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Exploiting the theoretical potential of the modified Bonora-Tonin superfield approach (MBTSA) as well as the (anti-)chiral
superfield approach (ACSA) to Becchi-Rouet-Stora-Tyutin (BRST) formalism, we derive the complete set of off-shell nilpotent
(anti-)BRST symmetry transformations corresponding to the classical two- ð1 + 1Þ dimensional (2D) diffeomorphism symmetry
transformations on the worldsheet (that is traced out by the motion of a model of bosonic string). Only the BRST symmetry
transformations for this model have been discussed in the earlier literature. We derive the (anti-)BRST invariant Curci-Ferrari-
(CF-) type restrictions (using MBTSA) which turn out to be the root cause behind the absolute anticommutativity of the above
(anti-)BRST symmetry transformations. We capture the symmetry invariance of the (anti-)BRST invariant Lagrangian densities
within the ambit of ACSA. The derivation of the proper anti-BRST transformations (corresponding to the already-known
BRST transformations) and the (anti-)BRST invariant CF-type restrictions are the novel results in our present endeavor.

1. Introduction

Superfield approaches (see [1–8]) to Becchi-Rouet-Stora-
Tyutin (BRST) formalism are geometrically elegant, mathe-
matically rich, and physically very intuitive as they provide
the geometrical basis for the off-shell nilpotency and abso-
lute anticommutativity of the quantum (anti-)BRST symme-
try transformations that are associated with a given classical
local gauge symmetry transformation for a classically gauge
invariant theory. In the above usual superfield approaches
[1–8], only the p-form (p = 1, 2, 3⋯ ) gauge theories have
been considered which are characterized by the existence
of the first-class constraints on them in the terminology of
Dirac’s prescription for the classification scheme of con-
straints (see [9, 10]). It has been a challenging problem to
incorporate the diffeomorphism invariant theories in the
domain of the superfield approaches to BRST formalism.
An attempt has been made by Delbourgo et al. (see [11])
in this direction where a diffeomorphism invariant gravita-
tional theory has been considered. However, in our present

endeavor, we shall not discuss anything connected with the
superfield approach developed in [11] for the BRST analysis
of our present two-dimensional (2D) diffeomorphism
invariant theory.

A very successful application of the superfield approach
[4–6] to BRST formalism (in the context of D-dimensional
non-Abelian 1-form gauge theory) has been performed by
Bonora and Tonin (BT). We have exploited the theoretical
techniques and tricks of this approach in the context of
BRST analysis of the higher p-form (p = 2, 3) Abelian gauge
theories [12]. It has been a very exciting problem to incorpo-
rate the diffeomorphism symmetry transformations within
the framework of BT-superfield formalism. A breakthrough,
in this direction, has been made by Bonora in a very recent
paper [13] where the D-dimensional diffeomorphism invari-
ant theory has been discussed within the ambit of BT-
superfield approach [4–6]. We have christened this theoret-
ical technique as the modified version of the BT-superfield
approach (MBTSA) to BRST formalism [13] and applied
its theoretical potential in the context of the 1D
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diffeomorphism (i.e., reparameterization) invariant model of a
free spinning supersymmetric (SUSY) relativistic particle [14]
and established that its Curci-Ferrari (CF) type of restriction
as well as the gauge-fixing and Faddeev-Popov ghost terms
are the same as for the other 1D diffeomorphism (i.e., repara-
meterization) invariant models of a free scalar and non-SUSY
relativistic particle as well as a non-SUSY and nonrelativistic
free particle (see [14] and the references therein).

In the applications of MBTSA [13], it turns out that we
have to take into account the full super expansions of the
superfields defined on the (D, 2)-dimensional supermani-
fold. In other words, we perform the superexpansion of
the above superfields along all the possible Grassmannian
directions of the (D, 2)-dimensional supermanifold on
which a D-dimensional ordinary diffeomorphism invari-
ant theory is generalized. The idea of horizontality condi-
tion (HC) enables us to derive the (anti-)BRST symmetry
transformations for the scalars, vectors, tensors, etc. How-
ever, we invoke the Nakanishi-Lautrup-type auxiliary
fields ð�BμÞBμ (with μ = 0, 1, 2,⋯,D − 1) in the standard nil-
potent (anti-)BRST symmetry transformations: sb �Cμ = i
Bμ, sb Bμ = 0, sab Cμ = i �Bμ, sab �Bμ = 0 of the (anti-)ghost

fields ð�CμÞCμ in the case of the D-dimensional diffeo-
morphism invariant theory in an ad-hoc manner. This
forces us to consider the (anti-)chiral superexpansions of the
superfields (compare equation (26) below). At this juncture,
it becomes essential for us to take into account the theoretical
tricks and techniques of the (anti-)chiral superfield approach
(ACSA) to BRST formalism (see [15] and the references
therein) which has been developed by us.

The central theme of our present investigation is to apply
the ideas of MBTSA and ACSA to BRST formalism in the
realm of a 2D diffeomorphism invariant theory of a model
of bosonic string and derive (i) all the (anti-)BRST symme-
tries of this theory in a consistent and clear fashion, and
(ii) the CF-type restrictions which are responsible for the
absolute anticommutativity of the (anti-)BRST symmetry
transformations. We have also derived the BRST and anti-
BRST invariant Lagrangian densities and captured their
symmetry invariance(s) in the language of ACSA to BRST
formalism. We would like to lay emphasis on the fact that
the theoretical potential of MBTSA has been responsible
for the derivation of (i) the (anti-)BRST symmetry transfor-
mations for the pure Lorentz scalars and (ii) the (anti-)BRST
invariant CF-type restrictions. However, we have been able
to derive all the proper (anti-)BRST transformations for all
the other fields by using ACSA.

The following motivating factors have been at the heart
of our present investigation. First, we have already used the
beautiful blend of theoretical ideas behind MBTSA and
ACSA in the cases of some 1D diffeomorphism (i.e., repara-
meterization) invariant theories of SUSY (i.e., spinning) rel-
ativistic particle, NSUSY (i.e., scalar) relativistic particle, and
NSUSY and non-relativisticin physics system of a free parti-
cle for the discussion of BRST analysis. However, these
models are also endowed with the gauge symmetry transfor-
mations which are a kind of a subset of the reparameteriza-
tion symmetry transformations (under specific limits). To be

precise, it has been shown (see [14] and the references therein)
that the gauge symmetry transformations (generated by the
first-class constraints) are equivalent to the reparameterization
symmetry transformations if we use (i) the specific set of equa-
tions of motion and (ii) identify the transformation parame-
ters of both these symmetries in a specific manner. Thus, it is
a challenging problem for us to use the theoretical strength
of MBTSA and ACSA in the context of a 2D diffeomorphism
invariant theory which does not respect the gauge symmetry
transformations as have been demonstrated in [14] for a 1D
diffeomorphism invariant theory. We have discussed, in our
present endeavor, a model of a bosonic string which has the
2D diffeomorphism symmetry invariance, but it does not
respect a gauge symmetry transformation. Second, one of the
sacrosanct aspects of BRST formalism is the existence of the
quantum BRST and anti-BRST symmetries together for a
given classical gauge/diffeomorphism symmetry transforma-
tion. For our present bosonic string, only the BRST symme-
tries are known in literature [16]. Thus, it is a challenge for
us to derive the proper anti-BRST symmetry transformations
corresponding to the above BRST symmetry transformations.
We have accomplished this goal in our present endeavor.
Finally, the hallmark of a BRST-quantized theory is the exis-
tence of the CF-type restrictions which provide the indepen-
dent identity to the BRST and anti-BRST symmetries (and
corresponding charges) at the quantum level. We have derived
these restrictions, too.

The theoretical contents of our present endeavor are
organized as follows. In Section 2, we concisely discuss the
(anti-)BRST symmetry transformations for the gauge-fixed
Lagrangian densities of the bosonic string theory. Section 3
is devoted to the derivation of the Curci-Ferrari- (CF-) type
restrictions for our BRST invariant theory within the frame-
work of MBTSA. In addition, we also derive the (anti-)BRST
symmetry transformations for the target space coordinates
and the determinant of the modified version of the inverse
of the 2D metric tensor. Section 4 contains the derivation
of the nilpotent (anti-)BRST symmetries for the other fields
of our theory by exploiting the theoretical potential of
ACSA. We capture the (anti-)BRST invariances of the
Lagrangian densities using ACSA in Section 5. Finally, we
make some concluding remarks in Section 6.

2. Preliminary: (Anti-)BRST Symmetries

We begin with the following (anti-)BRST invariant Lagrang-
ian densities [LðaÞb] for the model of the bosonic string of
our theory (see [17] for details)

Lab =L0 − �B1A1 − �B0A0 + i C1 ∂0 �C
1 + ∂1 �C

0� �
+ C0 ∂a�C

a� �
+ ∂aC0ð Þ�Ca

h i
A0

+ i C0 ∂0�C
1 + ∂1�C

0� �
+ C1 ∂a�C

a� �
+ ∂aC1ð Þ�Ca

h i
A1

+ i C1 ∂0�C
0 − ∂1�C

1� �
+ C0 ∂0�C

1 − ∂1�C
0� �h i

A2,

Lb =L0 + B1A1 + B0A0 − i �C1 ∂0C
1 + ∂1C

0� �
+ �C0 ∂aC

að Þ − Ca∂a�C0
� �

A0

− i �C0 ∂0C
1 + ∂1C

0� �
− Ca∂a�C1 + �C1 ∂aC

að Þ� �
A1

− i �C1 ∂0C
0 − ∂1C

1� �
+ �C0 ∂0C

1 − ∂1C
0� �� �

A2,

ð1Þ
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where the 2D diffeomorphism invariant classical action inte-
gral ðS0Þ w.r.t. L0 is as follows [16]:

S0 =
ð
d2ξL0 ≡

ð+∞
−∞

dτ
ðσ=π
σ=0

dσ −
1
2κ ~g

mn∂mX
μ∂nXμ + E det ~g + 1ð Þ

� 	
:

