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Within the framework of the Becchi-Rouet-Stora-Tyutin (BRST) formalism, we discuss the full set of proper BRST and anti-BRST
transformations for a 2D diffeomorphism invariant theory which is described by the Lagrangian density of a standard bosonic
string. The above (anti-)BRST transformations are off-shell nilpotent and absolutely anticommuting. The latter property is
valid on a submanifold of the space of quantum fields where the 2D version of the universal (anti-)BRST invariant Curci-
Ferrari (CF) type of restrictions is satisfied. We derive the precise forms of the BRST and anti-BRST invariant Lagrangian
densities as well as the exact expressions for the conserved (anti-)BRST and ghost charges. The lucid derivation of the proper
anti-BRST symmetry transformations and the emergence of the CF-type restrictions are completely novel results for our
present bosonic string which has already been discussed earlier in literature where only the BRST symmetry transformations
have been pointed out. We briefly mention the derivation of the CF-type restrictions from the modified version of the Bonora-
Tonin superfield approach, too.

1. Introduction

One of the most exciting and captivating areas of research in
theoretical high energy physics (THEP), over the last few
decades, has been the subject of (super)strings and related
extended objects (see, e.g., [1–4] for details). This is due to
the fact that, in one stroke, these theories provide a possible
scenario of unification of all the fundamental interactions of
nature and a promising candidate for the precise theory of
quantum gravity. The modern developments in the realm
of (super)strings have influenced many other areas of
research in THEP, e.g., noncommutative field theories,
higher p-form (p = 2, 3, 4,⋯) gauge theories, higher spin
gauge theories, supersymmetric gauge theories and related
mathematics, gauge-gravity duality, and AdS/CFT corre-
spondence. The quantization of these (super)string theories
have led us to imagine a higher dimensional view of the
physical world we live in. It has been established that one
cannot consistently quantize the dual-string theory [5]
unless the space-time dimension is D = 26 and the intercept

(α0) of the leading Regge trajectory is α0 = 1. These results
have been obtained and formally established from many dif-
ferent considerations like the requirement of the validity of
proper Lorentz algebra, unitarity requirements of these
string theories, nilpotency of the Becchi-Rouet-Stora-Tyutin
(BRST) charge, etc. In this context, one of the earliest
attempts to covariantly quantize a bosonic string theory,
within the framework of BRST formalism, was undertaken
by Kato and Ogawa [6] where the 2D diffeomorphism sym-
metry of this theory was exploited.

In the above work [6], it is precisely the infinitesimal ver-
sion of the 2D classical diffeomorphism symmetry invari-
ance of the theory that has been primarily exploited to
perform the BRST quantization where only the BRST sym-
metries have been discussed. However, there is no discussion
about the anti-BRST symmetries and related Curci-Ferrari-
(CF-) type restrictions which are the hallmarks of a properly
BRST quantized theory. In this work [6], the inverse of the
metric tensor has been taken in such a manner that the con-
formal anomaly does not spoil the BRST analysis. In fact, the
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inverse of the metric tensor has been decomposed such that
it has three independent degrees of freedom to begin with. A
Lagrange multiplier field density has been incorporated into
the 2D Lagrangian density so that the equation of motion
w.r.t. it puts a restriction on the determinant of the above
metric tensor. The latter condition reduces the independent
degrees of freedom of the metric tensor from three to two.
The BRST charge has been calculated in the flat limit where
the metric tensor becomes Minkowskian in nature (see, e.g.,
[6] for more details). The nilpotency requirement of this
BRST charge leads to the derivation of D = 26 and α0 = 1.
One of the central theme of our present investigation is to
focus on the existence of (i) the proper anti-BRST symme-
tries (corresponding to the BRST transformations taken in
[6]) and (ii) the (anti-)BRST invariant CF-type of restric-
tions which are responsible for the absolute anticommutativ-
ity of the nilpotent (anti-)BRST symmetry transformations.
We have taken a very modest step in this direction, in our
present endeavor.

We have performed the full BRST analysis of the above
theory [6] in the sense that we have derived the proper
anti-BRST symmetry transformations corresponding to the
BRST symmetry transformations that have been taken into
account in [6]. The BRST and anti-BRST symmetry trans-
formations are found to be off-shell nilpotent and absolutely
anticommuting in nature. The latter property has been
shown to be true on a submanifold of the quantum Hilbert
space of quantum fields where the CF-type restrictions (20)
(see below) are satisfied. We observe that these restrictions
are BRST as well as anti-BRST invariant thereby implying
that these are physical restrictions (which can be imposed
from outside on our present theory). We have derived, in
our present endeavor, the BRST and anti-BRST invariant
Lagrangian densities and have shown explicitly their BRST
and anti-BRST invariance. The conserved charges of the the-
ory have been computed in the flat limit where A0 = A1 = 0,
A2 = 1 (compare Equation (4)). In fact, the latter conditions
imply that the metric tensor of the theory transforms as ~gab

⟶ ηab where ηab is the flat metric of the 2D Minkowski
space (which is nothing but the 2D surface traced out by
the propagation of the bosonic string). We have also estab-
lished that the standard algebra between the ghost charge
and BRST charge (as well as between the ghost charge and
anti-BRST charge) is satisfied. We have commented, very
briefly, on the nilpotency properties of the BRST and anti-
BRST charges which are true at the quantum level only when
D = 26 and α0 = 1 provided we take into account the normal
mode expansions of the fields (consistent with the appropri-
ate boundary conditions) and substitute them in the compu-
tation and proof of nilpotency: Q2

B = 1/2 fQB,QBg = 0 and
�Q2
B = 1/2 f�QB, �QBg = 0.
The main motivating factors behind our present investi-

gation are as follows. First, in the BRST description [6] of the
present bosonic string, only the BRST transformations have
been discussed corresponding to the infinitesimal diffeo-
morphism symmetry transformation of the theory. The nil-
potent anti-BRST symmetry transformations have remained
untouched in [6]. Thus, it is important for us to discuss the

BRST as well as anti-BRST symmetry transformations
together for the complete BRST analysis of our present the-
ory. We have accomplished this goal in our present
endeavor. Second, in the BRST description of Kato and
Ogawa [6], the auxiliary fields have been modified/redefined
in a very complicated fashion to simplify the theoretical
analysis of the present theory. There are, however, no basic
physical arguments to support such kinds of modifications/
redefinitions. We have, in our present endeavor, not invoked
any such kind of modifications/redefinitions as our analysis
is very straightforward. Third, the hallmark of a quantum
theory, discussed within the framework of BRST formalism,
is the existence of the (non)trivial Curci-Ferrari- (CF-) type
restrictions. We have derived such restrictions in our present
endeavor which ensure the absolute anticommutativity of
the (anti-)BRST symmetry transformations. Finally, our
present work is important because, for this model, the
recently developed superfield approach [7] would be very
useful as our theory is diffeomorphism invariant. We hope
that the application of this superfield formalism [7] would
shed some new light on some specific aspects of our present
theory (as far as the symmetries are concerned). In Appen-
dix D, we have briefly discussed the applications of this
superfield approach which has been christened by us as the
modified version of the Bonora-Tonin superfield approach
(MBTSA).

Our present paper is organized as follows. To set up the
notations and convention, we discuss very briefly the diffeo-
morphism symmetry as well as the corresponding BRST
approach in Section 2 which has been performed in [6]. Sec-
tion 3 is devoted to the discussion of BRST and anti-BRST
symmetries where we also point out the existence of the
2D version of the universal CF-type restrictions. We prove
the (anti-)BRST invariance of this restriction, and we dem-
onstrate the nilpotency as well as the absolute anticommuta-
tivity of the (anti-)BRST symmetry transformations. We
derive the explicit form of the BRST as well as anti-BRST
invariant Lagrangian densities in Section 4. The conserved
charges, corresponding to the continuous internal symme-
tries of the theory, are derived in Section 5, in the flat limit.
Finally, we make some concluding remarks on our present
investigation in Section 6 and point out a few future direc-
tions for further investigations.

In Appendices A, B, and C, we incorporate some of the
algebraic expressions as well as equations that have been
used in the main body of our text. In Appendix D, we con-
cisely discuss the derivation of the CF-type restrictions by
using the modified version of the Bonora-Tonin superfield
approach (MBTSA) to BRST formalism.

