the complete propaga-
tor and, then, verifying if its eigenvalues are nonnegative.
Here, we opt to analyze directly the saturated propagator.
Note that in [70], this technique of analysis was used in a
model obtained from the dimensional reduction of the
CPT-even sector of the Standard Model Extension.

Turning our attention to the saturated propagator, in
consequence of current conservation, only terms on ημν
and Λμν remain, such that, for our spacelike κμ, we stay with

SP = i
p20D

− p2 + t2
� �

p · Jj j2 − p20 J⊥j j2� �
+ p20 Jzj j2

~D
−t4H + p2 − 3t2

� �
~D

� ��
,

ð24Þ

Table 1: Multiplicative table. The products are supposed to obey the order “row times column.”

θαν ωα
ν Sαν Λα

ν Σα
ν Σα

ν

θμα θμν 0 Sμν Λμν − λ/□ð ÞΣνμ Σμν − λωμν 0
ωμα 0 ωμν 0 λ/□ð ÞΣνμ λωμν Σνμ

Sμα Sμν 0 f μν 0 0 0
Λμα Λμν − λ/□ð ÞΣμν λ/□ð ÞΣμν 0 κ2Λμν κ2Σμν λΛμν

Σμα 0 Σμν 0 λΛμν λΣμν □Λμν

Σαμ Σνμ − λωμν λωμν 0 κ2Σνμ κ2□ωμν λΣνμ
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with

D = p20 −m2
+

� �
p20 −m2

−
� �

,
~D = t2 p20 − ~m2� �

,

H = −ρ p2 + t2
� �

− 4t2 1 − ρð Þ:
ð25Þ

We have some potential problematic situations to ana-
lyze here: when pz = ±t, we have, in principle, double poles,
with ~m2 =m2

+ and ~m2 =m2
−, respectively; this situation

repeats when pz = ±ðρ − 2/ρÞt, with an additional complica-
tion if ρ = 2, with pz = 0, which, at first sight, brings us a tri-
ple pole (~m2 =m2

+ =m2
−). We study below these cases.

4.1. The Cases pz = ±t. Since these two cases are similar, we
analyze here the referential frame in which pz = −t, such that
we stay with the poles p20 = ~m2 =m2

+ = p2⊥ and p20 =m2
− = p2⊥

+ 4t2. This situation is possible both for Az = 0 and Az ≠ 0,
as we verified in the field equations. The key point in order
to analyze the possibility of a double pole is the fact that p2

+ t2 = p20 − ~m2 in this referential frame. We stay with

and we see that, in order to eliminate the double pole, we
need to have ρ = 1, in accordance with the result we obtained
in the study of the field equations in conjunction with the
gauge condition. If we fix ρ = 1, the saturated propagator
reads

SP = i

p20 p20 − ~m2 − 4t2
� � − p · Jj j2 − p20 J⊥j j2� �

+ p20 Jzj j2
p20 − ~m2� � p20 − ~m2 − 3t2

� �( )
:

ð27Þ

We are now in position to calculate the imaginary part of
the residue in the two remaining poles. For the pole p20 = ~m2,
the calculation is straightforward and gives

Im Rp20=~m2 SPð Þ
h i

= 3
4 Jzj j2: ð28Þ

For the residue in the pole p20 =m2
−, the term in jp · Jj2

contributes. The residue gives us

Im Rp20=p2⊥+4t2 SPð Þ
h i

= 1
4 ~m2 + 4t2
� � −4 p · Jj j2 + 4 ~m2 + 4t2

� �
J⊥j j2 + ~m2 + 4t2

� �
Jzj j2 �

:

ð29Þ

We then remember that, for pz = −t, we have px = 0 and
that, in this case, ~m2 = p2y to obtain, after some calculation,

Im Rp20=p2y+4t2 SPð Þ
h i

=
py Jz + 4tJy
��� ���2
4 p2y + 4t2
	 
 + Jxj j2 > 0: ð30Þ

The result above, which can be diagonalized, indicates a
massive mode with two degrees of freedom.