ð2Þ

In the above, we have taken the notation ξa = ðξ0, ξ1Þ =
ðτ, σÞ where τ is the evolution parameter (with −∞ < τ < +
∞) and σ denotes the length of the bosonic string (with 0
≤ σ ≤ π). The modified version of the inverse of the 2D met-
ric tensor is ~gmn = ffiffiffiffiffiffi−gp

gmn where gmn is the inverse of the
2D metric tensor gmn and g = det ðgmnÞ. The coordinates
XμðξÞ ≡ Xμðτ, σÞ (where μ = 0, 1, 2,⋯,D − 1) correspond to
the D-dimensional flat Minkowskian target space, and a, b,
c,⋯, l,m, n = 0, 1 are the “time” and space directions on
the worldsheet. The symbol κ denotes the string tension
parameter, and E is the Lagrange multiplier density which
ensures that det ~g = −1 so that we can have two degrees of
freedom for the metric field tensor which, being symmetric,
has only three degrees of freedom on a 2D flat spacetime
manifold. In other words, we have (see [16] for details) the
following decomposition of ~gmn, namely,

~gmn =
A1 + A2 A0

A0 A1 − A2

 !
: ð3Þ

The flat limit (i.e., ~gmn ⟶ ηmn) can be obtained by
the gauge-fixing conditions: A0 = A1 = 0. The latter
choices imply that we have A2

2 = 1 when we demand det
~g = −1: This input leads to ~gmn ⟶ ηmn = diag ð+1,−1Þ for
the choiceA2 = +1where ηmn = ηmn = diag ð+1,−1Þ are the flat
metric tensor ðηmnÞ and its inverse ðηmnÞ on the 2D Minkows-
kian spacetime manifold. In the derivation of the gauge-fixing
and Faddeev-Popov ghost terms, we have taken the standard
prescription of the BRST formalism (see [16]), namely,

Lab =L0 + sab i C0A0 + i C1A1½ �,
Lb =L0 + sb −i �C0A0 − i �C1A1

� �
,

ð4Þ

where the full set of nilpotent ½ðsðaÞbÞ2 = 0� (anti-)BRST trans-
formations ½sðaÞb� are

sabX
μ = �Ca ∂a X

μ,
sabC

n = i�Bn,
sab�C

n = �Cn ∂m �Cn,
sab E = ∂a �CaE

� �
,

sab �B
n = 0,

sab det ~gð Þ = �Cm ∂m det ~gð Þ,
sab ~g

mn = ∂a �Ca
~gmn� �

− ∂a �C
m� �

~gan − ∂a �C
n� �

~gma,

sab B
n = �Cm ∂m Bn − Bm ∂m �Cn,

ð5Þ

sbX
μ = Ca ∂a X

μ,
sb�C

n = iBn,
sb B

n = 0,
sbC

n = Cb ∂b C
n,

sb ~g
mn = ∂a Ca ~gmnð Þ − ∂a C

mð Þ~gan − ∂a C
nð Þ~gma,

sb E = ∂a CaEð Þ,
sb �B

n = Cm ∂m �Bn − �Bm ∂m Cn,
sb det ~gð Þ = Ca∂a det ~gð Þ:

ð6Þ

Here, the fermionic [ðCaÞ2 = ð�CaÞ2 = 0, Ca Cb + Cb Ca =
0, Ca �Cb + �Cb Ca = 0, �Ca �Cb + �Cb �Ca = 0, etc.] (anti-)ghost
fields are ð�CaÞCa and the bosonic Nakanishi-Lautrup auxil-
iary fields are ð�BaÞBa . From the above, we can derive the
(anti-)BRST symmetry transformations for the component
gauge fields A0, A1, and A2 as follows:

sabA0 = �Cm ∂m A0 − ∂0 �C
1 − ∂1 �C

0� �
A2 − ∂0 �C

1 + ∂1 �C
0� �

A1,

sabA1 = �Cm ∂m A1 − ∂1 �C
0 + ∂0 �C

1� �
A0 − ∂0 �C

0 − ∂1 �C
1� �

A2,

sabA2 = �Cm ∂m A2 − ∂1 �C
0 − ∂0 �C

1� �
A0 − ∂0 �C

0 − ∂1 �C
1� �
A1,

ð7Þ
sbA0 = Cm ∂m A0 − ∂0 C

1 − ∂1 C
0� �

A2 − ∂0 C
1 + ∂1 C

0� �
A1,

sbA1 = Cm ∂m A1 − ∂1 C
0 + ∂0 C

1� �
A0 − ∂0 C

0 − ∂1 C
1� �
A2,

sbA2 = Cm ∂m A2 − ∂1 C
0 − ∂0 C

1� �
A0 − ∂0 C

0 − ∂1 C
1� �
A1:

ð8Þ
It is interesting to note that these CF-type restrictions

Ba + �Ba + i ðCm ∂m �Ca + �Cm ∂m CaÞ = 0 appear in the follow-
ing simple cases of the proof of absolute anticommutativity
property:

sb, sabf gXμ = i Ba + �Ba + i Cm ∂m �Ca + �Cm ∂m Ca� �� �
∂a X

μð Þ,
sb, sabf g E = i ∂a Ba + �Ba + i Cm ∂m �Ca + �Cm ∂m Ca� �� �

E
� �

,

sb, sabf g ~gmn = i ∂k Bk + �Bk + i Cl ∂l �C
k + �Cl ∂l C

k
� �n o

~gmn
h i

− i ∂k Bm + �Bm + i Cl ∂l �C
m + �Cl ∂l C

m
� �h i

~gkn

− i ∂k Bn + �Bn + i Cl ∂l �C
n + �Cl ∂l C

n
� �h i

~gkm:

ð9Þ

Thus, the off-shell nilpotent ½ðsðaÞbÞ2 = 0� (anti-)BRST
symmetry transformations (compare equations (6) and
(5)) are the proper set of quantum symmetry
transformations.

We end this section with the following remarks. First,
the off-shell nilpotent ½s2ðaÞb = 0� (anti-)BRST symmetry

transformations (6) and (5) correspond to the classical 2D
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diffeomorphism symmetry transformations: ξa ⟶ gaðξÞ =
ξa − εaðξÞ where gaðξÞ is a physically well-defined function
of ξa on the 2D worldsheet such that it is finite at τ = 0
and σ = 0 but vanishes off as τ⟶ ±∞ and σ = π. The
infinitesimal version of these transformations are as fol-
lows: gaðξÞ = ξa − εaðξÞ where εaðξÞ (with a = 0, 1) are the
2D infinitesimal diffeomorphism transformation parame-
ters. Second, according to the basic tenets of BRST formal-
ism, the parameters εaðξÞ have been replaced by the
fermionic (anti-)ghost fields ð�CaÞCa in the (anti-)BRST
symmetry transformations (6) and (5). Third, it is crystal
clear, from equation (9), that the (anti-)BRST symmetry
transformations sðaÞb are absolutely anticommuting (i.e., f
sb, sabg = 0) in nature only on the submanifold of the
quantum Hilbert space of fields where the CF-type restric-
tions Ba + �Ba + i ðCm ∂m �Ca + �Cm ∂m CaÞ = 0 are satisfied.
Finally, we note that the target space coordinates XμðξÞ
and ½det ~gðξÞ� transform as pure Lorentz scalars (i.e., Xμ′

ðξ′Þ = XμðξÞ, det eg′ðξ′Þ = det ~gðξÞ) under the infinitesimal
and continuous diffeomorphism symmetry transforma-
tions: ξa ⟶ gaðξÞ = ξa − εaðξÞ.

3. CF-Type Restrictions: MBTSA

According to the basic tenets of MBTSA to BRST formalism,
first of all, we generalize the 2D infinitesimal diffeomorph-
ism transformations ξa ⟶ ξ′a = gaðξÞ = ξa − εaðξÞ to its
counterpart onto the ð2, 2Þ-dimensional supermanifold as
follows (see [13, 18] for details):

ga ξð Þ⟶ ~ga ξ, θ, θ
� �

= ξa − θ �Ca
ξð Þ − θCa ξð Þ + θ θ f a ξð Þ,

ð10Þ

where the ð2, 2Þ-dimensional supermanifold is parameter-
ized by the superspace coordinates ZM = ðξa, θ, θÞ. Here,
ξa = ðξ0, ξ1Þ ≡ ðτ, σÞ are the bosonic worldsheet coordinates

and a pair of Grassmannian variables ðθ, θÞ satisfies θ2 = θ
2

= 0, θ θ + θ θ = 0. In equation (10), the fermionic (anti-)ghost
ð�CaÞCa

fields are the ones that are present in the (anti-)BRST
transformations (6) and (5). In view of the mappings ðsb ↔
∂θjθ=0, sab ↔ ∂θjθ=0Þ established by Bonora and Tonin [4, 5],

the coefficients of θ and θ in (10) have been taken to be the
(anti-)ghost fields because, according to the standard BRST
prescription, the classical infinitesimal diffeomorphism sym-
metry transformations δ ξa = −εaðξÞ have been promoted to
the quantum level by the (anti-)BRST symmetry transforma-
tions: sab ξ

a = −�Ca, sb ξa = −Ca. The coefficients of θ θ in (10)
(i.e., f aðξÞ) have to be determined from other consistency con-
ditions of the BRST formalism which we elaborate as follows.