2. Preliminary: Diffeomorphism and
BRST Invariance

We begin with the Lagrangian density of a bosonic string
theory as (see, e.g., [6] for details):

L0 = −
1
2k ~gab∂aX

μ ∂b Xμ + E det ~g + 1ð Þ, ð1Þ
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where ~gab = ffiffiffiffiffiffi−gp
gab has two independent degrees of free-

dom because det ~g = −1 due to the equation of motion
w.r.t. the Lagrange multiplier field E which happens to be a
scalar density (compare Equation (3)). Here, the 2D surface,
traced out by the propagation of the bosonic string, is
parameterized by ξa = ðξ0, ξ1Þ ≡ ðτ, σÞ where a = 0, 1, and
component parameters (τ, σ) satisfy −∞ < τ < +∞ and 0 ≤
σ ≤ π. The string coordinates XμðξÞ (with μ = 0, 1, 2, 3,⋯,
D − 1) are in the D-dimensional flat Minkowskian space-
time manifold and ~gab = ffiffiffiffiffiffi−gp

gab is the metric tensor con-
structed with the determinant (g = det gab) and inverse
(gab) of the metric tensor gab of the 2D parameter space.
Under the infinitesimal diffeomorphism transformations ξa

⟶ ξa − εaðξÞ, we have the following transformations ðδεÞ
on the relevant fields of our present bosonic string theory,
namely

δεX
μ = εa∂aX

μ, δεE = ∂a εaEð Þ, δε det ~gð Þ = εa∂a det ~gð Þ, ð2Þ

δε~g
ab = ∂m εm ~gab

� �
− ∂mε

að Þ~gmb − ∂mε
b

� �
~gam, ð3Þ

where εaðξÞ are the infinitesimal diffeomorphism transforma-
tion parameters. The above transformations leave the Lagrang-
ian density (1) quasi-invariant (i.e., δε L0 = ∂a ðεa L0Þ). This
demonstrates that the action integral S = Ð d2ξ L0 ≡

Ð +∞
−∞ dτÐ π

0 dσ L0 remains invariant under the diffeomorphism trans-
formations (2) provided the boundary conditions εaðξÞ = 0
at σ = 0 and σ = π are imposed on the diffeomorphism
parameter εaðξÞ. It will be noted that we differ from [6]
by an overall sign factor in the diffeomorphism transforma-
tions (2) and BRST transformations (11) (see below)
because we have chosen the infinitesimal diffeomorphism
transformation ξa ⟶ ξa − εaðξÞ, whereas the same transfor-
mation has been taken as ξa ⟶ ξa + εaðξÞ in [6]. We choose
the Latin indices a, b, c,⋯, l,m, n,⋯ = 0, 1 to denote τ and σ
directions on the 2D surface (traced out by the propagation of
the bosonic string), and the Greek indices μ, ν, λ,⋯ = 0, 1, 2,
⋯,D − 1 stand for the spacetime directions of the D-dimen-
sional flat Minkowskian space-time manifold corresponding
to the target space. The above 2D surface is embedded in the
D-dimensional Minkowskian flat target space (which turns
out to be 26 at the quantum level). Throughout the whole body
of our text, we denote the BRST and anti-BRST symmetry
transformations by the symbols sB and �sB, respectively. We
adopt the convention of left-derivative w.r.t. the fermionic
fields (Ca, �Ca, etc.) of our present theory. Consistent with this
convention, the Noether conserved currents in Equations
(25) and (26) are defined (see below).

The original Lagrangian density, −ð1/2kÞ ffiffiffiffiffiffi−gp
gab ∂a Xμ

∂b Xμ (with k as the string tension parameter) is endowed
with the local conformal invariance. However, this confor-
mal invariance is broken by the conformal anomaly [8, 9]
if we regularize the system in a gauge-invariant manner.
We have avoided this problem by taking ~gab = ffiffiffiffiffiffi−gp

gab as
the metric tensor of our present theory [6] with three inde-
pendent degrees of freedom to start with. The EoM w.r.t. E

(i.e., det ~g = −1) reduce the independent degrees of freedom
of the above specifically defined metric tensor from three to
two. For the BRST quantization of the Lagrangian density
(1), we have to invoke the gauge-fixing conditions. This
can be achieved if we take the following decomposition for
the metric tensor ~gab (see, e.g., [6])

~gab =
A1 + A2 A0

A0 A1 − A2

 !
, ð4Þ

and set the gauge-fixing conditions A0 = A1 = 0 so that we
obtain det ~g = −A2

2 = −1: This shows that, for the choice
A2 = 1, we obtain the flatness condition ~gab ⟶ ηab with
the signatures (+1, -1). By exploiting the standard tech-
niques of the BRST formalism [10, 11], we obtain the
gauge-fixing and Faddeev-Poppov ghost terms for the
theory, in the language of the nilpotent (s2B = 0) BRST trans-
formations sB, as (see, e.g., [10, 11] for details)

LGF + LFP = sB −i �C0A0 − i �C1A1
� �

, ð5Þ

where �C0 and �C1 are the antighost fields with ghost number
(-1). It will be noted that the transformations sB�C0 = i B0 and
sB�C1 = i B1 lead to the emergence of the Nakanishi-Lautrup-
type auxiliary fields of the theory as B0 and B1 and the nilpo-
tency requirements produce sBB0 = sBB1 = 0. A close look at
the transformations (2) and decomposition (3) leads to the
following BRST symmetry transformations for the compo-
nent gauge fields:

sBA0 = Ca ∂a A0 − ∂0 C
1 + ∂1 C

0� �
A1 − ∂0 C

1 − ∂1 C
0� �

A2,
ð6Þ

sBA1 = Ca ∂a A1 − ∂0 C
0 − ∂1 C

1� �
A2 − ∂1 C

0 + ∂0 C
1� �

A0,
ð7Þ

sBA2 = Ca ∂a A2 − ∂0 C
0 − ∂1 C

1� �
A1 − ∂1 C

0 − ∂0 C
1� �
A0,

ð8Þ
where we have taken the replacement ðεa ⟶ CaÞ which
implies that the infinitesimal diffeomorphism parameters
(εa, a = 0, 1) have been replaced by the fermionic ½ðCaÞ2 = 0,
Ca Cb + Cb Ca = 0� ghost fields Ca. As a consequence of this
replacement, we have the following BRST symmetry transfor-
mations vis-à-vis the transformations (2), namely

sBX
μ = Ca∂aX

μ, sBE = ∂a CaEð Þ, sB det ~gð Þ = εa∂a det ~gð Þ,
ð9Þ

sBC
a = Cb∂bC

a, sB�C
a = iBa, sBBa = 0, ð10Þ

sB~g
ab = ∂m Cm~gab

� �
− ∂mC

að Þ~gmb − ∂mC
b

� �
~gam, ð11Þ

where the transformation sB C
a = Cb ∂b Ca has been derived

from the requirement of the nilpotency condition (s2B X
μ = 0).
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With the inputs from (6) and (11), we obtain the BRST invari-
ant Lagrangian density (LB) from (5) and (1), modulo some
total derivatives, as

LB = L0 + B0A0 + B1A1 + i Ca∂a�C0 − �C0 ∂aC
að Þ�

− �C1 ∂0C
1 + ∂1C

0� ��
A0 + i Ca ∂a �C1 − �C1 ∂a C

að Þ�
− �C0 ∂0C

1 + ∂1C
0� ��

A1 − i �C0 ∂0 C
1 − ∂1 C

0� ��
+ �C1 ∂0C

0 − ∂1C
1� ��

A2:

ð12Þ

The Lagrangian density LB has been written, modulo
some total derivatives, in such a manner that BRST trans-
formations (6) could be implemented in a simple and
straightforward manner. The above full Lagrangian density,
under the flatness limit A0 = A1 = 0, A2 = 1, reduces to the
following Lagrangian density:

LB ⟶ L 0ð Þ
B = −

1
2κ ηab∂aXμ∂bXμ + E 1 − A2

2
� �

+ B0 A0

+ B1 A1 − i �C0 ∂0 C
1 − ∂1 C

0� �
+ �C1 ∂0 C

0 − ∂1 C
1� �� �

,
ð13Þ

which has been obtained in [6] after taking the help of the
redefinitions of the auxiliary fields in a complicated fashion.
In fact, these redefinitions are mathematical in nature, and
there are no physical arguments to support the specific
choices that have been made in [6] for the simplification
of the Lagrangian density in the flat space. We have
obtained (13) from (12) in a straightforward manner (with-
out any redefinitions/modifications, etc.). We would like to
point out that the flatness limit (i.e., A0 = A1 = 0, A2 = 1)
has been taken in all the terms of (12) except the gauge-
fixing terms (i.e., B0 A0 + B1 A1) and the Lagrange multiplier
term (i.e., E ð1 − A2

2Þ) because the EoM w.r.t. B0, B1, and E
imply the same thing (i.e., A0 = A1 = 0, A2 = 1) in the
straightforward fashion.

3. BRST and Anti-BRST Symmetries:
Key Features

It can be checked, in a straightforward fashion, that the
BRST symmetry transformations, quoted in (6) and (11),
are nilpotent of order two (i.e., s2B = 0). The proper anti-
BRST symmetry transformations, corresponding to the
BRST transformations (11), are

�sBX
μ = �Ca∂aX

μ,�sB�C
a = �Cb∂b�C

a,�sBCa = i�Ba, ð14Þ

�sBE = ∂a �CaE
� �

,�sB det ~gð Þ = �Ca∂a det ~gð Þ,�sB�Ba = 0, ð15Þ

�sB~g
ab = ∂m �Cm

~gab
� �

− ∂m�C
a� �
~gmb − ∂m�C

b
� �

~gam, ð16Þ

which are off-shell nilpotent (�s2B = 0) of order two. It will be
noted that we have invoked a new Nakanishi-Lautrup type
of auxiliary field �BaðξÞ in our theory. Thus, we observe that
the symmetry transformations (16), (11), and (6) satisfy

one (i.e., nilpotency) of the two sacrosanct properties (i.e.,
nilpotency and absolute anticommutativity) that have to be
satisfied by any proper (anti-)BRST symmetry transforma-
tions. We further note that the last entry of (9) can be writ-
ten in terms of A0, A1, A2 in the following form, namely

�sBA0 = �Ca ∂a A0 − ∂0 �C
1 + ∂1 �C

0� �
A1 − ∂0 �C

1 − ∂1 �C
0� �

A2,

ð17Þ

�sBA1 = �Ca ∂a A1 − ∂0 �C
0 − ∂1 �C

1� �
A2 − ∂1 �C

0 + ∂0 �C
1� �

A0,

ð18Þ

�sBA2 = �Ca ∂a A2 − ∂0 �C
0 − ∂1 �C

1� �
A1 − ∂1 �C

0 − ∂0 �C
1� �
A0:

ð19Þ
Thus, it is clear that the anti-BRST transformations for

A0, A1, A2 are exactly the same as Equation (6) with the
replacement Ca ⟶ �Ca.