4.2. The Cases pz = ±ðρ − 2/ρÞt. We here analyze the case
pz = ðρ − 2/ρÞt, since the two situations are similar. In this
case, we have a possible double pole at

p20 = ~m2 =m2
+ = p2⊥ + 4 1 − ρð Þ2t2

ρ2
, ð31Þ

and, if ρ = 2, a triple pole. The saturated propagator,
after algebraic manipulations, is given by

SP = i

p20 p20 − ~m2 − 4t2
� � − p · Jj j2 − p20 J⊥j j2� �

+ p20 Jzj j2
p20 − ~m2� �2 p20 − ~m2� �

p20 − ~m2 + ρ − 4ð Þt2� �
+ 4t4 1 − ρð Þ� �( )

, ð26Þ

SP = i

p20 p20 − ~m2� �
p20 − ~m2 − 4 2 − ρð Þt2/ρ� � − p20 − ~m2 + 4 ρ − 1ð Þt2

ρ

� �
p · Jj j2 − p20 J⊥j j2� �

+ p20 ∣ Jzj2 p20 − ~m2 + ρ2 − 4
� �

t2

ρ

� �� �
:

ð32Þ
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The residue in the pole p20 = ~m2 gives

Im Rp20=~m2 SPð Þ
h i

= ρ + 2ð Þ
4 Jzj j2

+ 1 − ρð Þ
2 − ρð Þ

1
~m2 p · Jj j2 − ~m2 J⊥j j2� �

:
ð33Þ

It is clear that a nonnegative imaginary part of the resi-
due in the pole p20 = ~m2 depends on the value of ρ. In the case
of ρ = 1, we are back to the case pz = −t. The possible triple
pole for ρ = 2 and pz = 0 is not consistent, since the residue
diverges. This physical inconsistency of such a case is also
related to the stability of the model and will be made clear
in the next section.

5. The Residual Gauge Invariance

All the above results present us clues of some special feature
in the model when ρ = 1. First, let us rewrite the dispersion
relations for the model in a more general way. From the D
factor in the denominator, taking α = 1 and μ = 1, we have

p2 − κ2
� �2 + 4 κ2p2 − λ2

� �
= 0, ð34Þ

which can be factorized as

p2 + κ2 + 2λ
� �

p2 + κ2 − 2λ
� �

= 0, ð35Þ

so that

ω2 ≡ p20 = pj j2 − κ2 ± 2λ: ð36Þ

For the purely spacelike background vector, κμ = ð0, κ!Þ,
we stay with

ω2 = p ± κ
!��� ���2: ð37Þ

Since the model is massive, we can go to the particle rest
frame and get, for these two dispersion relations,

ω2 = κ
!��� ���2, ð38Þ

which represents a mode with a positive definite mass
which propagates with two degrees of freedom. It is impor-
tant to emphasize that these results do not depend on the
value of the ρ parameter. On the other hand, the ~D factor
is written as

~D = ρλ2 − κ2p2 + 1 − ρð Þκ4, ð39Þ

which furnishes us the dispersion relation

ω2 = pj j2 + 1
κ2

ρλ2 + 1 − ρð Þκ4� �
: ð40Þ

For the purely spacelike Lorentz-breaking vector, the

result is written as

ω2 = pj j2 − 1

κ
!��� ���2 ρ p · κ!