To derive the CF-type restrictions and the (anti-)BRST
symmetry transformations sab X

μ = �Ca ∂a Xμ, sb Xμ = Ca ∂a
Xμ, we generalize the target space ordinary coordinate fields
XμðξÞ onto the ð2, 2Þ-dimensional supermanifold as follows:

Xμ ξð Þ⟶ ~X
μ
~g ξ, θ, θ
� �

, θ, θ
h i

= Xμ ~g ξ, θ, θ
� �h i

+ θ �Rμ
~g ξ, θ, θ
� �h i

+ θRμ ~g ξ, θ, θ
� �h i

+ θ θ Sμ ~g ξ, θ, θ
� �h i

,

ð11Þ

where ~X
μ ½~gðξ, θ, θÞ, θ, θ� are the superfields whose argu-

ments incorporate the super diffeomorphism transforma-
tions (10) and, on the r.h.s., we have the secondary
superfields which have the following superexpansions (as
their arguments are transformations (10)), namely,

θ θ Sμ ξa − θ �Ca − θCa + θ θ f a
h i

≡ θ θ Sμ ξa
� �

≡ θ θ Sμ ξð Þ,

θRμ ξa − θ �Ca − θCa + θ θ f a
h i

≡ θRμ ξð Þ + θ θ �Ca ∂a R
μ ξð Þ,

θ �Rμ
ξa − θ �Ca − θCa + θ θ f a
h i

≡ θ �Rμ
ξð Þ − θ θCa ∂a �R

μ
ξð Þ,

Xμ ξa − θ �Ca − θCa + θ θ f a
h i

≡ Xμ ξð Þ − θ �Ca ∂a X
μ − θCa ∂a X

μ

+ θ θ f a ∂a X
μ − �Ca Cm∂a ∂m Xμ� �

,
ð12Þ

where Xμ ðξa − θ �Ca − θCa + θ θ f aÞjθ=θ=0 = XμðξÞ and the

Taylor expansions have been taken around θ = θ = 0. Col-
lecting the coefficients of θ, θ and θ θ, from the r.h.s. of the
above equation, we obtain the following:

~X
μ

~g ξ, θ, θ
� �

, θ, θ
h i

= Xμ ξð Þ + θ �Rμ − �Ca ∂a X
μ� �

+ θ Rμ − Ca ∂a X
μ½ � + θ θ f a ∂a X

μ½
− �Ca Cm ∂a ∂m Xμ − Ca ∂a �R

μ

+ �Ca ∂a R
μ + Sμ�:

ð13Þ

We note that the target space coordinate fields XμðξÞ are
the pure scalars with respect to the 2D worldsheet on which
we have taken the diffeomorphism symmetry transforma-

tions ξa ⟶ ξa′ = gaðξÞ. Thus, physically, it is evident that,
ultimately, the restrictions on the (2, 2)-dimensional super-
field ~X

μ ½~gðξ, θ, θÞ, θ, θ� is the following:

Xμ ξð Þ⟶ ~X
μ

~g ξ, θ, θ
� �

, θ, θ
h i

= Xμ ξð Þ: ð14Þ

This is what has been called as the horizontality condi-
tion (HC) in [13, 18]. This HC (compare equation (14))
amounts to setting the coefficients of θ, θ and θ θ in
expression (13) equal to zero. In other words, we have
the following:

Rμ = Ca ∂a X
μ,

�Rμ = �Ca ∂a X
μ,

Sμ = Ca ∂a �R
μ − �Ca ∂a R

μ + �Ca Cm ∂a ∂m Xμ − f a ∂a X
μ:

ð15Þ
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The last entry can be explicitly written by plugging in
the values of Rμ and �Rμ as follows:

Sμ = Ca ∂a �Cm ∂m Xμ� �
− �Ca ∂a Cm ∂m Xμ½ � + �Ca Cm ∂a ∂m Xμ − f a ∂a X

μ:

ð16Þ

Now, it is straightforward to check that we have the
following:

Sμ = Ca ∂a �C
m − �Ca ∂a C

m − f m
� �

∂m Xμð Þ − �Cm Ca ∂m ∂a X
μ:

ð17Þ

As pointed out earlier, the coefficients of θ θ (i.e., f aðξÞ) in
equation (10) and their presence in (17) can be computed by
the requirements of the consistency conditions of BRST
formalism.

One of the sacrosanct properties of a pure scalar field/
superfield is the observation that it should not transform
under any kind of internal, spacetime, supersymmetric,
etc., transformations. As a consequence, the secondary
superfields of the r.h.s. of (11) are as follows:

Xμ ~g ξ, θ, θ
� �h i

= Xμ ξð Þ,

�Rμ
~g ξ, θ, θ
� �h i

= �Rμ
ξð Þ,

Rμ ~g ξ, θ, θ
� �h i

= Rμ ξð Þ,

Sμ ~g ξ, θ, θ
� �h i

= Sμ ξð Þ:

ð18Þ

Similarly, the l.h.s. is ~X
μ½~gðξ, θ, θÞ, θ, θ� = ~X

μðξ, θ, θÞ.
Substitutions of these equalities into (11) yield the following
expressions in terms of sðaÞb, namely,

~X
μ

ξ, θ, θ
� �

= Xμ ξð Þ + θ �Rμ
ξð Þ + θRμ ξð Þ + θ θ Sμ ξð Þ ≡ Xμ ξð Þ

+ θ sab X
μð Þ + θ sb X

μð Þ + θ θ sb sab X
μð Þ,

ð19Þ

in a view of the Bonora-Tonin (BT) mappings sb ↔ ∂θjθ=0
and sab ↔ ∂θjθ=0 which was established in the realm of the
D-dimensional non-Abelian 1-form gauge theory [4, 5]. In
fact, a close look at (19) demonstrates that this expansion
is exactly like the BT-superfield approach to BRST formal-
ism in the context of gauge theories. Thus, it is clear from
(15) and (17) that we have obtained the following (in terms
of the (anti-)BRST symmetry transformations ðsðaÞbÞ of (6)
and (5)), namely,

Rμ = Ca ∂a X
μ = sb X

μ,
�Rμ = �Ca ∂a X

μ = sab X
μ,

Sμ = Ca ∂a �C
m − �Ca ∂a C

m − f m
� �

∂m Xμð Þ
− �Ca Cm ∂a ∂m Xμ ≡ sb sab X

μ:

ð20Þ

The absolute anticommutativity requirement (i.e., fsb,
sabgXμ = 0) implies that the following equality is true,
namely,

sb �R
μ = −sab R

μ ⇔ sb sab X
μ = −sab sb X

μ: ð21Þ

The explicit computations of sb �R
μ and (−sab Rμ) yield

sb �R
μ = i Bm ∂m Xμ − �Ca Cm ∂a ∂m Xμ − �Ca ∂a C

mð Þ ∂m Xμð Þ,
−sab R

μ = −i �Bm ∂m Xμ − �Ca Cm ∂a ∂m Xμ + Ca ∂a �C
m� �

∂m Xμð Þ,
ð22Þ

where we have used sb �C
a = i Ba and sab C

a = i �Ba. In addition,
we have taken sb C

a = Cm ∂m Ca and sab �C
a = �Cm ∂m �Ca which

are derived from the nilpotency requirements: s2b X
μ = 0 and

s2ab X
μ = 0. The above equality (21) implies (from (22)) that

we have

Bm + �Bm + i Ca ∂a �C
m + �Ca ∂a C

m� �
= 0, ð23Þ

which is nothing but the CF-type restrictions that have been
obtained (compare equation (9)) from the requirement of
the absolute anticommutativity property (i.e., fsb, sabg = 0)
of the (anti-)BRST symmetry transformations (6) and (5).

At this crucial juncture, we are in the position to deter-
mine the explicit expression for f aðξÞ that is present in equa-
tions (10) and (17) by demanding the equality of each of the
equations present in (22) with the expression for Sμ in (20).
In other words, we find that

Sμ = sb �R
μ ≡ −sab R

μ ⇒ Ca ∂a �C
m − �Ca ∂a C

m − f m ξð Þ� �
� ∂m Xμ − �Ca Cm ∂a ∂m Xμ = i Bm − �Ca ∂a C

m� �
∂m Xμð Þ

− �Ca Cm ∂a ∂m Xμ ≡ −i �Bm + Ca ∂a �C
m� �

∂m Xμð Þ
− �Ca Cm ∂a ∂m Xμ:

ð24Þ

A close look at (24) implies that there are two ways to
equate the l.h.s. (containing f mðξÞ) with the r.h.s. of the
above equation, namely,

f m ξð Þ = −i Bm + �Ca ∂a C
m ≡ i �Bm − Ca ∂a �C

m, ð25Þ

which lead to the derivation of the CF-type restrictions (23).
Thus, we conclude that the CF-type restrictions are hidden
in the determination of f aðξÞ of equation (10) by exploiting
the absolute anticommutativity property (i.e., fsb, sabgXμ =
0) within the ambit of MBTSA to BRST formalism. Ulti-
mately, we observe that the above logic can be repeated in
the case of a pure scalar ðdet ~gÞ to derive the CF-type
restrictions (23) and the (anti-)BRST transformations: sab
ðdet ~gÞ = �Ca∂aðdet ~gÞ and sbðdet ~gÞ = Ca∂aðdet ~gÞ, too.

We wrap-up this section with the following remarks.
First of all, we have taken the standard (anti-)BRST sym-
metry transformations sab C

a = i �Ba, sb �C
a = i Ba, sab �B

a = 0,
sb B

a = 0 which imply the following (in the terminology
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of the (anti-)chiral superfield approach (ACSA) to BRST
formalism (see [15])), namely,

Cm ξð Þ⟶ Fm cð Þ
abð Þ ξ, θð Þ = Cm ξð Þ + θ i �Bm� �

≡ Cm ξð Þ + θ sab C
mð Þ,

�Cm
ξð Þ⟶ �Fm acð Þ

bð Þ ξ, θ
� �

= �Cm
ξð Þ + θ i Bmð Þ ≡ �Cm

ξð Þ + θ sb �C
m� �

,

Bm ξð Þ⟶ ~B
m acð Þ
bð Þ ξ, θ

� �
= Bm ξð Þ + θ 0ð Þ ≡ Bm ξð Þ + θ sb B

mð Þ,

�Bm ξð Þ⟶ e�Bm cð Þ
abð Þ ξ, θð Þ = �Bm ξð Þ + θ 0ð Þ ≡ �Bm ξð Þ + θ sab �B

m� �
,
ð26Þ

where the superscripts ðcÞ and ðacÞ on the superfields
(compare the l.h.s. of (26)) denote the chiral and antichiral
versions of the full superexpansions and the subscripts ðbÞ
and ðabÞ denote the fact that the coefficients of ðθÞ θ in
the above expansions lead to the determination of BRST
and anti-BRST symmetry transformations. In other words,
we are sure about the nilpotent (anti-)BRST symmetry
transformations sab C

a = i �Ba, sab �B
a = 0, sb �C

a = i Ba, sb Ba = 0
in terms of the (anti-)chiral superfield expansions in equa-
tion (26). Second, it is the off-shell nilpotency require-
ments s2ðaÞb X