We dwell a bit now on the absolute anticommutativity
property (i.e., fsB,�sBg = 0) of the (anti-)BRST symmetry
transformations (19), (16), (11), and (6). It turns out that
the requirement of fsB,�sBgXμ = 0 lead to the existence of
the following Curci-Ferrari- (CF-) type restrictions (which
are primarily two in numbers), namely

Ba + �Ba + i Cb∂b�C
a + �Cb∂bC

a
� �

= 0, a, b = 0, 1ð Þ: ð20Þ

It turns out that the above conditions (20) have to
be imposed to obtain the absolute anticommutativity
(i.e., fsB,�sBg = 0) property when all the relevant fields
of the whole theory are taken into account. For instance,
it can be checked that the requirement of fsB,�sBg E = 0 also
requires the validity of the CF-type restrictions (11). Further-
more, we obtain the following (anti-)BRST symmetry trans-
formations on the Nakanishi-Lautrup auxiliary fields BaðξÞ
and �BaðξÞ due to the requirement of the absolute anticommu-
tativity property (e.g., fsB,�sBgCa = 0 and fsB,�sBg �Ca = 0),
namely

sB�B
a = Cb∂b�B

a − �Bb∂bC
a, �sBBa = �Cb∂bB

a − Bb∂b�C
a
: ð21Þ

Interestingly, the above transformations also satisfy the
off-shell nilpotency property (i.e., s2B = 0,�s2B = 0) which is one
of the key requirements of a proper set of (anti-)BRST symme-
try transformations. Thus, we note that the (anti-)BRST sym-
metry transformations (21), (19), (16), (11), and (6) satisfy the
off-shell nilpotency (s2B =�s2B = 0) and absolute anticommuta-
tivity (fsB,�sBg = 0) on a submanifold in the 2D Hilbert space
of quantum fields where the CF-restrictions (20) are satisfied.

We would enumerate here some of the subtle features
associated with the CF-type restrictions (20) which are at
the heart of the absolute anticommutativity property of our
BRST and anti-BRST symmetry transformations. We note
that these 2D restrictions on the auxiliary and (anti-)ghost
fields are (anti-)BRST invariant quantity, namely
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�sB Ba + �Ba + i Cb ∂b �C
a + �Cb ∂b C

a
� �h i

= 0, ð22Þ

sB Ba + �Ba + i Cb ∂b �C
a + �Cb ∂b C

a
� �h i

= 0: ð23Þ

This demonstrates that the CF-type restrictions of our
present theory are physical (in some sense) and the subma-
nifold of the quantum fields in the Hilbert space defined by
it is physically relevant. This demonstrates that our (anti-
)BRST invariant theory is consistently defined on the
submanifold where the CF-type restrictions (20) are always
valid. In fact, on this submanifold alone, the BRST and
anti-BRST symmetry transformations have their own identi-
ties as they are linearly independent of each other (due to
their absolute anticommutativity). In the proof of (23), it is
obvious that we have taken into account the (anti-)BRST
transformations (21), (16), and (11) as well as the above
specific submanifold.

We end this section with the following remarks on the
nilpotency properties (i.e., s2B = 0,�s2B = 0) associated with the
BRST and anti-BRST symmetry transformations sB and �sB.
First of all, we note that s2B X

μ = 0 leads to the derivation of
sB C

a = Cb ∂b Ca where s2B C
a = 0 is also satisfied. In exactly

similar fashion, we obtain �sB �C
a = �Cb ∂b �C

a (where �s2B �C
a = 0)

from the requirement of nilpotency of the anti-BRST sym-
metry transformation on Xμ

field (�s2B X
μ = 0). The proof of

the nilpotency (i.e., s2B = 0,�s2B = 0) of the transformations sB
~gab and �sB ~g

ab (compare Equations (11) and (16)) is alge-
braically more involved. We have collected some of the
crucial expressions (as well as equations) in Appendix A
which establish the nilpotency (s2B ~g

ab = 0) of the BRST
transformations when they act on the metric tensor ~gab.
Ultimately, it turns out that s2B ~g

ab = 0 and �s2B ~g
ab = 0 are

indeed true. This proof, in turn, implies that the (anti-)BRST
transformations (compare Equations (6) and (19)) of the com-
ponent gauge fields (i.e., A0, A1, A2) of the metric tensor are
automatically nilpotent (i.e., s2B = 0,�s2B = 0) of order two (com-
pare Equation (6)).

4. (Anti-)BRST Invariant Lagrangian Densities

We have already mentioned the BRST invariant Lagrangian
densities (12) and (13) in the (non)flat limits. In our present
section, we establish their BRST invariance. The analogue of
the Lagrangian density (12) that remains invariant, under
the anti-BRST symmetry transformations (16), (19), and
(21), is as follows [10, 11]:

L�B = L0 +�sB i C0 A0 + i C1 A1½ �: ð24Þ

Using the explicit anti-BRST symmetry transformations
(16), (19), and (21), we obtain the following explicit form
of the anti-BRST invariant Lagrangian density L�B as

L�B = L0 − �B0A0 − �B1A1 + i C0 ∂a �C
a� �

+ ∂aC0ð Þ �Ca + C1 ∂0 �C
1 + ∂1 �C

0� �h i
A0

+ i C1 ∂a �C
a� �

+ ∂a C1ð Þ �Ca + C0 ∂0 �C
1 + ∂1 �C

0� �h i
A1

+ i C0 ∂0 �C
1 − ∂1 �C

0� �
+ C1 ∂0 �C

0 − ∂1 �C
1� �h i

A2,

ð25Þ

where some total derivative terms have been dropped as they
do not affect the dynamics of the theory. We shall take the
flatness condition ~gab ⟶ ηab in the language of restrictions
on the component gauge fields A0 = A1 = 0, A2 = 1 for the
full discussion of our theory within the framework of BRST
formalism. In the flat limit (i.e., A0 = A1 = 0, A2 = 1), the
above Lagrangian density (i.e., (56)), in its full blaze of glory,
is as follows:

L�B ⟶ L 0ð Þ
�B = −

1
2κ ηab∂aX

μ∂bXμ + E 1 − A2
2

� �
− �B0 A0 − �B1 A1

+ i C0 ∂0 �C
1 − ∂1 �C

0� �
+ C1 ∂0 �C

0 − ∂1 �C
1� �h i

,

ð26Þ

where the above limit has not been imposed on the gauge-
fixing terms (−�B0 A0 − �B1 A1) and the term ðE ð1 − A2

2ÞÞ with
the Lagrange multiplier field. We shall be calculating the
conserved charges of the theory from the Lagrangian densi-
ties (13) and (26) which are quoted in the flat limits (cf.
Section 5 for details).

To establish the explicit (anti-)BRST invariance of the
Lagrangian densities (12), (13), (25), and (26), we have to
apply the (anti-)BRST transformations on every term of
the above Lagrangian densities. This exercise is algebraically
more involved as one has to collect the terms containing
A0, A1, A2, B0, B1, separately and independently. In Appen-
dices B and C, we have collected these terms which appear
due to the applications of sB and �sB on the Lagrangian den-
sities LB and L�B, respectively. The explicit form of the BRST
transformations on the BRST invariant Lagrangian density
(7) (i.e., LB) is

sB LB = ∂a Ca L0 + B0 A0 + B1 A1ð Þ + i �C1 C
a ∂0 C

1 + ∂1 C
0� �

A0
�

+ i �C0C
b ∂b Ca A0ð Þ + i �C0 C

a ∂0 C
1 + ∂1 C

0� �
A1

+ i �C1C
b ∂b Ca A1ð Þ + i �C0 C

a ∂0 C
1 − ∂1 C

0� �
A2

+ i �C1 C
a ∂0 C

0 − ∂1 C
1� �

A2
�
:

ð27Þ

In exactly similar fashion, the anti-BRST transformation
acting on the anti-BRST invariant Lagrangian density L�B
produces the following explicit transformation:
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�sB L�B = ∂a �Ca L0 − �B0 A0 − �B1 A1
� �

− i C1 �C
a ∂0 �C

1 + ∂1 �C
0� �

A0
h

− i C0 �C
b ∂b �Ca A0

� �
− i C0 �C

a ∂0 �C
1 + ∂1 �C

0� �
A1

− i C1 �C
b ∂b �Ca A1

� �
− i C0 �C

a ∂0 �C
1 − ∂1 �C

0
� �

A2

− i C1 �C
a ∂0 �C

0 − ∂1 �C
1

� �
A2

i
:

ð28Þ

A close and careful look at (27) and (28) shows that we
can obtain (28) from (27) provided we make the replace-
ments B0 ⟶ �B0, B1 ⟶ �B1,A0 ⟶ −A0, A1⟶−A1, A2⟶
−A2, C0 ↔ �C0, C1 ↔ �C1. Now it is obvious that, in the flat
limit A0 = A1 = 0, A2 = 1 of the full Lagrangian densities
LB and L�B, we obtain the following BRST and anti-BRST

symmetry invariances for the Lagrangian densities Lð0ÞB

and Lð0Þ�B , namely

sB L
0ð Þ
B = ∂a Ca L0ð Þ + i �C0 C

a ∂0 C
1 − ∂1 C

0� �
+ i �C1 C

a ∂0 C
0 − ∂1 C

1� �� �
,

ð29Þ

�sB L
0ð Þ
�B = ∂a �Ca L0ð Þ − i C0 �C

a ∂0 �C
1 − ∂1 �C

0� �
− i C1 �C

a ∂0 �C
0 − ∂1 �C

1� �h i
:

ð30Þ
The total derivatives in (27), (28), (29), and (30) estab-

lish that the (anti-)BRST transformations (21), (19), (16),
(11), and (6) are the symmetries of the action integrals S

=
Ð
d2ξ LB, S =

Ð
d2ξ L�B, S =

Ð
d2ξ Lð0ÞB , and S =

Ð
d2ξ

Lð0Þ�B provided we use the proper boundary conditions on
the fields (and their derivatives) of the theory at σ = 0
and σ = π [6].

5. Conserved Charges: Continuous Symmetries

The BRST charge QB that has been computed in [6] is in the
flat limit (A0 = A1 = 0, A2 = 1) where the Lagrangian density

Lð0ÞB (compare Equation (13)) plays a pivotal role. First of all,

we note that the Lagrangian densities Lð0ÞB and Lð0Þ�B (compare
Equations (13) and (26)) respect the global ghost-scale
symmetry transformations

C0 ⟶ eΩ C0, �C0 ⟶ e−Ω �C0, C1 ⟶ eΩC1, �C1 ⟶ e−Ω �C1,
ð31Þ

where Ω is a global scale transformation parameter. For the
sake of brevity, we set Ω = 1 so that the infinitesimal version
(sg) of the above global scale symmetry transformations
reduce to the following transformations on the (anti)ghost
fields, namely

sg C0 = C0, sg �C0 = −�C0, sg C1 = C1, sg �C1 = −�C1: ð32Þ

Here, the subscript g denotes the infinitesimal ghost-

scale transformations (where Ω = 1). The ghost charges,

computed from Lð0ÞB and Lð0Þ�B , are as follows:

Qg =
ðπ
0
dσ J 0ð Þ

g ≡ −i
ðπ
0
dσ �C0 C1 − �C1 C0
� �

, ð33Þ

�Qg =
ðπ
0
dσ�J 0ð Þ

g ≡ −i
ðπ
0
dσ �C1 C0 − �C0 C1
� �

, ð34Þ

where Jð0Þg and �Jð0Þg are the zeroth component of the Noether
conserved currents (corresponding to the infinitesimal ghost

transformations (32)) that have been derived from Lð0ÞB and

Lð0Þ�B , respectively. However, the above charges are not inde-
pendent of each other. Rather, they differ by a sign factor
only (i.e., Qg = −�Qg). Using the following Euler-Lagrange

equations of motion that emerge out from Lð0ÞB , namely

∎Xμ = 0, A0 = A1 = B0 = B1 = 0, A2 = 1, E = 0, ∂0�C
0 + ∂1�C

1 = 0,
ð35Þ

∂0C
0 − ∂1C

1 = 0, ∂0C1 − ∂1C
0 = 0, ∂0�C

1 + ∂1�C
0 = 0,

ð36Þ

we observe that _Qg = i
Ð π
0 ð∂/∂σÞ ½�C1 C0 − �C0 C1� = 0 due to

the boundary conditions. This shows that the ghost charge
is conserved (i.e., _Qg = 0).

We now concentrate on the derivation of the BRST
charge QB and anti-BRST charge �Q�B from the Lagrangian

densities Lð0ÞB and Lð0Þ�B , respectively. Taking into account
the basic concepts behind the Noether theorem, we note that

QB =
Ð π
0 dσ Jð0ÞB , �QB =

Ð π
0 dσ

�Jð0ÞB where Jð0ÞB and �Jð0ÞB are the
zeroth components of the Noether conserved currents (cor-
responding to the BRST and anti-BRST symmetry transfor-

mations) computed from the Lagrangian densities Lð0ÞB and

Lð0Þ�B , respectively. The explicit expressions for these currents,
derived from the above Lagrangian densities, are

J 0ð Þ
B = sB X

μð Þ ∂L 0ð Þ
B

∂ ∂0Xμð Þ + sB C
0� � ∂L 0ð Þ

B

∂ ∂0C0� � + sB C
1� � ∂L 0ð Þ

B

∂ ∂0C1� �
+ sB �C0
� � ∂L 0ð Þ

B

∂ ∂0�C0
� � + sB �C1

� � ∂L 0ð Þ
B

∂ ∂0�C1
� � − X0,

�J 0ð Þ
B = �sB X

μð Þ ∂L 0ð Þ
�B

∂ ∂0Xμð Þ + �sB C
0� � ∂L 0ð Þ

�B

∂ ∂0C0� � + �sB C
1� � ∂L 0ð Þ

�B

∂ ∂0C1� �
+ �sB �C0
� � ∂L 0ð Þ

�B

∂ ∂0�C0
� � + �sB �C1

� � ∂L 0ð Þ
�B

∂ ∂0�C1
� � − Y0,

ð37Þ

where the explicit expressions for X0 and Y0 are
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X 0ð Þ = C0 L0 + i �C0 C
0 ∂0C

1 − ∂1C
0� �

+ i �C1 C
0 ∂0C

0 − ∂1C
1� �
,

Y 0ð Þ = �C0 L0 − i C0 �C
0 ∂0�C

1 − ∂1�C
0

� �
− i C1 �C

0 ∂0�C
0 − ∂1�C

1
� �

:

ð38Þ

The above expressions are derived from Equations (29)
and (30) which are nothing but the zeroth components of
the expressions that have been quoted in the square brackets.
Finally, we obtain the following expressions for the con-
served BRST and anti-BRST charges (QB and �QB) from the

Lagrangian densities Lð0ÞB and Lð0Þ�B , namely

QB = −
ðπ
0
dσ

C0

2κ ∂0X
μ ∂0Xμ + ∂1X

μ ∂1Xμ

� �	

+ C1

2κ ∂0X
μ ∂1Xμ + ∂1X

μ ∂0Xμ

� �
+ i �C0 Ca ∂aC

1� �
+ i �C1 Ca ∂aC

0� �

,

ð39Þ

�QB = −
ðπ
0
dσ

�C0

2κ ∂0X
μ ∂0Xμ + ∂1X

μ ∂1Xμ

� �"

+
�C1

2κ ∂0X
μ ∂1Xμ + ∂1X

μ ∂0Xμ

� �
+ i C0 �Ca∂a�C

1� �
+ i C1 �Ca∂a�C

0� �#
,

ð40Þ

where we have used the Euler-Lagrange (EL) equations of
motion (EoM) (36) derived from the Lagrangian density

Lð0ÞB and the following EL-EoM that emerge from the

Lagrangian density Lð0Þ�B , namely

∎Xμ = 0, A0 = A1 = A2 − 1 = �B0 = �B1 = E = 0, ∂0�C
0 − ∂1�C

1 = 0,
ð41Þ

∂0�C
1 − ∂1�C

0 = 0, ∂0C1 + ∂1�C
0 = 0, ∂0�C

0 + ∂1�C
1 = 0:

ð42Þ
In fact, a close and careful look at the EL-EoM (36) and

(42) establishes the fact that X0 = Y0 = 0 on the on-shell
(because we substitute the EL-EoM into them).