	 
2
+ 1 − ρð Þ κ

!��� ���4� �

= pj j2 1 − ρ cos2θ
� �

− 1 − ρð Þ κ
!��� ���2,

ð41Þ

where θ is the angle between the vectors p and κ
!
. Let us

consider the field propagates in the direction of the Lorentz-
breaking vector, such that θ = 0. In this situation, we stay
with

ω2 = 1 − ρð Þ pj j2 − κ
!��� ���2� �

, ð42Þ

which imposes some restrictions. First, if ρ = 1, we have a
massless mode. For ρ ≠ 1, the dispersion relation predicts a
massive mode, but with the restriction ρ > 1, otherwise we
have an unstable model, since in the particle rest frame we

have ω2 = ðρ − 1Þjκ!j2. However, even with ρ > 1, the stability
of the model imposes severe restrictions, as the magnitude of
the field momentum would be limited by that of the back-
ground vector, which is very small. The propagation of the
field would be practically restricted to the plane orthogonal
to κ

!
, although the component of the momentum in the

direction of κ
!

cannot be null (we must have ρ ≠ 2). Thus,
in the special case in which ρ = 1, the model presents a mas-

sive mode, ω2 = jκ!j2 (coming from the factor D in the
denominator), with two degrees of freedom, and a massless
mode, which corresponds to a propagation in the direction
of the background vector (from ~D).

In massive models with violation of gauge symmetry, it
is usual to look for hidden symmetries through dualization
processes, which could provide an equivalent gauge-
invariant model. The gauge embedding method [72, 73]
proved to be effective in this type of procedure in a wide
range of models. The approach is based on the transforma-
tion of the model in a gauge theory by adding on mass-
shell vanishing terms. This iterative embedding of Noether
counterterms is based on the idea of local lifting a global
symmetry and is reminiscent to procedures which were
important in the construction of component-field super-
gravity actions [74–76]. It would be interesting to carry out
the dualization of the present theory. However, the proce-
dure needs the use of the inverse operator of the mass tensor,
Mμν (defined in equation (2)), which is given by

Lμν =
1
κ2

ημν + ρ
κμκν

1 − ρð Þκ2
� �

: ð43Þ

Interestingly, there is no inverse for Mμν when ρ = 1.
This is another compelling clue for the investigation of this
particular case.

Last but not least, calculating the one-loop vacuum
polarization tensor for the model up to second-order in κμ
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gives us a transverse result [61], with

Π 2ð Þ
μν = −

ie2

6π2m2 1 + 2
5
p2

m2 +O
p4

m4

� �� �
Tμν, ð44Þ

in which m is the fermion mass and

Tμν = κ2 pμpν − p2ημν
	 


+ p2κμκν + p · κð Þ2ημν
− p · κð Þ pμκν + pνκμ

	 

:

ð45Þ

All these results bring us the possibility of a residual
gauge invariance. The gauge-violating term is given by

LM = 1
2A

μMμνA
ν: ð46Þ

By considering a gauge transformation on the vectorial
field, Aμ,

Aμ ⟶ Aμ + ∂μχ, ð47Þ

we have

δL = AμMμν ∂νχð Þ + 1
2 ∂μχð ÞMμν ∂νχð Þ: ð48Þ

It is easy to see that if ∂μχ is proportional to κμ, such that
∂μχ = βðzÞκμ, with βðzÞ a dimensionless function of z
(assuming the z-axis is parallel to the background vector),
we get, explicitly using (2),

∂μχð ÞMμν = βκ2κν 1 − ρð Þ, ð49Þ

which is null for ρ = 1. In this situation, the variation of
the Lagrangian is null. Just in order to illustrate, for our
purely spacelike vector κμ = ð0, κ!Þ, this is accomplished if
the gradient of χ is parallel to κ

!
in the case ρ = 1. Thus, there

is a class of gauge transformations which leaves the Lagrang-
ian density invariant and, in this sense, we can affirm that
the model accommodates a residual gauge invariance when
ρ = 1.

Although we use a specific model in the discussion of the
residual gauge invariance, it is easy to see that this is a gen-
eral result for all the models whose only source of gauge
symmetry violation is the above cited LM .