μ = 0 which lead to sb C
a = Cm ∂m Ca and

sab �C
a = �Cm ∂m �Ca. However, we have to obtain these trans-

formations within the realm of the superfield approach.
Furthermore, it is the requirement of the absolute antic-
ommutativity properties fsb, sabgCa = 0, fsb, sabg �Ca = 0
which yield sb �B

a = Cm ∂m �Ba − �Bm ∂m Ca and sab B
a = �Cm

∂m Ba − Bm ∂m �Ca. We have to obtain, however, these sym-
metry transformations too, by using the techniques of the
superfield approach to BRST formalism which we accom-
plish in our next section. Third, we note that HC condi-
tion (14) has led to the following full superexpansion of
the target space coordinate superfield, namely,

~X
μ hð Þ

ξ, θ, θ
� �

= Xμ ξð Þ + θ �Ca ∂a X
μ� �

+ θ Ca ∂a X
μð Þ

+ θ θ i Ba − �Cm ∂m Ca� �
∂a X

μ�
− �Cm Ca ∂m ∂a X

μ� ≡ Xμ ξð Þ + θ sab X
μð Þ

+ θ sb X
μð Þ + θ θ sb sab X

μð Þ,
ð27Þ

where the superscript ðhÞ denotes the target space coordi-
nate superfield that has been obtained after the application
of HC which, ultimately, leads to (19). Here, the coeffi-
cients of θ and θ are the (anti-)BRST symmetry transfor-
mations ½sðaÞb� that are listed in equations (6) and (5).
Finally, we comment that an expansion like (27) can be
also written for the derivation of the (anti-)BRST symme-
try transformations for the scalar ðdet ~gÞ.

4. (Anti-)BRST Symmetries of Other
Fields: ACSA

In this section, we exploit the theoretical strength of ACSA
to BRST formalism (see [15] and the reference therein) to

derive all the (anti-)BRST symmetry transformations (6)
and (5) except such transformations for the target space
coordinates Xμ and ðdet ~gÞ which have already been
derived in the previous section by using MBTSA to BRST
formalism [13, 18]. We are inspired to use, in our pres-
ent section, ACSA to BRST formalism because of our
observations in equation (26). First of all, we focus on
the derivation of the BRST symmetry transformations
(6) which have not been derived in the previous section.
Thus, we wish to obtain sb C

a = Cm ∂m Ca, sb �B
a = Cm ∂m

�Ba − �Bm ∂m Ca, sb ~gmn = ∂a ðCa ~gmnÞ − ð∂a CmÞ ~gan − ð∂a CnÞ
~gma, sb E = ð∂a CaÞE + Ca ð∂a EÞ. In this context, first of all,
we generalize the ordinary 2D fields CaðξÞ, �BaðξÞ, EðξÞ
and ~gmnðξÞ onto a ð2, 1Þ-dimensional antichiral super
submanifold of the general ð2, 2Þ-dimensional supermani-
fold as follows:

Cm ξð Þ⟶ Fm acð Þ ξ, θ
� �

= Cm ξð Þ + θ bm1 ξð Þ,

�Bm
ξð Þ⟶ Bm acð Þ ξ, θ

� �
= �Bm

ξð Þ + θ f m1 ξð Þ,

E ξð Þ⟶ E acð Þ ξ, θ
� �

= E ξð Þ + θ f2 ξð Þ,

~gmn ξð Þ⟶ ~G
mn acð Þ

ξ, θ
� �

= ~gmn ξð Þ + θ ~R
mn

ξð Þ,

ð28Þ

where the 2D fields ð f m1 , f2, ~R
abÞ are fermionic secondary

fields and bm1 ðξÞ is a bosonic secondary field due to the

fermionic ðθ2 = 0Þ nature of the Grassmannian variable
θ. The above ð2, 1Þ-dimensional antichiral super submani-
fold is parameterized by ðξa, θÞ where ξa ≡ ðτ, σÞ are the

bosonic coordinates and θ is the fermionic ðθ2 = 0Þ Grass-
mannian variable. The superscript ðacÞ on the superfields
denotes the antichiral superexpansions of the above antic-
hiral superfields along the θ-direction of the above super
submanifold.

The basic tenets of ACSA to BRST formalism require
that the BRST invariant (i.e., quantum gauge invariant)
quantities should be independent of the Grassmannian var-
iables as the latter are only the mathematical artifacts that
are useful in the context of theoretical techniques of SUSY
theories. In this connection, we note that the following BRST
(i.e., quantum gauge) invariant quantities are useful and
important for us, namely,

sb Ca ∂a X
μ½ � = 0,

sb Ca ∂a �B
m − �Ba ∂a C

m� �
= 0,

sb Ca ∂a E + ∂a C
að Þ E½ � = 0,

sb Ca ∂a ~g
mn + ∂a C

að Þ ~gmn − ∂a C
mð Þ ~gan − ∂a C

nð Þ ~gma½ � = 0:
ð29Þ

The above invariant quantities are obtained by a close
observation of the transformations (6) where an off-shell nil-
potency property ðs2b = 0Þ exists for the BRST-symmetry
transformations. We focus on sb ½Ca ∂a Xμ� = 0 which implies
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the following restriction:

Fm acð Þ ξ, θ
� �

∂m Xμ h,acð Þ ξ, θ
� �

= Cm ξð Þ ∂m Xμ ξð Þ, ð30Þ

where Xμ ðh,acÞðξ, θÞ is the antichiral limit of the full super-
expansion containing the nilpotent (anti-)BRST symme-
tries as the coefficients of θ and θ. In other words, we
have the following:

Xμ h,acð Þ ξ, θ
� �

= Xμ ξð Þ + θ Ca ∂a X
μð Þ: ð31Þ

Plugging in the appropriate superexpansions for Fa

ðξ, θÞ from (28) as well as the superexpansion for
Xμ ðh,acÞðξ, θÞ from (31), we obtain the explicit expres-
sion for the secondary fields as bm1 ðξÞ = Ca ∂a Cm. As a
consequence, we have the following final expansion:

Fm acð Þ
bð Þ ξ, θ

� �
= Cm ξð Þ + θ Ca ∂a C

mð Þ ≡ Cm ξð Þ + θ sb C
mð Þ,
ð32Þ

where the subscript ðbÞ on the superfield (on the l.h.s.)
denotes that the above antichiral superfield has been
obtained after the application of the BRST invariant
restrictions (30) and the coefficient of θ is nothing
but the BRST symmetry transformation for the field
CmðξÞ which also encodes the following relationships:
∂θ F

m ðacÞðξ, θÞ = sb C
mðξÞ and ∂2

θ
= 0⇔ s2b = 0. The latter

establishes the connection between the nilpotency prop-
erties of ∂θ and sb.

At this juncture, we now concentrate on the derivation
of f2ðξÞ in the expansion of Eacðξ, θÞ in equation (28). For
this purpose, we note that sb ½Cm ∂m E + ð∂m CmÞ E� = 0. Fol-
lowing the basic principle of ACSA, the expressions in the
square bracket have to be generalized onto the ð2, 1Þ
-dimensional antichiral super submanifold with the follow-
ing BRST (i.e., quantum gauge) symmetry invariant restric-
tion:

Fm acð Þ
bð Þ ξ, θ

� �
∂m E acð Þ ξ, θ

� �
+ ∂m Fm acð Þ

bð Þ ξ, θ
� �h i

E acð Þ ξ, θ
� �

= Cm ξð Þ ∂m E ξð Þ½ � + ∂m Cm ξð Þ½ � E ξð Þ,
ð33Þ

where the expansions of Fm ðacÞ
ðbÞ ðξ, θÞ and EðacÞðξ, θÞ have

been quoted in equations (32) and (28), respectively. Substi-
tutions of these superexpansions into the l.h.s. and compar-
ison with the r.h.s. of the restriction (33) lead to the
following condition:

∂m Cað Þ ∂a C
mð ÞE + Ca ∂a ∂m Cmð ÞE + Ca ∂a C

mð Þ ∂m Eð Þ
− ∂m Cmð Þ f2 − Cm ∂m f2ð Þ = 0:

ð34Þ

In other words, the restriction (33) implies that the

BRST invariant quantitymust be independent of θ. A careful
and close look at the above equation leads to the following:

∂m Ca ∂a C
mð ÞE − Cm f2½ � = 0: ð35Þ

Substituting for Ca ð∂a CmÞ E = ∂a ½Ca Cm E� − ð∂a CaÞ
Cm E − Ca Cm ð∂a EÞ, we obtain the following from the above
equation:

∂m ∂a Ca Cm Ef g − ∂a C
að ÞCm E − Ca Cm ∂a Eð Þ − Cm f2½ � = 0:

ð36Þ

It is clear that the first term in the square bracket will be
zero if we operate the derivative ð∂mÞ from outside. Thus, the
final expression is as follows:

∂m Cm ∂a Ca Eð Þ − f2f g½ � = 0: ð37Þ

Integrating over d2 ξ = d σ d τ and taking the physicality
condition that all the fields must vanish off as τ⟶ ±∞
and at σ = 0, σ = π, we obtain the precise value of f2ðξÞ as
follows:

f2 = ∂a Ca Eð Þ,  forCm ≠ 0½ �: ð38Þ

Hence, we have the following final expansion for the
superfield EðacÞðξ, θÞ:

E acð Þ
bð Þ ξ, θ
� �

= E ξð Þ + θ ∂n Cn Eð Þ½ � ≡ E ξð Þ + θ sb Eð Þ, ð39Þ

which leads to the derivation of the BRST symmetry trans-
formation sb E = ∂a ðCa EÞ as the coefficient of θ in the above

equation implying, once again, that ∂θ E
ðacÞ
ðbÞ ðξ, θÞ = sb EðξÞ.