The above charges QB and �QB are conserved. This can be
checked by exploiting the strength of the EL-EoM (36) and
(42) while we take into account the direct “time” derivative
of the above charges, namely

_QB = −
ðπ
0
dσ

∂
∂σ

C0

2κ ∂0X
μ ∂0Xμ + ∂1X

μ ∂1Xμ

� �	

+ C1

2κ ∂0X
μ ∂1Xμ + ∂1X

μ ∂0Xμ

� �
+ i �C0 Ca ∂aC

0� �
+ i �C1 Ca ∂aC

1� �

,

_�QB = −
ðπ
0
dσ

∂
∂σ

�C0

2κ ∂0X
μ ∂0Xμ + ∂1X

μ ∂1Xμ

� �"

+
�C1

2κ ∂0X
μ ∂1Xμ + ∂1X

μ ∂0Xμ

� �
+ i C0 �Ca ∂a�C

0� �
+ i C1 �Ca ∂a�C

1� �#
:

ð43Þ

The above expressions demonstrate that the BRST and
anti-BRST charges are conserved when we use the boundary
conditions at σ = 0 and σ = π on the appropriate fields and
their derivatives (see, e.g., [6] for details). Thus, we have
noted that there are three conserved charges (which corre-
spond to three continuous symmetries that are present) in
the theory. One can check, in a straightforward manner, that
the ghost charge obeys the standard algebra with the BRST
and anti-BRST charges. This can be checked in a simple
manner by computing the left hand side of the following
from (32), (34), (39), and (40), namely

sgQg = −i Qg,Qg

� �
= 0, sgQB = −i QB,Qg

� �
=QB, sg �QB = −i Qg, �QB

� �
= −�QB,

ð44Þ

which demonstrates that we have i ½Qg,QB� = +QB and i
½Qg, �QB� = −�QB. However, the proof of nilpotency of
the BRST and anti-BRST charges requires very careful com-
putations at the quantum level where the normal mode
expansions of the fields of our theory play very important
roles. In the paper by Kato and Ogawa [6], this exercise has
been performed, and it turns out that the nilpotency of the
BRST charge is true only when D = 26 and α0 = 1. It is
obvious that we shall get the same result if we check the
nilpotency of the anti-BRST charge at the quantum level with
the proper boundary conditions.

6. Conclusions

In our present investigation, we have been able to derive the
proper anti-BRST symmetry transformations corresponding
to the BRST transformations (that have been shown to be
present for the model of 2D diffeomorphism invariant
bosonic string theory [6]). The BRST and anti-BRST sym-
metry transformations are proved to be off-shell nilpotent
of order two. However, these symmetries are found to be
absolutely anticommuting only on a submanifold of the
Hilbert space of quantum fields that is characterized by the
2D field Equation (20). These latter equations are nothing
but the CF-type restrictions which are the hallmark of the
quantum diffeomorphism/gauge-invariant theories when
these theories are discussed within the framework of BRST
formalism. In fact, it is the existence of the CF-type restric-
tions that primarily imply that the BRST and anti-BRST
symmetries (and the corresponding conserved charges) have
their own identities. In the language of mathematics, they
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are linearly independent of each other (on a submanifold of
the quantum Hilbert space of fields) that is defined by the
CF-type restrictions (20).

We have derived, in our present endeavor, the explicit
and separate forms of BRST and anti-BRST invariant
Lagrangian densities, and we have demonstrated clearly
their transformation properties under the BRST and anti-
BRST symmetry transformations. Using the Noether theo-
rem, we have computed the conserved BRST, anti-BRST,
and ghost charges of the theory in the flat limit. In fact, in
the latter limit, the BRST charge has also been derived by
Kato and Ogawa [6]. We have shown that the standard
algebra is obeyed between the ghost charge and BRST
charge (as well as the ghost charge and anti-BRST charge).
The nilpotency (Q2

B = 0, �Q2
B = 0) of the BRST (QB) and

anti-BRST (�QB) charges has not been derived in our pres-
ent investigation as this requires the normal mode expan-
sion of the fields and their substitution in the expressions
for QB and �QB. In fact, the requirement of the nilpotency
of the BRST charge has led to the derivation of D = 26 and
α0 = 1 where D is the dimensionality of the target space-
time manifold and α0 is the intercept in the Regge trajec-
tory that is generated due to the concept of strings (see,
e.g., [6] for details).

We would like to comment a bit on the boundary
conditions that are to be imposed on the fields (and
the derivatives on them) in our present theory when we
demand the BRST as well as anti-BRST invariance of
the Lagrangian densities (12) and (25). For the BRST
invariance of the theory, the boundary conditions that
have been obtained in the work by Kato and Ogawa [6]
are ∂1 Xμ = 0, �C0 = 0, C1 = 0 at σ = 0 and σ = π. The BRST
invariance of the boundary condition C1 = 0 (at σ = 0 and
σ = π) leads to the further boundary condition as ∂0 C1

= 0 at σ = 0 and σ = π. The anti-BRST invariance, in
exactly similar manner, would lead to the boundary con-
ditions ∂1 Xμ = 0, C0 = 0, �C1 = 0 at σ = 0 and σ = π. The
anti-BRST invariance of the condition �C1 = 0 at σ = 0 and σ
= π implies that ∂0 �C1 = 0 (at σ = 0 and σ = π). Thus, the
normal mode expansions of the fields Xμðτ, σÞ, C0ðτ, σÞ, C1

ðτ, σÞ, �C0ðτ, σÞ, �C1ðτ, σÞ can be found in the same manner
as has been obtained in the work by Kato and Ogawa [6].
We have to be just careful that for the anti-BRST invariance;
the mode expansions in the ghost sector should be such that
the expansions are exchanged, namely Ca ⟷ �Ca. The
requirements of the nilpotency of QB and �QB would obvi-
ously produce the results D = 26 and α0 = 1:

We would like to mention that the BRST and anti-BRST
invariant Lagrangian densities (12) and (25) have been
derived in a straightforward manner by utilizing the gauge-
fixing A0 = A1 = 0 and the (anti-)ghost fields (compare
Equations (5) and (24)). However, if we compute the
Lagrangian densities in the Curci-Ferrari gauge [12, 13], that
would give due respect to the CF-type conditions that have
been derived in (20). We wish to devote time on the compu-
tation of the coupled Lagrangian densities (like the 4D non-
Abelian gauge theory [10–13]) which produce the CF-type
condition as the equations of motion. Furthermore, the

coupled Lagrangian densities should respect both the BRST
and anti-BRST symmetry transformations on the submani-
fold of the quantum Hilbert space of fields where the specific
quantum fields obey the CF-type restrictions (20). At pres-
ent, we are working in this direction, and our results would
be reported elsewhere.

In a very recent work [7], the superfield approach to
derive the proper (anti-)BRST symmetry transformations
for any general D-dimensional diffeomorphism invariant
theory has been developed (corresponding to its diffeo-
morphism symmetry invariance). It would be a very nice
future endeavor for us to apply the theoretical arsenals of
this superfield formalism [7] to our present bosonic string
model which is also a diffeomorphism invariant theory. In
fact, we hope that this superfield formalism would be able
to shed more light on the geometrical origin and interpreta-
tion of the (anti-)BRST symmetries and the CF-type restric-
tions (20) which we have obtained for our present theory. In
our earlier works on the Abelian 2-form and 3-form gauge
theories [14, 15], we have established the geometrical origins
and interpretations for the CF-type restrictions and their
intimate connections with the geometrical objects called
gerbes. It would be a challenging future endeavor for us to
establish the same type of connections for our present 2D
diffeomorphism invariant theory where the nontrivial CF-
type restrictions exist. We are presently involved with this
problem, and we plan to report about our progress in our
future publication(s) [16].

It is gratifying to state that we have already exploited the
beauty and strength of MBTSA in the cases of 1D diffeo-
morphism (i.e., reparametrization) invariant interesting
models of nonrelativistic free particle [17], scalar relativistic
particle [18], and spinning (i.e., SUSY) relativistic particle
[19] and established the universality of the 1D CF-type

restriction B + �B + ið�C _C − _�CCÞ = 0 in all the above non-
SUSY and SUSY systems of interest and obtained the proper
(anti-)BRST symmetry transformations corresponding to
the classical 1D diffeomorphism (i.e., reparameterization)
symmetry transformation. Here the (anti)ghost variables
ð�CÞC are the generalization of the infinitesimal reparame-
trization symmetry transformation parameter εðτÞ in the
transformation τ⟶ τ − εðτÞ where τ is an evolution
parameter (see, e.g., [17–19] for details). In our present
2D diffeomorphism invariant bosonic string theory, we

have found the CF-type restrictions as Ba + �Ba + ið�Cb∂bCa

+ Cb∂b�C
aÞ = 0 (with a, b, = 0, 1) which are, once again,

the limiting case of the MBTSA to D-dimensional diffeo-
morphism invariant theory where it has been shown [7,
20] that the CF-type restrictions Bμ + �Bμ + ið�Cρ∂ρCμ + Cρ

∂ρ�C
μÞ = 0 (with μ, ν, ρ⋯ = 0, 1, 2,⋯D − 1) are universal

for the SUSY and non-SUSY systems in any arbitrary dimen-
sion of space-time where the (anti)ghost fields ð�CμÞCμ are the
quantum generalizations of the infinitesimal D-dimensional
diffeomorphism transformation parameters εμðxÞ in the
transformations xμ ⟶ xμ − εμðxÞ. In the above discussions,
all the ð�BÞB fields, with appropriate index, are the
Nakanishi-Lautrup-type auxiliary fields.
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Appendix

A.1. Appendix A: On the Nilpotency
Property s2B ~g

ab = 0
We briefly sketch here a few essential steps that are needed
in the proof of s2B ~g

ab = 0. In this connection, we observe
the following:

s2B ~g
ab = sB ∂m Cmð Þ ~gab

h i
+ sB Cm ∂m ~gab

h i
− sB ∂m Cað Þ ~gmb

h i
− sB ∂m Cb

� �
~gam

h i
:

ð45Þ

The first term, after the application of the BRST transfor-
mations, looks in its full glory as

∂m Cnð Þ ∂n C
mð Þ ~gab + Cm ∂m ∂n C

nð Þ ~gab

− ∂m Cmð Þ ∂n C
nð Þ ~gab − ∂m Cmð ÞCn ∂n ~g

ab
� �

+ ∂m Cmð Þ ∂n C
að Þ ~gnb + ∂m Cmð Þ ∂n C

b
� �

~gan:

ð46Þ

In exactly similar fashion, the second term turns out
to be

Cn ∂n C
mð Þ ∂m ~gab
� �

− Cm ∂m ∂n C
nð Þ ~gab − Cm ∂n C

nð Þ ∂m ~gab
� �

− Cm ∂m Cnð Þ ∂n ~g
ab

� �
+ Cn ∂n C

að Þ ∂m ~gmb
� �

+ Cn ∂n C
b

� �
∂m ~ganð Þ + Cm ∂m ∂n C

að Þ ~gmb,

ð47Þ

where we have taken into account the fact that Cm Cn

ð∂m ∂n ~g
abÞ = 0. The third term, after the application of

the BRST transformations (6), (11), and (21), looks in
the following exact mathematical form

− ∂m Cnð Þ ∂n C
að Þ ~gmb − Cn ∂m ∂n C

að Þ ~gmb

+ ∂m Cað Þ ∂n C
nð Þ ~gmb + ∂m Cað ÞCn ∂n ~g

mb
� �

− ∂m Cað Þ ∂n C
mð Þ ~gnb − ∂m Cað Þ ∂n Cb

� �
~gmn:

ð48Þ

Finally, the fourth term can be explicitly expressed,
after the application of BRST transformations (6), (11),
and (21), as

− ∂m Cnð Þ ∂n C
b

� �
~gam − Cn ∂m ∂n C

b
� �

~gam

+ ∂m Cb
� �

∂n C
nð Þ ~gam + ∂m Cb

� �
Cn ∂n ~g

amð Þ
− ∂m Cb
� �

∂n C
mð Þ ~gan − ∂m Cb

� �
∂n C

að Þ ~gmn:

ð49Þ

It is evident that the following terms from (46),
(47), (48), and (49), namely

Cn ∂m ∂n C
mð Þ ~gab − Cm ∂m ∂n C

nð Þ ~gab

+ Cm ∂m ∂n C
að Þ ~gmbCm ∂m ∂n C

b
� �

~gan

− Cn ∂m ∂n C
að Þ ~gmb − Cm ∂m ∂n C

b
� �

~gan,

ð50Þ

cancel out with one another. Furthermore, the following
terms from (48) and (49)

− ∂m Cað Þ ∂n C
b

� �
~gmn − ∂m Cb

� �
∂n C

að Þ ~gmn, ð51Þ

cancel out with each other because of the antisymmetric
nature (Ca Cb + Cb Ca = 0) of the ghost fields (Ca) and the
symmetric nature (~gmn = ~gnm) of the metric tensor ~gmn.
The rest of the terms also cancel out by taking the help of
the exchange of dummy indices m⟷ n and the anticom-
muting nature of the ghost fields. Finally, we find that the fol-
lowing terms, from the sum of (46), (47), (48), and (49),
remain left out at the end, namely

∂n C
mð Þ ∂m Cnð Þ − ∂m Cmð Þ ∂n C

nð Þ½ � ~gab: ð52Þ

The terms in the square bracket turn out to be individu-
ally equal to zero when we take the sum overm, n = 0, 1. This
establishes the nilpotency (s2B = 0) of sB when it acts on ~gab.

A.2. Appendix B: On the BRST Symmetry
Invariance of LB

We collect here all the terms that are generated due to the
application of BRST symmetry transformations (sB) on LB
(compare Equation (12)). It is straightforward to note that
sB L0 = ∂a ðCa L0Þ. We assemble, first of all, the terms that
contain B0 and B1 fields due to the application of sB on
all the terms that are present in LB. These terms with B0
field are

Ca ∂a B0ð ÞA0 + B0 C
a ∂a A0ð Þ − B0 ∂0C

1 + ∂1C
0� �

A1

− B0 ∂0C
1 − ∂1C

0� �
A2 − B0 ∂1C

0� �
A2 + B0 ∂0C

1� �
A2

+ B0 ∂1C
0� �

A1 + B0 ∂0C
1� �

A1 + B0 ∂aC
að ÞA0:

ð53Þ

Similarly, the terms containing B1 fields are as follows:

B1 C
a ∂aA1ð Þ − B1 ∂aC

að ÞA2 + B1 ∂1C
1� �

A2 − B1 ∂1C
0� �

A0

+ B1 ∂aC
að ÞA1 − B1 ∂0C

1� �
A0 − B1 ∂1C

1� �
A2

+ B1 ∂0C
0� �
A2 + B1 ∂0C

1� �
A0 + B1 ∂1C

0� �
A0

+ Ca ∂aB1ð ÞA1:

ð54Þ

It is clear that if we sum these terms (i.e., (53) and
(54)) carefully with sB L0 = ∂a ðCa L0Þ, they lead to the
sum of the following total derivative:
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∂a Ca L0 + B0 A0 + B1 A1ð Þ½ �: ð55Þ

Thus far, we have obtained the total derivative from
the original Lagrangian density (1) and terms that contain
necessarily the Nakanishi-Lautrup auxiliary fields B0 and
B1. It is straightforward to note that the original Lagrang-
ian density (1) respects the classical 2D diffeomorphism
symmetry transformations that have been pointed out in
Section 2. Thus, it is crystal clear that it will respect the
BRST symmetry transformation where the classical diffeo-
morphism transformation parameter εa is replaced by the
quantum ghost field Ca. This is why we have sBL0 = ∂a
½CaL0� which is explicitly present in Equation (55).

We now collect the terms that incorporate A2 after the
application of sB on LB (compare Equation (12)). These use-
ful terms are as follows:

i �C1 ∂1 C
1� �
Ca ∂a A2ð Þ − i Ca ∂a �C0

� �
∂0 C1 − ∂1 C

0� �
A2

− i �C1 ∂0 C
0� �
Ca∂a A2 + i �C0 ∂1 C

0� �
Ca ∂a A2ð Þ

− i �Co ∂0 C
1� �
Ca ∂a A2ð Þ + i �C1 ∂a C

að Þ ∂0 C
0 − ∂1 C

1� �
A2

− i Ca ∂a �C1
� �

∂0 C
0 − ∂1 C

1� �
A2 + i �C0 ∂a C

að Þ ∂0 C
1 − ∂1 C

0� �
A2

− i �C1 C
a ∂a ∂1 C

1� �
A2 + i �C1 ∂0 C

1� �
∂0 C

1 − ∂1 C
0� �

A2

+ i �C1 ∂1 C
0� �

∂0 C
1 − ∂1 C

0� �
A2 − i �C1 ∂1 C

að Þ ∂a C
1� �

A2

− i �C1 ∂0 C
að Þ ∂a C

0� �
A2 + i �C1 C

a ∂a ∂0 C
0� �

A2

+ i �C0 ∂0 C
1� �

∂0 C
0 − ∂1 C

1� �
A2 − i �C0 ∂1 C

að Þ ∂a C
0� �

A2

− i �C0 C
a ∂a ∂1 C

0� �
A2 + i �C0 ∂0 C

að Þ ∂a C
1� �

A2

+ i �C0 C
a ∂a ∂0 C

1� �
A2 + i �C0 ∂1 C

0� �
∂0 C

0 − ∂1 C
1� �
A2:

ð56Þ

It is very interesting to note that all these terms, after
many surprising cancellations, sum up to yield a total
derivative as

∂a i �C0 C
a ∂0 C

1 − ∂1 C
0� �
A2 + i �C1 C

a ∂0 C
0 − ∂1 C

1� �
A2

� �
:

ð57Þ

We now concentrate on all the terms that contain A0
which emerge from the application of sB on the relevant
terms of the Lagrangian density LB. These are as follows

i �C1 ∂0 C
0� �

∂1 C
0 − ∂0 C

1� �
A0 − i �C1 ∂1 C

1� �
∂1 C

0 − ∂0 C
1� �
A0

− i �C0 ∂1 C
0� �

∂1 C
0 − ∂0 C

1� �
A0 + i �C0 ∂0 C

1� �
∂1 C

0 − ∂0 C
1� �

A0

+ i �C0 ∂1 C
0� �

∂1 C
0 + ∂0 C

1� �
A0 + i �C0 ∂0 C

1� �
∂1 C

0 + ∂0 C
1� �

A0

+ i �C1 C
a ∂1 ∂a C

0� �
A0 − i �C1 ∂1 C

0� �
Ca ∂a A0

+ i �C1 ∂0 C
að Þ ∂a C

1� �
A0 + i �C1 C

a ∂0 ∂a C
1� �

A0

− i �C1 ∂0 C
1� �
Ca ∂a A0 + i �C0 ∂a C

b
� �

∂b C
að ÞA0

+ i �C0 C
b ∂b ∂a C

að ÞA0 − i �C0 ∂a C
að ÞCb ∂b A0

+ i �Cb ∂b C
að Þ ∂a �C0
� �

A0 + i Ca ∂a �C0
� �

Cb ∂b A0

+ i �C1 ∂1 C
að Þ ∂a C

0� �
A0:

ð58Þ

It is amazing to find out that the sum of the above

terms, after some miraculous cancellations, yields a total
derivative as

∂a i �C1 C
a ∂0 C

1 + ∂1 C
0� �
A0 + i �C0 C

b ∂b Ca A0ð Þ
h i

: ð59Þ

Now, at the far end, we have only one option left out.
As a consequence, ultimately, we focus on the terms that
necessarily incorporate A1 field after the application of
the BRST transformation sB on the Lagrangian density
(12). These terms are

i �C0 ∂a C
að Þ ∂0 C

1 + ∂1 C
0� �
A1 + i �C1 C

b ∂b ∂a C
a A1

− i �C1 ∂a C
að ÞCb ∂b A1 + i Cb ∂b C

a ∂a �C1
� �

A1

+ i Cb ∂b �C1
� �

Ca ∂a A1 − i �C0 ∂0 C
1� �
Ca ∂a A1

+ i �C1 ∂a C
b

� �
Ca ∂a A1 − i �C0 ∂1 C

0� �
Ca ∂a A1

+ i �C0 C
a ∂0 ∂a C

1� �
A1 − i �C1 ∂1 C

1� �
∂0 C

0 − ∂1 C
1� �
A1

+ i �C1 ∂0 C
0� �

∂0 C
0 − ∂1 C

1� �
A1

− i �C0 ∂1 C
0� �

∂0 C
0 − ∂1 C

1� �
A1

+ i �C0 ∂0 C
1� �

∂0 C
0 − ∂1 C

1� �
A1 − i �C0 ∂1 C

að Þ ∂a C
0� �

A1

+ i �C0 C
a ∂1 ∂a C

0� �
A1 + i �C0 ∂0 C

að Þ ∂a C
1� �
A1

+ i �C1 ∂0 C
1� �

∂0 C
1 + ∂1 C

0� �
A1

+ i �C1 ∂1 C
0� �

∂0 C
1 + ∂1 C

0� �
A1

− i Ca ∂a �C0
� �

∂0 C
1 + ∂1 C

0� �
A1:

ð60Þ

The above terms add up to yield a total derivative
term as

∂a i �C0 C
a ∂0 C

1 + ∂1 C
0� �
A1 + i �C1 C

b ∂b Ca A1ð Þ
h i

: ð61Þ

It is interesting to point out that the terms with A0
and that of A1 sum up to yield exactly similar types of
result in the total derivative where A0 ⟷ A1, �C0 ⟷ �C1.
It is clear that the application of sB on LB produces the
total derivative term which is the sum of (55), (57), (59),
and (61). Thus, the BRST transformations sB are a symme-
try of the action.

A.3. Appendix C: On the Anti-BRST Symmetry
Invariance of L�B

Here, we collect the terms that are generated after the appli-
cation of the anti-BRST symmetry transformations �sB on L�B
(compare Equation (25)). It can be readily checked that �sB
L0 = ∂a ð�Ca L0Þ. In addition to it, we have the following terms
that contain the auxiliary field �B0 after the application of �sB
on L�B, namely
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−�Ca ∂a �B0
� �

A0 − �B0 �C
a ∂a A0ð Þ + �B0 ∂0 �C

1 + ∂1C
0

� �
A1

+ �B0 ∂0 �C
1 − ∂1 �C

0� �
A2 + �B0 ∂1 �C

0� �
A2 − �B0 ∂0 �C

1� �
A2

− �B0 ∂1 �C
0� �

A1 − �B0 ∂0 �C
1� �

A1 − �B0 ∂a �C
a� �

A0,

ð62Þ

which add up to yield ∂a ½−�Ca �B0 A0Þ�. Similarly, the follow-
ing terms containing �B1 fields (that are generated after the
application of �sB on L�B), namely

−�B1 �C
a ∂aA1ð Þ + �B1 ∂0 �C

0� �
A2 − �B1 ∂1 �C

1� �
A2

+ �B1 ∂1 �C
0� �

A0 − �B1 ∂a �C
a� �

A1 + �B1 ∂0 �C
1� �

A0

+ �B1 ∂1 �C
1� �

A2 − �B1 ∂0 �C
0� �

A2 − �B1 ∂0 �C
1� �

A0

− �B1 ∂1 �C
0� �

A0 − �Ca ∂a �B1
� �

A1,

ð63Þ

sum up to produce ∂a ½−�Ca �B1 A0�. Thus, it is clear that we
have so far the following total derivatives: ∂a ½�Ca ðL0 − �B0
A0 − �B1 A1Þ�. Now, we focus on the collection of A0 terms
that are generated after the application of anti-BRST trans-
formations �sB on L�B. These are

+i ∂a C0 �C
a� �

�Cb ∂b A0
� �

+ i C1 ∂1 �C
0 + ∂0 �C

1� �
�Cb ∂b A0
� �

− ∂a i C0 �Cb ∂b �C
a

� �h i
A0 − i C1 ∂0 �Cb ∂b �C

1� �
A0

− i C1 ∂1 �Cb ∂b �C
0� �

A0 − i ∂a C1 �C
a� �

∂1 �C
0 + ∂0 �C

1� �
A0

− i C1 ∂0 �C
0 − ∂1 �C

1� �
∂1 �C

0 − ∂0 �C
1� �

A0:

ð64Þ

It will be noted that we have collected here the A0 terms
which look completely different from the corresponding
terms in the BRST symmetry invariance (compare Equation
(58)). This is due to the fact we have not written each term
separately and independently. However, these terms are
actually similar to (58). The above terms add up to produce
the following total derivative terms, namely

∂a −i C1 �C
a ∂0 �C

1 + ∂1 �C
0� �

A0 − i C0 �C
b ∂b �Ca A0

� �h i
:

ð65Þ

We now concentrate on all the terms that are generated
after the application of �sB on L�B and contain necessarily the
A1 field. These are as follows:

+i ∂a C1 �C
a� �

�Cb ∂b A1
� �

+ i C0 ∂1 �C
0 + ∂0 �C

1� �
�Cb ∂b A1
� �

− ∂a i C1 �Cb ∂b �C
a

� �h i
A1 − i C0 ∂0 �Cb ∂b �C

1� �
A1

− i C0 ∂1 �Cb ∂b �C
0� �

A1 − i ∂a C0 �C
a� �

∂1 �C
0 + ∂0 �C

1� �
A1

− i C1 ∂0 �C
0 − ∂1 �C

1� �
∂1 �C

0 − ∂0 �C
1� �

A1:

ð66Þ

The above terms add up to produce the following total
derivative:

∂a −i C0 �C
a ∂0 �C

1 + ∂1 �C
0� �

A1 − i C1 �C
b ∂b �Ca A1

� �h i
:

ð67Þ

Finally, we have the following set of terms that contain
necessarily A2 field after the application of �sB on L�B, namely

−∂a i C0 �C
a� �

∂0 �C
1 − ∂1 �C

0� �
A2 − i C0 ∂0 �C

1 + ∂1 �C
0� �

� ∂0 �C
0 − ∂1 �C

1� �
A2 + i C0 ∂0 �C

1 − ∂1 �C
0� �

�Cb ∂b A2
� �

− i ∂a C1 �C
a� �

∂0 �C
0 − ∂1 �C

1
� �

A2 + i C1 ∂0 �C
0 − ∂1 �C

1
� �

� �Cb ∂b A2
� �

− i C0 ∂0 �Cb ∂b �C
1

� �
A2 − i C1 ∂0 �Cb ∂b �C

0
� �

A2

+ i Ca ∂1 �Cb ∂b �C
a

� �
A2 + 2 i C1 ∂0 �C

1
�

∂1 �C
0

� �
A2:

ð68Þ

The above terms produce, after their addition, the fol-
lowing total derivative:

∂a −i C0 �C
a ∂0 �C

1 − ∂1 �C
0� �

A2 − i C1 �C
a ∂0 �C

0 − ∂1 �C
1� �

A2
h i

:

ð69Þ

The total derivatives, present in this Appendix, sum up
to produce the total derivative that has been quoted in the
main body of our text (compare Equation (28)).