6. Conclusion

We studied an alternative CPT-odd electrodynamics which
incorporates a general Lorentz-breaking mass term. Actu-
ally, it is an extended version of the one obtained from a
Palatini-like procedure in [61]. We have showed that the
Lorentz-breaking part of the mass tensor affects only one
of the three modes of propagation of the gauge field. The ρ
parameter that controls this part of the mass tensor plays a
fundamental role in preserving the essential physical proper-
ties of the model. It was shown, for a spacelike Lorentz-

breaking vector κμ, that if ρ < 1, the model presents serious
problems with stability. Moreover, if this parameter is
greater than one, a positive definite energy is required, and
the field is restricted to propagate in a direction external to
a cone defined by the rotation, around the z-axis (defined
as the direction of the background vector), of the lines z =
±ðt/p⊥Þu, being u the axis parallel to the component p

!
⊥ of

the field momentum and t the magnitude of the Lorentz-
breaking vector κ

!
. Moreover, the particular case in which

ρ = 2 accommodates a nonphysical triple pole when the
component of the field momentum along the z-axis is null.

The most interesting case, however, is the one with ρ = 1,
which presents a massless mode of propagation along the z
-axis. This fact, together with the lack of an inverse for the
mass tensor, led us to investigate the presence of a residual
gauge invariance in the model. We then showed that a gauge
transformation, Aμ ⟶ Aμ + ∂μχ, such that χ = χðzÞ, leaves
the action unchanged. For a purely spacelike background
vector, this corresponds to have the gradiant of χ parallel
to κ

!
. Moreover, this is a general result for models whose

only source of gauge symmetry violation is the mass term
studied in the present paper.

For future work, it would be interesting to investigate
how a dualization process would work in the limit ρ⟶ 1.
In other words, it would be worth to understand what kind
of model comes up in this limit in a more general gauge-
invariant model with ρ undetermined, obtained from a
gauge embedding procedure.

Data Availability

No data were used to support this study.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work was partially supported by Conselho Nacional de
Desenvolvimento Cientfico e Tecnológico (CNPq). The
authors acknowledge Prof. J. A. Helayël-Neto for elucidating
discussions.

References

[1] V. A. Kostelecký and S. Samuel, “Spontaneous breaking of
Lorentz symmetry in string theory,” Physical Review D,
vol. 39, no. 2, pp. 683–685, 1989.

[2] V. A. Kostelecký and S. Samuel, “Gravitational phenomenol-
ogy in higher-dimensional theories and strings,” Physical
Review D, vol. 40, no. 6, pp. 1886–1903, 1989.

[3] S. Doplicher, K. Fredenhagen, and J. E. Roberts, “The quantum
structure of spacetime at the Planck scale and quantum fields,”
Communications in Mathematical Physics, vol. 172, no. 1,
pp. 187–220, 1995.

[4] J. Collins, A. Perez, D. Sudarsky, L. Urrutia, and H. Vucetich,
“Lorentz invariance and quantum gravity: an additional fine-

7Advances in High Energy Physics



tuning problem?,” Physical Review Letters, vol. 93, no. 19, arti-
cle 191301, 2004.

[5] P. Horava, “Quantum gravity at a Lifshitz point,” Physical
Review D, vol. 79, no. 8, article 084008, 2009.

[6] S. M. Carroll, G. B. Field, and R. Jackiw, “Limits on a Lorentz-
and parity-violating modification of electrodynamics,” Physi-
cal Review D, vol. 41, p. 1231, 1990.

[7] A. P. Baêta Scarpelli, H. Belich, J. L. Boldo, and J. A. Helayël-
Neto, “Aspects of causality and unitarity and comments on
vortexlike configurations in an Abelian model with a
Lorentz-breaking term,” Physical Review D, vol. 67, no. 8, arti-
cle 085021, 2003.

[8] A. P. Baêta Scarpelli and J. A. Helayël-Neto, “Lorentz-violating
SO(3) model: discussing unitarity, causality, and ’t Hooft-
Polyakov monopoles,” Physical Review D, vol. 73, no. 10, arti-
cle 105020, 2006.