This relationship establishes the connection between sb and
translational generator ∂θ along the θ-direction of the (2,
1)-dimensional antichiral super submanifold ,and it also
demonstrates that s2b = 0⇔ ∂2

θ
= 0 (which is the connection

between the nilpotency properties). It goes without saying
that the subscript ðbÞ on the l.h.s. denotes that the superex-
pansion (39) has been obtained after the application of the
BRST invariant restriction (33).

We now focus on the BRST invariance: sb ½Cn ∂n �B
m −

�Bn ∂n Cm� = 0. This observation can be generalized onto the
(2, 1)-dimensional antichiral super submanifold with the
following restriction on the antichiral superfields, namely,

Fm acð Þ
bð Þ ξ, θ

� �
∂m Bn acð Þ ξ, θ

� �
− Bm acð Þ ξ, θ

� �
∂m Fn acð Þ

bð Þ ξ, θ
� �

= Cm ξð Þ ∂m �Bn
ξð Þ − �Bm

ξð Þ ∂m Cn ξð Þ:
ð40Þ

The substitutions of expansions from (28) and (32) lead
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to the following equality:

Cn ∂n f
m
1 + �Ba ∂a ∂n C

mð Þ − ∂n C
að Þ ∂a �B

m� �� �
+ f a1 + �Bn ∂n C

að Þ� �
∂a C

mð Þ = 0:
ð41Þ

In the above, the term −ð∂n CaÞð∂a �BmÞ can be written as
−∂n ½Ca ∂a �B

m� + Ca ∂n ∂a �B
m. It is elementary to note that the

second term will vanish off when we shall multiply by Cn

from the left (i.e., Cn Ca ∂a ∂n �B
m = 0). The substitution of

the leftover term (i.e., −∂n ½Ca ∂a �B
m�) into (41) leads to the

following:

Cn ∂n f m1 + �Ba ∂a C
mð Þ − Ca ∂a �B

m� �
+ f a1 + �Bn ∂n C

að Þ − Cn ∂n �B
a� �

∂a C
mð Þ = 0:

ð42Þ

It is straightforward to note that f m1 = Ca ∂a �B
m − �Ba ð∂a

CmÞ satisfies the above equation very beautifully. Thus, we
have, ultimately, the following expansion (compare equation
(28)):

Bm acð Þ
bð Þ ξ, θ

� �
= �Bm

ξð Þ + θ Ca ∂a �B
m − �Ba ∂a C

m� �
≡ �Bm

ξð Þ + θ sb �B
m
ξð Þ� �

:

ð43Þ

Hence, we have derived the BRST transformations sb
�Bm = Ca ∂a �B

m − �Ba ∂a Cm as the coefficient of θ in the above
superexpansion. It should be noted that the subscript ðbÞ on
the superfield (compare l.h.s. of equation (43)) denotes that

Bm ðacÞ
ðbÞ ðξ, θÞ has been derived after the imposition of the

BRST invariant restriction (40).
At this stage, we now wish to derive the BRST symmetry

transformation ½sb ~gmn = ∂kðCk ~gmnÞ − ð∂k CmÞ ~gkn − ð∂k CnÞ
~gmk� using the theoretical strength of ACSA to BRST formal-
ism. Towards this goal in mind, we have the following
restriction on the antichiral superfields which have their
superexpansions in (28) and (32), namely,

Fk acð Þ
bð Þ ξ, θ
� �

∂k ~G
mn acð Þ

ξ, θ
� �

+ ∂k F
k acð Þ
bð Þ ξ, θ
� �h i

� ~Gmn acð Þ
ξ, θ
� �

− ∂k F
m acð Þ
bð Þ ξ, θ
� �h i

� ~Gkn acð Þ
ξ, θ
� �

− ∂k F
n acð Þ
bð Þ ξ, θ
� �h i

~G
km acð Þ

ξ, θ
� �

= Ck ξð Þ ∂k ~g
mn ξð Þ½ � + ∂k C

k ξð Þ
h i

~gmn ξð Þ
− ∂k C

m ξð Þ½ � ~gkn ξð Þ − ∂k C
n ξð Þ½ � ~gmk ξð Þ:

ð44Þ

The above restriction has been obtained by a close look
at the off-shell nilpotency property ðs2b ~gmn = 0Þ of the BRST
symmetry transformations (6). This restriction on the antic-
hiral superfields leads to the following condition on the basic

and secondary fields:

Ck ∂k ~R
mn

� �
+ ∂k C

k
� �

~R
mn − ∂k C

l
� �

∂l C
k

� �
~gmn

− Cl ∂k ∂l C
k

� �
~gmn − Cl ∂l C

k
� �

∂k ~g
mnð Þ

− ∂k C
mð Þ ~Rkn + ∂k C

l
� �

∂l C
mð Þ ~gkn + Cl ∂k ∂l C

mð Þ ~gkn

− ∂k C
nð Þ ~Rmk + ∂k C

l
� �

∂l C
nð Þ ~gmk + Cl ∂k ∂l C

nð Þ ~gmk = 0,

ð45Þ

where we have used the superexpansions from (28) and (31).
It is straightforward to note that the first five terms, above,
lead to the following total derivative, namely,

∂k Ck ~R
mn − Cl ∂l C

k
� �

~gmn
h i

≡ ∂k Ck ~R
mn − ∂l Cl ~gmn

� �n oh i
,

ð46Þ

where we have used −Cl ð∂l CkÞ ~gmn = −∂l ½Cl Ck ~gmn� + ð∂l
ClÞ ~gmn + Cl Ck ð∂l ~gmnÞ and ∂k ∂l ðCl Ck ~gmnÞ = 0. Adding
and substracting ∂k ½Ck ð∂l CmÞ ~gln + Ck ð∂l CnÞ ~gml�, we
obtain the following equation from (45):

∂k Ck ~R
mn − ∂l Cl ~gmn

� �
+ ∂l C

mð Þ ~gln + ∂l C
nð Þ ~gml

n oh i
− ∂k Ck ∂l C

mð Þ ~gln + Ck ∂l C
nð Þ ~gml

h i
= 0:

ð47Þ

Expanding the total derivative in the second entry of the
above equation and rearranging these, we obtain the follow-
ing interesting equation, namely,

∂k Ck ~R
mn − ∂l Cl ~gmn

� �
+ ∂l C

mð Þ ~gln + ∂l C
nð Þ ~gml

n oh i
− ∂k C

mð Þ ~R
nk − ∂l Cl ~gnk

� �
+ ∂l C

k
� �

~gln
h i

− ∂k C
nð Þ ~R

mk − ∂l Cl ~gmk
� �

+ ∂l C
k

� �
~glm

h i
= 0:

ð48Þ

Adding and subtracting ð∂k CmÞ ð∂l CnÞ ~glk + ð∂k CnÞ ð∂l
CmÞ ~glk, we finally obtain the following very nice-looking
equation:

∂k Ck ~R
mn − ∂l Cl ~gmn

� �
+ ∂l C

mð Þ ~gln + ∂l C
nð Þ ~gml

n oh i
− ∂k C

mð Þ ~R
nk − ∂l Cl ~gnk

� �
+ ∂l C

k
� �

~gln + ∂l C
nð Þ ~glk

h i
− ∂k C

nð Þ ~R
mk − ∂l Cl ~gmk

� �
+ ∂l C

k
� �

~glm + ∂l C
mð Þ ~glk

h i
= 0:

ð49Þ

It should be noted that what we have added and sub-
tracted in (48) is basically equal to zero on its own because
we make the following observation:

~glk ∂k C
mð Þ ∂l C

nð Þ + ∂k C
nð Þ ∂l C

mð Þ½ � = 0: ð50Þ
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In other words, the last entries in the second and third
lines of equation (49) are zero on their own. We note that
the symmetric indices in ð~glkÞ and antisymmetric indices
ðl, kÞ in the square bracket are summed up to yield zero.
It is straightforward now to point out that

~R
mn = ∂k Ck ~gmn

� �
− ∂k C

mð Þ ~gkn − ∂k C
nð Þ ~gmk, ð51Þ

which satisfies equation (49). As a consequence, we have
the following:

~G
mn acð Þ
bð Þ ξ, θ

� �
= ~gmn ξð Þ + θ ∂k Ck ~gmn

� �
− ∂k C

mð Þ ~gkn
h

− ∂k C
nð Þ ~gmk

i
≡ ~gmn ξð Þ + θ sb ~g

mn ξð Þ½ �,
ð52Þ

where the coefficient of θ is nothing but the BRST symme-
try transformation for ~gmnðξÞ that has been quoted in (6).
The subscript ðbÞ on the l.h.s. of the above equation
denotes that the antichiral superfield ~G

mn
ðbÞðξ, θÞ has been

obtained after the application of the BRST invariant
restriction on a specific combination of superfields (com-
pare equation (44)).

We set out now to derive the anti-BRST symmetry trans-
formations (5) by using ACSA to BRST formalism where
first of all, we generalize the following basic and auxiliary
fields of our theory onto a ð2, 1Þ-dimensional chiral super
submanifold:

Bm ξð Þ⟶ Bm cð Þ ξ, θð Þ = Bm ξð Þ + θ �f
m
1 ξð Þ,

E ξð Þ⟶ E cð Þ ξ, θð Þ = E ξð Þ + θ �f 2 ξð Þ,
�Cm

ξð Þ⟶ �Fm cð Þ ξ, θð Þ = �Cm
ξð Þ + θ �b

m
1 ξð Þ,

~gmn ξð Þ⟶ ~G
mn cð Þ

ξ, θð Þ = ~gmn ξð Þ + θ e�Rmn
ξð Þ,

ð53Þ

where ð�f m1 , �f
m
2 , e�RmnÞ are the fermionic and �b

m
1 is the bosonic

secondary fields that are to be determined in terms of the
basic and auxiliary fields of the (anti-)BRST invariant
Lagrangian densities LðaÞb (compare equation (1)). It is ele-
mentary to note that, in the limit θ = 0, we retrieve the
bosonic and auxiliary fields of LðaÞb. We point out that sab
�BmðξÞ = 0 implies that we have Bm

ðabÞðξ, θÞ = �BmðξÞ where

Bm
ðabÞðξ, θÞ is the superfield that has been obtained after the

restriction on the chiral superfield Bmðξ, θÞ that is obtained
in the generalization �BmðξÞ⟶ Bmðξ, θÞ on the chiral super
submanifold (which is parameterized by ðξa, θÞ where ξa

characterize the 2D worldsheet and θ is the fermionic ðθ2
= 0Þ Grassmannian variable). The subscript ðabÞ denotes
the chiral superfield which leads to the derivation of ½sab �B
ðξÞ = 0� as the coefficient of θ in its expansion: Bm

ðabÞðξ, θÞ
= �BmðξÞ + θ ð0Þ ≡ �BmðξÞ + θ ðsab �BmÞ. It should be further
noted that we have not devoted time on the derivation of
the (anti-)BRST symmetries that have already been derived

and mentioned in Section 3 where the theoretical strength
of MBTSA has been exploited.