A.4. Appendix D: On the Superfield
Approach to the Derivation of the CF-Type
Restrictions and
Absolute Anticommutativity

In this Appendix, we exploit the theoretical tricks and
strength of the modified version of the Bonora-Tonin super-
field approach (MBTSA) to BRST formalism [7] to concisely
derive the 2D version of the universal CF-type restrictions:
Ba + �Ba + i ðCm ∂m �Ca + �Cm ∂m CaÞ = 0. In this context, first
of all, we focus on the general form of the 2D diffeomorph-
ism transformations ξa ⟶ ξ′a = haðξÞ where haðξÞ is a
physically well-defined function of ξa such that it is finite
at the origin and vanishes off at τ⟶ ±∞. We take now
the generalizations of function haðξÞ onto the ð2, 2Þ
-dimensional supermanifold as follows:
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ha ξð Þ⟶ ~h
a
ξ, θ, θ
� �

= ξa − θ �Ca
ξð Þ − θCa ξð Þ + θ θ ka ξð Þ,

ð70Þ

where the (anti)ghost fields ð�CaÞCa are the ones which have
appeared in the (anti-)BRST symmetry transformations (11)
and (16). We note, at this stage, that the infinitesimal version
of the classical diffeomorphism transformations ξa ⟶ ξ′a
= haðξÞ ≡ ξa − εaðξÞ denotes that the classical diffeomorph-
ism transformations δ ξa = ξ′a − ξa = εaðξÞ can be elevated
to their counterpart quantum (anti-)BRST symmetry trans-
formations as sb ξ

a = −Ca, sab ξa = −�Ca. This is the reason
behind the choice in (70) where the coefficients of θ and θ
are �Ca and Ca, respectively. This has been done due to the
standard BRST prescription where the infinitesimal bosonic

parameters εaðξÞ are replaced by the fermionic (i.e., ðCaÞ2
= ð�CaÞ2 = 0, Ca �Cb + �Cb CA = 0, etc.) (anti)ghost fields ð�CaÞ
Ca within the framework of BRST formalism. The secondary
fields kaðξÞ (i.e., the coefficient of θ θ in (70)) have to be
determined from the consistency conditions and basic con-
cepts behind the BRST formalism (which we elaborate below
in a very concise manner).

It is the basic tenet of MBTSA that the target space
coordinate fields XμðξÞ have to be generalized onto their
counterpart superfields on the ð2, 2Þ-dimensional super-
manifold as

Xμ ξð Þ⟶ ~X
μ ~h ξ, θ, θ
� �

, θ, θ
h i

= Xμ ~h ξ, θ, θ
� �h i

+ θ �Qμ ~h ξ, θ, θ
� �h i

+ θQμ ~h ξ, θ, θ
� �h i

+ θ θTμ ~h ξ, θ, θ
� �h i

:

ð71Þ

It should be noted, at this juncture, that all the sec-
ondary superfields on the r.h.s. (right hand side) are still
a function of transformation ~h

aðξ, θ, θÞ that has been
pointed out in (70). We take another Taylor expansion
for all the secondary superfields on the r.h.s. as

θ θTμ ξa − θ �Ca − θCa + θ θ ka
h i

= θ θTμ ξð Þ, ð72Þ

θQμ ξa − θ �Ca − θCa + θ θ ka
h i

= θQμ ξð Þ + θ θ �Ca ∂a Q
μ ξð Þ,
ð73Þ

θ �Qμ
ξa − θ �Ca − θCa + θ θ ka
h i

= θ �Qμ
ξð Þ − θ θCa ∂a �Q

μ
ξð Þ,
ð74Þ

Xμ ξa − θ �Ca − θCa + θ θ ka
h i

= Xμ ξð Þ − θ �Ca ∂a X
μ

− θCa ∂a X
μ + θ θ ka ∂a X

μ − �Ca Cb ∂a ∂b X
μ

h i
:

ð75Þ

It is pertinent and important to point out that we
have to make two-step generalizations of XμðξÞ to the

ð2, 2Þ-dimensional supermanifold in order to incorporate
the diffeomorphism symmetry transformation haðξÞ⟶
~h
aðξ, θ, θÞ. In other words, we have the following:

Xμ ξð Þ⟶ Xμ ξ, θ, θ
� �

⟶ ~X
μ ~h ξ, θ, θ
� �

, θ, θ
h i

, ð76Þ

where in the first-step, the target space coordinate field
½XμðξÞ� has been generalized to Xμðξ, θ, θÞ when there
is no diffeomorphism transformation on ξa. In the next
step, we incorporate ξa ⟶ ~h

aðξ, θ, θÞ, and then, we
make the superexpansion as given in (71). Collecting
the coefficients of θ, θ, and θ θ from the r.h.s. (compare
Equation (72)), we obtain

~X
μ ~h ξ, θ, θ
� �

, θ, θ
h i

= Xμ ξð Þ + θ �Qμ − �Ca ∂a X
μ� �

+ θ Qμ − Ca ∂a X
μ½ �

+ θ θ Tμ + �Ca ∂a Q
μ − Ca ∂a �Q

μ + ka ∂a X
μ − �Ca Cb ∂a ∂b X

μ
h i

:

ð77Þ

At this stage, our key objective is to determine the
values of Qμ, �Qμ, and Tμ so that we can obtain the
quantum (anti-)BRST symmetries (corresponding to the
2D classical diffeomorphism symmetry transformations)
for the target space coordinates XμðξÞ and the CF-type
restrictions Ba + �Ba + i ðCm ∂m �Ca + �Cm ∂m CaÞ = 0.

To accomplish the above goal, we apply the horizontality
condition (HC):

Xμ ~h
a
ξ, θ, θ
� �h i

= Xμ ξð Þ, ð78Þ

which amounts to setting the coefficients of θ, θ, and θ θ
equal to zero. Physically, this condition implies that all the
pure Lorentz scalar (super)fields on the l.h.s. (left hand side)
as well as on the r.h.s. should not change at all. In other
words, we have the following:

~X
μ ~h

a
ξ, θ, θ
� �

, θ, θ
h i

= Xμ ξ, θ, θ
h i

≡ Xμ ξð Þ,

�Qμ ~h
a
ξ, θ, θ
� �h i

= �Qμ
ξð Þ,Qμ ~h

a
ξ, θ, θ
� �h i

=Qμ ξð Þ,

Tμ ~h
a
ξ, θ, θ
� �h i

= Tμ ξð Þ,
ð79Þ

so that we have the following superexpansion:

Xμ ξ, θ, θ
� �

= Xμ ξð Þ + θ �Qμ
ξð Þ + θQμ ξð Þ + θ θTμ ξð Þ

≡ Xμ ξð Þ + θ �sB X
μð Þ + θ sB X

μð Þ + θ θ sB�sB X
μð Þ:
ð80Þ

It should be recalled that sB and �sB are the BRST and
anti-BRST symmetry transformations that have been listed
in Equations (11) and (16). For the expansion of the type
(81), Bonora-Tonin (BT) have found the mappings sB ⟷
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∂θjθ=0,�sB ⟷ ∂θjθ=0 in the context of BT-superfield
approach to 4D non-Abelian 1-form (see, e.g., [21–23])
gauge theory (without any interaction with matter fields)
where the (anti-)BRST symmetry transformations as well
as the CF-condition (36) have been found. We note that
the HC (compare Equation (78)) implies, taking into
account the inputs from (77), the following:

Qμ = Ca ∂a X
μ, �Qμ = �Ca ∂a X

μ, ð81Þ

Tμ = Ca ∂a �Q
μ + �Ca Cb ∂a ∂b X

μ − �Ca ∂a Q
μ − ka ∂a X

μ:

ð82Þ
The substitutions of the above into (80) and their inter-

pretations in terms of the off-shell nilpotent (anti-)BRST
symmetry transformations ð�sBÞsB imply that

Qμ = sB X
μ = Ca ∂a X

μ, �Qμ = �Ca ∂a X
μ =�sB Xμ, ð83Þ

Tμ = sB�sB Xμð Þ ≡ Ca ∂a �Cb ∂b X
μ

h i
+ Ca �Cb ∂a ∂b X

μ

− �Ca ∂a Cb ∂b X
μ

h i
− ka ∂a X

μ

≡ Ca ∂a �C
b − �Ca ∂a C

b − kb
h i

∂b X
μð Þ − �Ca Cb ∂a ∂b X

μ:

ð84Þ
At this juncture, we demand the absolute anticommuta-

tivity (i.e., fsB,�sBgXμ = 0) of the (anti-)BRST symmetry
transformations ð�sBÞsB which leads to the following:

sB�sBX
μ = sB �Ca∂aX

μ� �
≡ iBa∂aX

μ − �CbCa∂a∂bX
μ

− �Ca ∂aC
b

� �
∂b X

μð Þ,−�sBsBXμ = −�sB Ca∂aX
μð Þ

≡ −i�Ba∂aX
μ − Ca�Cb∂a∂b X

μ + Ca ∂a �C
b

� �
∂bX

μ,

ð85Þ

where we have taken the standard (anti-)BRST symmetry
transformations: sB �C

a = i Ba,�sB Ca = i �Ba, sB Ba = 0,�sB �B
a = 0

and sB C
a = Cb ∂b Ca,�sB �C

a = �Cb ∂b �C
a. The last two symme-

try transformations have been obtained from the nilpo-
tency requirements s2BX

μ = 0,�s2BXμ = 0, respectively. Each
equation from (85) can be compared with the exact
expression for Tμ that has been obtained in Equation
(83). This comparison implies

ka = −i Ba + Cb∂b �C
a ≡ i �Ba − �Cb∂b C

a, ð86Þ

which leads to the derivation of the CF-type restriction
[24] within the framework of MBTSA. Thus, it is very
interesting to note that the requirement of the absolute
anticommutativity property (compare Equation (85)) of
the (anti-)BRST symmetry transformations is responsible
for the determination of ka (compare Equation (86))
which, ultimately, leads to the derivation of the CF-type
restrictions (20) within the ambit of MBTSA.
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