[9] R. Jackiw and V. A. Kosteleckỳ, “Radiatively induced Lorentz
and CPT violation in electrodynamics,” Physical Review Let-
ters, vol. 82, no. 18, pp. 3572–3575, 1999.

[10] J.-M. Chung and B. K. Chung, “Induced Lorentz- and CPT-
violating Chern-Simons term in QED: Fock-Schwinger proper
time method,” Physical Review D, vol. 63, no. 10, article
105015, 2001.

[11] J.-M. Chung, “Lorentz- and CPT-violating Chern-Simons
term in the functional integral formalism,” Physical Review
D, vol. 60, no. 12, article 127901, 1999.

[12] G. Bonneau, “Regularisation: many recipes, but a unique prin-
ciple: ward identities and normalisation conditions. The case
of CPT violation in QED,” Nuclear Physics B, vol. 593, no. 1-
2, pp. 398–412, 2001.

[13] M. Perez-Victoria, “Exact calculation of the radiatively
induced Lorentz and CPT Violation in QED,” Physical Review
Letters, vol. 83, no. 13, pp. 2518–2521, 1999.

[14] J. High, “Motion on moduli spaces with potentials,” Journal of
High Energy Physics, vol. 2001, no. 12, p. 032, 2001.

[15] O. A. Battistel and G. Dallabona, “Role of ambiguities and
gauge invariance in the calculation of the radiatively induced
Chern–Simons shift in extended QED,” Nuclear Physics B,
vol. 610, no. 1-2, pp. 316–330, 2001.

[16] O. A. Battistel and G. Dallabona, “Ambiguities versus gauge
invariance in the calculation of the radiatively induced
Chern-Simons shift in extended QED,” Journal of Physics G,
vol. 27, no. 7, pp. L53–L59, 2001.

[17] O. A. Battistel and G. Dallabona, “Consistency in perturbative
calculations and radiatively induced Lorentz and CPT viola-
tions,” Journal of Physics G, vol. 28, no. 8, pp. L23–L32, 2002.

[18] A. P. Baêta Scarpelli, M. Sampaio, M. C. Nemes, and B. Hiller,
“Chiral anomaly andCPTinvariance in an implicit momentum
space regularization framework,” Physical Review D, vol. 64,
no. 4, article 046013, 2001.

[19] A. P. Baêta Scarpelli, M. Sampaio, M. C. Nemes, and B. Hiller,
“Gauge invariance and the CPT and Lorentz violating induced
Chern–Simons-like term in extended QED,” The European
Physical Journal C, vol. 56, no. 4, pp. 571–578, 2008.

[20] C. Adam and F. R. Klinkhamer, “Causality and CPT violation
from an Abelian Chern–Simons-like term,” Nuclear Physics B,
vol. 607, no. 1-2, pp. 247–267, 2001.

[21] C. Adam and F. R. Klinkhamer, “Photon decay in a CPT-
violating extension of quantum electrodynamics,” Nuclear
Physics B, vol. 657, pp. 214–228, 2003.

[22] A. A. Andrianov and R. Soldati, “Lorentz symmetry breaking
in Abelian vector-field models with Wess-Zumino interac-
tion,” Physical Review D, vol. 51, no. 10, pp. 5961–5964, 1995.

[23] A. A. Andrianov and R. Soldati, “Patterns of Lorentz symme-
try breaking in QED by CPT-odd interaction,” Physics Letters
B, vol. 435, no. 3-4, pp. 449–452, 1998.

[24] A. A. Andrianov, R. Soldati, and L. Sorbo, “Dynamical Lorentz
symmetry breaking from a(3+1)-dimensional axion-Wess-
Zumino model,” Physical Review D, vol. 59, no. 2, article
025002, 1998.

[25] A. A. Andrianov, D. Espriu, P. Giacconi, and R. Soldati,
“Anomalous positron excess from Lorentz-violating QED,”
Journal of High Energy Physics, vol. 909, p. 057, 2009.