A close and careful observation of the anti-BRST sym-
metry transformations (5) demonstrates that we have the
following very useful and interesting combinations of fields:

sab �Ca ∂a X
μ� �

= 0, sab �Ca ∂a B
m − Ba ∂a �C

m� �
= 0,

sab �Ca ∂a E + ∂a �C
a� �

E
� �

= 0,

sab �Ca ∂a ~g
mn + ∂a �C

a� �
~gmn − ∂a �C

m� �
~gan − ∂a �C

n� �
~gma� �

= 0,
ð54Þ

as the anti-BRST invariant quantities. The fundamental
requirement of ACSA is that the generalizations of the quan-
tities (present in the square bracket of (54)) onto a suitably
chosen ð2, 1Þ-dimensional chiral super submanifold should
be independent of the Grassmannian variable θ. As a conse-
quence, we have the following restrictions:

�Fa cð Þ ξ, θð Þ ∂a Xμ h,cð Þ ξ, θð Þ = �Ca
ξð Þ ∂a Xμ ξð Þ,

�Fa cð Þ ξ, θð Þ ∂a Bm cð Þ ξ, θð Þ − Ba cð Þ ξ, θð Þ ∂a �Fm cð Þ ξ, θð Þ
= �Ca

ξð Þ ∂a Bm ξð Þ − Ba ξð Þ ∂a �Cm
ξð Þ,

�Fa cð Þ ξ, θð Þ ∂a E cð Þ ξ, θð Þ + ∂a �F
a cð Þ ξ, θð Þ

h i
E cð Þ ξ, θð Þ

= �Ca
ξð Þ ∂a E ξð Þ + ∂a �C

a
ξð Þ� �

E ξð Þ,
�Fa cð Þ ξ, θð Þ ∂a ~G

mn cð Þ
ξ, θð Þ + ∂a �F

a cð Þ ξ, θð Þ
h i

~G
mn cð Þ

ξ, θð Þ
− ∂a �F

m cð Þ ξ, θð Þ
h i

~G
an cð Þ

ξ, θð Þ − ∂a �F
n cð Þ ξ, θð Þ

h i
� ~Gma cð Þ

ξ, θð Þ = �Ca
ξð Þ ∂a ~g

mn ξð Þ½ � + ∂a �C
a
ξð Þ� �

~gmn ξð Þ
− ∂a �C

m
ξð Þ� �

~gan ξð Þ − ∂a �C
n
ξð Þ� �

~gma ξð Þ,
ð55Þ

where we have taken the superexpansions from (53) and
Xμðh,cÞðξ, θÞ is the chiral limit ðθ = 0Þ of the full expansion
(compare (27)). In other words, we have the following:

Xμ h,cð Þ ξ, θð Þ = Xμ ξð Þ + θ �Ca ∂a X
μ ξð Þ� �

, ð56Þ

where the superscript ðh, cÞ denotes the chiral version of the
full expansion of XμðhÞðξ, θÞ that has been obtained in the
previous section (compare equation (27)).

We would like to lay emphasis on the fact that all the

secondary fields ð�f m1 , f2, e�RmnÞ and �b
m
1 can be computed in

an exactly similar manner as we have done in the case of
determination of the BRST symmetry transformations ðsbÞ
for the superexpansions in equation (28). It turns out that,
adopting this logic, we obtain the following:

�f
m
1 = �Ba ∂a �C

m − ∂a �B
a� �

�Cm, f2 = ∂a �C
a� �

E + �Ca ∂a Eð Þ,
�b
m
1 = �Ca ∂a �C

m, e�Rmn
= ∂a �Ca

~gmn� �
− ∂a �C

m� �
~gan − ∂a �C

n� �
~gma:

ð57Þ
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Substitutions of the above secondary fields into the chiral
superexpansions of equation (53), we obtain the following
final superexpansions:

Bm cð Þ
abð Þ ξ, θð Þ = Bm ξð Þ + θ �Ca ∂a B

m − Ba ∂a �C
m� �

≡ Bm ξð Þ + θ sab B
m ξð Þ½ �,

E cð Þ
abð Þ ξ, θð Þ = E ξð Þ + θ ∂a �Ca E

� �� �
≡ E ξð Þ + θ sab E ξð Þ½ �,

�Fm cð Þ
abð Þ ξ, θð Þ = �Cm

ξð Þ + θ �Ca ∂a �C
m� �

≡ �Cm
ξð Þ + θ sab �C

m
ξð Þ� �

,

~G
mn cð Þ
abð Þ ξ, θð Þ = ~gmn ξð Þ + θ ∂a �Ca

~gmn� �
− ∂a �C

m� �
~gan

�
− ∂a �C

n� �
~gma� ≡ ~gmn ξð Þ + θ sab ~g

mn ξð Þ½ �,
ð58Þ

where the subscript ðabÞ on the chiral superfields on the
l.h.s. of the above equation (58) denotes that the above
superfields have been obtained after the quantum gauge
(i.e., anti-BRST) invariant restrictions on the chiral super-
fields (compare equation (55)) have been imposed. It can
be readily checked that we have obtained the anti-BRST
symmetry transformations sab B

m = �Ca ∂a Bm − Ba ∂a �C
m, sab

E = ∂a ½�Ca E�, sab �Cm = �Ca ∂a �C
m, sab ~gmn = ∂a ð�Ca

~gmnÞ − ð∂a
�CmÞ ~gan − ð∂a �CnÞ ~gma as the coefficients of the chiral super-
expansions in (58). It is nice to note that ∂θ ΩðabÞðξ, θÞ =
sab ωðξÞ where the generic chiral superfield ΩðabÞðξ, θÞ stands
for the l.h.s. of (58) and the ω = Bm, E, �Cm, ~gmn generic ordi-
nary field.

We end this section with the following remarks. First, we
have derived the (anti-)BRST symmetry transformations for
the fields by exploiting the theoretical tricks of ACSA to
BRST formalism. These fields are the ones for which the
MBTSA has not been able to derive the (anti-)BRST symme-
try transformations. Second, a careful and close observation
of the theoretical contents of Sections 3 and 4 demonstrates
that we have derived all the nilpotent (anti-)BRST symmetry
transformations for our theory by exploiting the theoretical
strength of MBTSA and ACSA. Finally, the (anti-)BRST
symmetry transformations for the component fields A0, A1,
and A2 of ~g

mn (compare equation (3)) can be obtained from
the exact expressions for sb ~g

mnðξÞ and sab ~g
mnðξÞ that have

been quoted in (6) and (5). To be more transparent, we find
the following antichiral superexpansions:

A0 ξð Þ⟶ A acð Þ
0 bð Þ ξ, θ
� �

= A0 ξð Þ + θ Cm ∂m A0 − ∂0 C
1 − ∂1 C

0� ��
� A2 − ∂0 C

1 + ∂1 C
0� �

A1� ≡ A0 ξð Þ + θ sb A0 ξð Þ½ �,

A1 ξð Þ⟶ A acð Þ
1 bð Þ ξ, θ
� �

= A1 ξð Þ + θ Cm ∂m A1 − ∂1 C
0 + ∂0 C

1� ��
� A0 − ∂0 C

0 − ∂1 C
1� �

A2� ≡ A1 ξð Þ + θ sb A1 ξð Þ½ �,

A2 ξð Þ⟶ A acð Þ
2 bð Þ ξ, θ
� �

= A2 ξð Þ + θ Cm ∂m A2 − ∂1 C
0 − ∂0 C

1� ��
� A0 − ∂0 C

0 − ∂1 C
1� �
A1� ≡ A2 ξð Þ + θ sb A2 ξð Þ½ �,

ð59Þ

where the coefficients of θ are nothing but the BRST symme-
try transformations (compare equation (8)) on A0ðξÞ, A1ðξÞ,
and A2ðξÞ. In an exactly similar fashion, we can obtain the
anti-BRST symmetry transformations on A0, A1, and A2

from the following chiral superexpansions:

A0 ξð Þ⟶A cð Þ
0 abð Þ ξ, θð Þ =A0 ξð Þ + θ �Cm ∂m A0 − ∂0 �C

1 − ∂1 �C
0� �h

� A2 − ∂0 �C
1 + ∂1 �C

0� �
A1� ≡ A0 ξð Þ

+ θ sab A0 ξð Þ½ �,
A1 ξð Þ⟶A cð Þ

1 abð Þ ξ, θð Þ =A1 ξð Þ + θ �Cm ∂m A1 − ∂1 �C
0 + ∂0 �C

1� �h
� A0 − ∂0 �C

0 − ∂1 �C
1� �

A2� ≡ A1 ξð Þ
+ θ sab A1 ξð Þ½ �,

A2 ξð Þ⟶A cð Þ
2 abð Þ ξ, θð Þ =A2 ξð Þ + θ �Cm ∂m A2 − ∂1 �C

0 − ∂0 �C
1� �h

� A0 − ∂0 �C
0 − ∂1 �C

1� �
A1� ≡A2 ξð Þ

+ θ sab A2 ξð Þ½ �:
ð60Þ

In the above, the coefficients of θ are nothing but the
anti-BRST symmetry transformations for the component
fields A0, A1, and A2 (compare equation (7)). We point out
that the subscripts ðbÞ and ðabÞ in equations (59) and (60)
have their straightforward meaning as we have established
earlier. We lay emphasis on the fact that the superexpan-
sions in (59) and (60) are very crucial and important as will
be clear in the next section where we shall discuss the sym-
metry invariances.

5. Invariance of the Lagrangian
Densities: ACSA

In this section, we capture the (anti-)BRST invariance of the
Lagrangian densities (1) in terms of the (anti-)chiral super-
fields that have been obtained after the imposition of the
(anti-)BRST invariant restrictions. In this connection, it is
worth pointing out that we have already computed the BRST
invariance of Lb and anti-BRST invariance of Lab in the
ordinary space in our earlier work [17]. To be precise, the
action integrals S1 =

Ð
d2 ξLb and S2 =

Ð
d2 ξLab remain

invariant under the continuous, infinitesimal, and nilpotent
transformations in (6) and (5). In this connection, first of
all, we note that the following are true for the classical
Lagrangian density ðL0Þ, namely,

sb L0 = ∂a Ca L0½ �, sab L0 = ∂a �Ca L0
� �

, ð61Þ

and the total Lagrangian densities Lb and Lab transform as
follows [17]:

sb Lb = ∂a Ca L0 + B0 A0 + B1 A1ð Þ + i �C1C
b ∂b Ca A1ð Þ

h
+ i �C1 C

a ∂0 C
1 + ∂1 C

0� �
A0 + i �C0C

b ∂b Ca A0ð Þ
+ i �C0 C

a ∂0 C
1 + ∂1 C

0� �
A1 + i �C0 C

a ∂0 C
1 − ∂1 C

0� �
� A2 + i �C1 C

a ∂0 C
0 − ∂1 C

1� �
A2
i
:

ð62Þ
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sab Lab = ∂a �Ca L0 − �B0 A0 − �B1 A1
� �

− i C1 �C
b ∂b �Ca A1

� �h
− i C1 �C

a ∂0 �C
1 + ∂1 �C

0� �
A0 − i C0 �C

b ∂b �Ca A0
� �

− i C0 �C
a ∂0 �C

1 + ∂1 �C
0� �

A1 − i C0 �C
a ∂0 �C

1 − ∂1 �C
0� �

� A2 − i C1 �C
a ∂0 �C

0 − ∂1 �C
1� �

A2
i
:

ð63Þ
The above observations demonstrate that sb S1 = 0 and

sab S2 = 0 for the physical fields of the (anti-)BRST invariant
theories which vanish off [16] at σ = 0, π and τ⟶ ±∞ due
to Gauss’s divergence theorem. We mention, in passing, that
sb S0 = 0 and sab S0 = 0 (where S0 =

Ð
d2 ξL0) due to the

(anti-)BRST transformations for L0 in (61).
First of all, we capture the (anti-)BRST invariance of the

action integral S0 =
Ð
d2 ξL0 within the realm of ACSA. In

this regard, we note the following (anti-)chiral generaliza-
tions of L0 to its counterpart super-Lagrangians (i.e., L0
⟶L0) on the ð2, 1Þ-dimensional (anti-)chiral super sub-
manifolds, namely,

L0 ⟶L acð Þ
0 ξ, θ
� �

= −
1
2k

~G
mn acð Þ
bð Þ ξ, θ

� �
∂m ~X

μ h,acð Þ
ξ, θ
� �

� ∂n ~X h,acð Þ
μ ξ, θ

� �
+ E acð Þ

bð Þ ξ, θ
� �

� det ~G
acð Þ
bð Þ ξ, θ
� �

+ 1
h i

,

L0 ⟶L cð Þ
0 ξ, θð Þ = −

1
2k

~G
mn cð Þ
abð Þ ξ, θð Þ ∂m ~X

μ h,cð Þ
ξ, θð Þ ∂n ~X h,cð Þ

μ

� ξ, θð Þ + E cð Þ
abð Þ ξ, θð Þ det ~G

cð Þ
abð Þ ξ, θð Þ + 1

h i
,

ð64Þ

where the super-Lagrangian densities (on the l.h.s.) carry
superscripts ðacÞ and ðcÞ to denote that these have been
defined on the (2, 1)-dimensional (anti-)chiral super subma-
nifolds of the (2, 2)-dimensional general supermanifold (that
has been chosen for our discussion). The superfields with
subscripts ðbÞ and ðabÞ as well as with superscripts ðacÞ,
ðcÞ, ðh, cÞ, and ðh, acÞ have already been explained in our
previous and present sections. Equation (61) can be cap-
tured in the superspace (where ACSA plays an important
role). The mappings sb ↔ ∂θ, sab ↔ ∂θ lead to the following
observations:

∂
∂ θ

L acð Þ
0 ξ, θ
� �

= ∂a Ca L0½ � ≡ sb L0,

∂
∂ θ

L cð Þ
0 ξ, θð Þ = ∂a �Ca L0

� �
≡ sab L0:

ð65Þ

Thus, the (anti-)BRST symmetry invariances of L0
have been expressed in the language of ACSA to BRST
formalism. We have performed this exercise separately
because, on its own, the original classical Lagrangian den-
sity L0 transforms to the total derivatives (compare equa-
tion (61)) under the (anti-)BRST symmetry
transformations.

We would like to express the symmetry transformations
(62) and (63) in the realm of ACSA where the superexpan-
sions in (26), (31), (32), (39), (43), (52), and (59) will be
playing decisive roles for the BRST invariance (compare
equation (62)). On the other hand, the superexpansions
(26), (56), (58), and (60) will be very useful in capturing
the anti-BRST invariance (compare equation (63)). With
these inputs at our disposal, we set out to capture the BRST
invariance in terms of ∂θ and Lac

b ðξ, θÞ. Here, the latter is
given in the language of the antichiral superfields that have
been derived after the imposition of the BRST-invariant
restrictions. These antichiral superfields might also be the
limiting cases of the full superexpansions that have been
derived in Section 3, namely,

L acð Þ
b ξ, θ
� �

=L acð Þ
0 ξ, θ
� �

+ B0 ξð ÞA acð Þ
0 bð Þ ξ, θ
� �

+ B1 ξð ÞA acð Þ
1 bð Þ ξ, θ
� �

− i �F acð Þ
1 bð Þ ξ, θ
� �h

� ∂0 F
1 acð Þ
bð Þ ξ, θ
� �

+ ∂1 F
0 acð Þ
bð Þ ξ, θ
� �n o

+ �F acð Þ
0 bð Þ ξ, θ
� �

∂a F
a acð Þ
bð Þ ξ, θ
� �n o

− Fa acð Þ
bð Þ ξ, θ
� �

� ∂a �F
acð Þ
0 bð Þ ξ, θ
� �n oi

A acð Þ
0 bð Þ ξ, θ
� �

− i �F acð Þ
0 bð Þ ξ, θ
� �h

� ∂0 F
1 acð Þ
bð Þ ξ, θ
� �

+ ∂1 F
0 acð Þ
bð Þ ξ, θ
� �n o

− Fa acð Þ
bð Þ ξ, θ
� �

∂a �F
acð Þ
1 bð Þ ξ, θ
� �n o

+ �F acð Þ
1 bð Þ ξ, θ
� �

� ∂a F
a acð Þ
bð Þ ξ, θ
� �n oi

A acð Þ
1 bð Þ ξ, θ
� �

− i �F acð Þ
1 bð Þ ξ, θ
� �h

� ∂0 F
0 acð Þ
bð Þ ξ, θ
� �

− ∂1 F
1 acð Þ
bð Þ ξ, θ
� �n o

+ �F acð Þ
0 bð Þ ξ, θ
� �

� ∂0 F
1 acð Þ
bð Þ ξ, θ
� �

− ∂1 F
0 acð Þ
bð Þ ξ, θ
� �n oi

A acð Þ
2 bð Þ ξ, θ
� �

,

ð66Þ

where we have taken the ordinary fields B0ðξÞ and B1ðξÞ
because we know that BmðξÞ⟶ Bm

ðbÞðξ, θÞ = BmðξÞ due to

the BRST invariance ½sb BmðξÞ = 0� of BmðξÞ]. Ultimately, it
turns out that we obtain the following due to the operation

of ∂θ on LðacÞ
b ðξ, θÞ:

∂
∂ θ

L acð Þ
b ξ, θ
� �

= ∂a Ca L0 + B0 A0 + B1 A1ð Þ + i �C1C
b ∂b

h
� Ca A1ð Þ + i �C1 C

a ∂0 C
1 + ∂1 C

0� �
A0

+ i �C0C
b ∂b Ca A0ð Þ + i �C0 C

a ∂0 C
1 + ∂1 C

0� �
� A1 + i �C0 C

a ∂0 C
1 − ∂1 C

0� �
A2 + i �C1 C

a

� ∂0 C
0 − ∂1 C

1� �
A2
i
≡ sb Lb:

ð67Þ

It is evident that the above equation captures the BRST
invariance of the Lagrangian density Lb in the superspace
(as is clear from our observation on the r.h.s.).