[26] J. Alfaro, A. A. Andrianov, M. Cambiaso, P. Giacconi, and
R. Soldati, “Bare and induced lorentz and cpt invariance viola-
tions in qed,” International Journal of Modern Physics A,
vol. 25, no. 16, pp. 3271–3306, 2010.

[27] V. C. Zhukovsky, A. E. Lobanov, and E. M. Murchikova,
“Radiative effects in the standard model extension,” Physical
Review D, vol. 73, no. 6, article 065016, 2006.

[28] D. Colladay and V. A. Kostelecky, “CPT violation and the
standard model,” Physical Review D, vol. 55, p. 6760, 1997.

[29] D. Colladay and V. A. Kostelecky, “Lorentz-violating exten-
sion of the standard model,” Physical Review D, vol. 58, article
116002, 1998.

[30] S. Coleman and S. L. Glashow, “Cosmic ray and neutrino tests
of special relativity,” Physical Review D, vol. 405, no. 3-4,
pp. 249–252, 1997.

[31] S. Coleman and S. L. Glashow, “High-energy tests of Lorentz
invariance,” Physical Review D, vol. 59, no. 11, article 116008,
1999.

[32] V. A. Kosteleckỳ and N. Russell, “Data tables for Lorentz and
CPT violation,” Reviews of Modern Physics, vol. 83, no. 1,
pp. 11–31, 2011.

[33] P. Robles and F. Claro, “Can there be massive photons? A ped-
agogical glance at the origin of mass,” European Journal of
Physics, vol. 33, p. 1217, 2012.

[34] L. C. Tu, J. Luo, and G. T. Gillies, “The mass of the photon,”
Reports on Progress in Physics, vol. 68, no. 1, pp. 77–130, 2005.

[35] A. S. Goldhaber and M. M. Nieto, “Photon and graviton mass
limits,” Reviews of Modern Physics, vol. 82, p. 939, 2010.

[36] G. Spavieri, J. Quintero, G. T. Gillies, and M. Rodriguez,
“Atomic, molecular, optical and plasma physics,” European
Physical Journal D, vol. 61, p. 531, 2011.

[37] M. V. S. Fonseca and A. V. Paredes, “Is it possible to accom-
modate massive photons in the framework of a gauge-
invariant electrodynamics?,” Brazilian Journal of Physics,
vol. 40, p. 319, 2010.

[38] J.-J. Wei and X.-F. Wu, “Robust limits on photon mass from
statistical samples of extragalactic radio pulsars,” Journal of Cos-
mology and Astroparticle Physics, vol. 2018, no. 7, p. 045, 2018.

[39] L. Shao and B. Zhang, “Bayesian framework to constrain the
photon mass with a catalog of fast radio bursts,” Physical
Review D, vol. 95, no. 12, article 123010, 2017.

[40] L. Bonetti, J. Ellis, N. E. Mavromatos, A. S. Sakharov, E. K. Sar-
kisyan-Grinbaum, and A. D. A. M. Spallicci, “FRB 121102
casts new light on the photon mass,” Physics Letters B,
vol. 768, pp. 326–329, 2017.

[41] Y.-P. Yang and B. Zhang, “Tight constraint on photon mass
from pulsar spindown,” The Astrophysical Journal, vol. 842,
no. 1, p. 23, 2017.

8 Advances in High Energy Physics



[42] J.-J. Wei, E.-K. Zhang, S.-B. Zhang, and X.-F. Wu, “New limits
on the photon mass with radio pulsars in the Magellanic
Clouds,” Research in Astronomy and Astrophysics, vol. 17,
no. 2, p. 13, 2017.

[43] B. Zhang, Y.-T. Chai, Y.-C. Zou, and X.-F. Wu, “Constraining
the mass of the photon with gamma-ray bursts,” Journal of
High Energy Astrophysics, vol. 11-12, pp. 20–28, 2016.

[44] L. Bonetti, J. Ellis, N. E. Mavromatos, A. S. Sakharov, E. K. G.
Sarkisyan-Grinbaum, and A. D. A. M. Spallicci, “Photon mass
limits from fast radio bursts,” Physics Letters B, vol. 757,
pp. 548–552, 2016.

[45] X. F. Wu, S. B. Zhang, H. Gao et al., “Constraints on the pho-
ton mass with fast radio bursts,” The Astrophysical Journal Let-
ters, vol. 822, p. L15, 2016.

[46] A. Retinò, A. D. A. M. Spallicci, and A. Vaivads, “Solar wind
test of the de Broglie-Proca massive photon with Cluster
multi-spacecraft data,” Astroparticle Physics, vol. 82, p. 49,
2016.

[47] Particle Data Group, “Review of particle physics,” Physical
Review D, vol. 98, no. 3, article 030001, 2018.

[48] D. D. Ryutov, “The role of finite photon mass in magnetohy-
drodynamics of space plasmas,” Plasma Physics and Controlled
Fusion, vol. 39, no. 5A, pp. A73–A82, 1997.

[49] D. D. Ryutov, “Using plasma physics to weigh the photon,”
Plasma Physics and Controlled Fusion, vol. 49, no. 12B,
pp. B429–B438, 2007.

[50] L. Davis, A. S. Goldhaber, andM. M. Nieto, “Limit on the pho-
ton mass deduced from Pioneer-10 observations of Jupiter's
magnetic field,” Physical Review Letters, vol. 35, p. 1402, 1975.

[51] G. Chibisov, “Astrophysical upper limits on the photon rest
mass,” Uspekhi Fizicheskikh Nauk, vol. 119, no. 7, p. 551, 1976.

[52] L. Bonetti, L. R. dos Santos Filho, J. A. Helayël-Neto, and A. D.
A. M. Spallicci, “Effective photon mass by Super and Lorentz
symmetry breaking,” Physics Letters B, vol. 764, pp. 203–206,
2017.

[53] L. Bonetti, L. R. dos Santos, J. A. Helayël-Neto, and A. D. A. M.
Spallicci, “Photon sector analysis of Super and Lorentz sym-
metry breaking: effective photon mass, bi-refringence and dis-
sipation,” European Physical Journal C: Particles and Fields,
vol. 78, no. 10, p. 811, 2018.

[54] M. M. Ferreira, J. A. Helayël-Neto, C. M. Reyes, M. Schreck,
and P. D. S. Silva, “Unitarity in Stückelberg electrodynamics
modified by a Carroll-Field-Jackiw term,” Physics Letters B,
vol. 804, article 135379, 2020.

[55] G. Gabadadze and L. Grisa, “Lorentz-violating massive gauge
and gravitational fields,” Physics Letters B, vol. 617, p. 124,
2005.

[56] G. Dvali, M. Papucci, and M. D. Schwartz, “Infrared Lorentz
violation and slowly instantaneous electricity,” Physical Review
Letters, vol. 94, article 191602, 2005.

[57] B. Altschul, “Radiatively induced Lorentz-violating photon
masses,” Physical Review D, vol. 73, article 036005, 2006.

[58] M. Cambiaso, R. Lehnert, and R. Potting, “Massive photons
and Lorentz violation,” Physical Review D, vol. 85, article
085023, 2012.

[59] B. Altschul, “Lorentz violation and the Higgs mechanism,”
Physical Review D, vol. 86, article 045008, 2012.

[60] H. G. Fargnoli, L. C. T. Brito, A. P. Baêta Scarpelli, and
M. Sampaio, “Dual embedding of extended models with a
Lorentz-breaking mass term,” Physical Review D, vol. 90,
no. 8, article 085016, 2014.

[61] J. C. C. Felipe, H. G. Fargnoli, A. P. Baêta Scarpelli, and L. C. T.
Brito, “Consistency of an alternative CPT-odd and Lorentz-
violating extension of QED,” International Journal of Modern
Physics A, vol. 34, no. 25, article 1950139, 2019.

[62] D. J. Toms“Quantization of the minimal and non-minimal
vector field in curved space,” http://arxiv.org/abs/:1509.05989.

[63] I. L. Buchbinder, T. P. Netto, and I. L. Shapiro, “Massive vector
field on curved background: nonminimal coupling, quantiza-
tion, and divergences,” Physical Review D, vol. 95, no. 8, article
085009, 2017.

[64] M. S. Ruf and C. F. Steinwachs, “Renormalization of general-
ized vector field models in curved spacetime,” Physical Review
D, vol. 98, article 025009, 2018.

[65] C. Garcia-Recio and L. L. Salcedo, “Renormalization of vector
fields with mass-like coupling in curved spacetime,” European
Physical Journal C: Particles and Fields, vol. 79, no. 5, p. 438,
2019.

[66] E. C. G. Stueckelberg, “Interaction energy in electrodynamics
and in the field theory of nuclear forces,” Helvetica Physica
Acta, vol. 11, pp. 225–244, 1938.

[67] E. C. G. Stueckelberg, “Forces of interaction in electrodynam-
ics and in the field theory of nuclear forces.(parts ii and iii),”
Helvetica Physica Acta, vol. 11, p. 299, 1938.

[68] B. Körs and P. Nath, “A Stueckelberg extension of the standard
model,” Physics Letters B, vol. 586, p. 366, 2004.

[69] H. Ruegg and M. Ruiz-Altaba, “The stueckelberg field,” Inter-
national Journal of Modern Physics A, vol. 19, pp. 3265–3347,
2004.

[70] R. Casana, M. M. Ferreira Jr., and R. P. M. Moreira, “Consis-
tency analysis of a nonbirefringent Lorentz-violating planar
model,” The European Physical Journal C, vol. 72, article
2070, 2012.

[71] M. Veltman, “Quantum theory of gravitation,” in Methods in
Field Theory, R. Bailian and J. Zinn-Justin, Eds., North-Hol-
land Publising Company and World Scientific Publising Co
Ltd, Singapore, 1981.

[72] A. Ilha and C. Wotzasek, “Duality equivalence between self-
dual and topologically massive non-abelian models,” Nuclear
Physics B, vol. 604, p. 426, 2001.

[73] M. A. Anacleto, A. Ilha, J. R. S. Nascimento, R. F. Ribeiro, and
C. Wotzasek, “Dual equivalence between self-dual and Max-
well–Chern–Simons models coupled to dynamical U(1)
charged matter,” Physics Letters B, vol. 504, p. 268, 2001.

[74] D. Z. Freedman, P. van Nieuwenhuizen, and S. Ferrara, “Prog-
ress toward a theory of supergravity,” Physical Review D,
vol. 13, no. 12, pp. 3214–3218, 1976.

[75] S. Ferrara, D. Z. Freedman, P. van Nieuwenhuizen,
P. Breitenlohner, F. Gliozzi, and J. Scherk, “Scalar multiplet
coupled to supergravity,” Physical Review D, vol. 15, no. 4,
pp. 1013–1018, 1977.

[76] S. Ferrara, J. Scherk, and P. van Nieuwenhuizen, “Locally
Supersymmetric Maxwell-Einstein Theory,” Physical Review
Letters, vol. 37, no. 16, pp. 1035–1037, 1976.

9Advances in High Energy Physics

http://arxiv.org/abs/:1509.05989

	Residual Gauge Invariance in a Massive Lorentz-Violating Extension of QED
	1. Introduction
	2. General Discussions on the Model
	3. Field Equations
	4. Tree-Level Unitarity Analysis
	4.1. The Cases pz=±t
	4.2. The Cases pz=±ρ−2/ρt

	5. The Residual Gauge Invariance
	6. Conclusion
	Data Availability
	Conflicts of Interest
	Acknowledgments