We can repeat the same exercise for the anti-BRST
invariance. For this purpose, first of all, we generalize Lab
to its counterpart chiral super-Lagrangian density on the
(2, 1)-dimensional chiral super submanifold as
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L cð Þ
ab ξ, θð Þ =L cð Þ

0 ξ, θð Þ − �B0 ξð ÞA cð Þ
0 abð Þ ξ, θð Þ − �B1 ξð ÞA cð Þ

1 abð Þ ξ, θð Þ
+ i F cð Þ

1 abð Þ ξ, θð Þ ∂0 �F
1 cð Þ
abð Þ ξ, θð Þ + ∂1 �F

0 cð Þ
abð Þ ξ, θð Þ

n oh
+ F cð Þ

0 abð Þ ξ, θð Þ ∂a �F
a cð Þ
abð Þ ξ, θð Þ

n o
+ ∂a F

cð Þ
0 abð Þ ξ, θð Þ

n o
� �Fa cð Þ

abð Þ ξ, θð Þ
i
A cð Þ
0 abð Þ ξ, θð Þ + i F cð Þ

0 abð Þ ξ, θð Þ
h

� ∂0 �F
1 cð Þ
abð Þ ξ, θð Þ + ∂1 �F

0 cð Þ
abð Þ ξ, θð Þ

n o
+ F cð Þ

1 abð Þ ξ, θð Þ
� ∂a �F

a cð Þ
abð Þ ξ, θð Þ

n o
+ ∂a F

cð Þ
1 abð Þ ξ, θ

� �n o
� �Fa cð Þ

abð Þ ξ, θð Þ
i
A cð Þ
1 abð Þ ξ, θð Þ + i F cð Þ

1 abð Þ ξ, θð Þ
h

� ∂0 �F
0 cð Þ
abð Þ ξ, θð Þ − ∂1 �F

1 cð Þ
abð Þ ξ, θð Þ

n o
+ F cð Þ

0 abð Þ ξ, θð Þ

� ∂0 �F
1 cð Þ
abð Þ ξ, θð Þ − ∂1 �F

0 cð Þ
abð Þ ξ, θð Þ

n oi
A cð Þ
2 abð Þ ξ, θð Þ,

ð68Þ

where the ordinary fields �B0ðξÞ and �B1ðξÞ are present in the
above super-Lagrangian density because sab �B

a = 0 which

implies that �BaðξÞ⟶ BaðcÞ
ðabÞðξ, θÞ = �BaðξÞ + θ ð0Þ ≡ �BaðξÞ. In

other words, there is no chiral θ-dependence on the r.h.s.

of the superexpansion of the superfield BaðcÞ
ðabÞðξ, θÞ. The rest

of the notations for the chiral superfields have already been
explained earlier. At this juncture, in view of the
mappingsab ↔ ∂θ, we can capture the anti-BRST invariance
(63) by applying a derivative ∂θ on (68) which yields the fol-
lowing:

∂
∂ θ

L cð Þ
ab ξ, θð Þ = ∂a �Ca L0 − �B0 A0 − �B1 A1

� �
− i C1 �C

b ∂b �Ca A1
� �h

− i C1 �C
a ∂0 �C

1 + ∂1 �C
0� �

A0 − i C0 �C
b ∂b

� �Ca A0
� �

− i C0 �C
a ∂0 �C

1 + ∂1 �C
0� �

� A1 − i C0 �C
a ∂0 �C

1 − ∂1 �C
0� �

A2 − i C1 �C
a

� ∂0 �C
0 − ∂1 �C

1� �
A2

i
≡ sab Lab:

ð69Þ

Hence, we have captured the anti-BRST symmetry
invariance (63) in the language of ACSA to BRST formalism
(as is evident from the r.h.s. of (69)).

We close this section with the following remark. We can
capture the basic ideas behind the derivations of Lb and Lab
which have been explained in equation (4). In view of the
mappings sb ↔ ∂θ, sab ↔ ∂θ, we can express the super (anti-
)BRST invariant Lagrangian densities corresponding to the
ordinary Lagrangian densities (compare equation (4)) as

L cð Þ
ab ξ, θð Þ =L cð Þ

0 ξ, θð Þ + ∂
∂ θ

i F cð Þ
0 abð Þ ξ, θð ÞA cð Þ

0 abð Þ ξ, θð Þ + i F cð Þ
1 abð Þ ξ, θð ÞA cð Þ

1 abð Þ ξ, θð Þ
h i

,

L acð Þ
b ξ, θ
� �

=L acð Þ
0 ξ, θ
� �

+ ∂
∂ θ

−i �F acð Þ
0 bð Þ ξ, θ
� �

A acð Þ
0 bð Þ ξ, θ
� �

− i �F acð Þ
1 bð Þ ξ, θ
� �

A acð Þ
1 bð Þ ξ, θ
� �h i

,

ð70Þ

where all the symbols have been explained in our earlier dis-
cussion. It is crystal clear, from the above expression, that
the (anti-)BRST invariance of the action integrals S1 =

Ð
d2

ξLb and S2 =
Ð
d2 ξLab can be captured in the terminology

of ACSA to BRST formalism because sb S1 and sab S2 will be

zero in the ordinary space. Furthermore, we note that ∂θ
LðcÞ
ab ðξ, θÞ and ∂θ L

ðacÞ
b ðξ, θÞ will always produce the total

derivatives in the ordinary space thereby rendering the
action integrals (i.e., S1 and S2) equal to zero (compare equa-
tion (70)). To be precise, the nilpotency ð∂2

θ
= 0, ∂2θ = 0Þ

property of the translational generators ð∂θ, ∂θÞ will ensure
that ∂θ LðcÞ

ab ðξ, θÞ and ∂θ L
ðacÞ
b ðξ, θÞ will be always the total

derivatives in the ordinary space. Hence, we are able to cap-
ture the symmetry invariance(s) of the action integrals (cor-
responding to the Lagrangian densities Lb and Lab) using
ACSA.

6. Conclusions

In our present endeavor, we have exploited the theoretical
potential of MBTSA and ACSA to derive all the (anti-)BRST
symmetry transformations for the 2D diffeomorphism sym-
metry invariant model of a bosonic string theory. These
symmetry transformations [sðaÞb] are proper because they
are off-shell nilpotent ½s2ðaÞb = 0� of order two and absolutely

anticommuting (i.e., sb sab + sab sb = 0) in nature (compare
equations (9), (6), and (5)). The latter property of the
(anti-)BRST symmetry transformations [sðaÞb] is satisfied if
and only if we invoke the sanctity of the CF-type restrictions
Ba + �Ba + i ðCm ∂m �Ca + �Cm ∂m CaÞ = 0 (with a,m = 0, 1)
which define a submanifold in the quantum Hilbert space
of fields where the Nakanishi-Lautrup-type auxiliary fields
as well as the (anti-)ghost fields are present algebraically in
a specific manner (compare equation (23)). These restric-
tions are physical in some sense because they are (anti-
)BRST symmetry invariant (compare equations (6) and
(5)) on the above submanifold. Hence, their imposition on
our BRST-quantized theory is logical.

By applying the theoretical strength of MBTSA, we have
been able to derive, in one stroke, the (anti-)BRST symmetry
transformations together for the Lorentz pure scalar fields
(e.g., XμðξÞ, ðdet ~gÞ) and the 2D version of the universal
CF-type restrictions: Ba + �Ba + i ðCm ∂m �Ca + �Cm ∂m CaÞ = 0.
These 2D restrictions are the limiting case of the D-
dimensional diffeomorphism invarant theory where the
superfield approach (developed by us [13, 18]) leads to the
existence of the D-dimensional CF-type restrictions Bμ +
�Bμ + i ðCρ ∂ρ �Cμ + �Cρ ∂ρ CμÞ = 0 (with μ = 0, 1, 2,⋯,D − 1)
where the fermionic (anti-)ghost fields ð�CμÞCμ correspond to
the D-dimensional infinitesimal and continuous diffeomorph-
ism symmetry transformations: xμ ⟶ xμ′ = xμ − εμðxÞ. In
these infinitesimal transformations, the parameters εμðxÞ are
the diffeomorphism transformation parameters. The symbols
ð�BμÞBμ are nothing but the Nakanishi-Lautrup-type auxiliary
fields in the D-dimensional theory. The existence of the D-
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dimensional CF-type restrictions Bμ + �Bμ + i ðCρ ∂ρ �C
μ + �Cρ

∂ρ CμÞ = 0 is universal, and so far, their presence has been
shown explicitly in the cases of 2D and 1D diffeomorphism
invariant theories (see [14, 17] for details).

Within the ambit of MBTSA, it becomes evident that we
have to take, at least, the help of the (anti-)chiral superfield
expansions (compare equation (26)) so that we can obtain
sb �Cμ = i Bμ and sab Cμ = i �Bμ for the D-dimensional diffeo-
morphism invariant theory (see [13, 18] for details) in addi-
tion to the validity of off-shell nilpotency property so that we
can obtain: sb Cμ = Cρ ∂ρ Cμ and sab �Cμ = �Cρ ∂ρ �Cμ. The
above two inputs are essential for the completeness of
MBTSA. Hence, we have exploited the theoretical potential
of the ACSA to BRST formalism (see [15]) so that both the
above inputs can be taken care of. As a consequence, it
becomes important to blend together the ideas from the
MBTSA and ACSA so that we can derive all the (anti-)BRST
symmetry transformations for the all the fields of a diffeo-
morphism invariant theory along with the derivation of
appropriate (anti-)BRST invariant CF-type restrictions. This
is what we have precisely done in our present investigation.
Our earlier works (see [14] and the references therein) on
the 1D diffeomorphism invariant models of the relativistic
and nonrelativistic particles (of SUSY and non-SUSY varie-
ties) have also exploited the ideas behind MBTSA and ACSA

together to obtain the 1D version ½B + �B + i ð�C _C − _�C CÞ = 0�
of the universal D-dimensional CF-type restrictions that
have been derived and thoroughly discussed in [13, 18].

In our earlier work [17] on our present bosonic string, we
have computed the expressions for the BRST and anti-BRST
charges in the flat space. In the paper by Kato and Ogawa
[16], the nilpotency of the BRST charge has been proven
to demonstrate that the quantum version of the theory is
valid only when D = 26 and α0 = 1. It will be a very nice
future endeavor for us to take the expression for the anti-
BRST charge and plug in the normal mode expansions of
the fields (with creation and annihilation operators in it)
so that the quantum version of it can be obtained. With
appropriate boundary conditions on the target space coordi-
nate fields and (anti-)ghost fields, it will be challenging to
derive D = 26 and α0 = 1 from the requirement of the nilpo-
tency of the anti-BRST charge in the flat limit. We are pres-
ently involved with this problem and our results/
observations will be reported elsewhere.

As pointed out earlier, our present 2D diffeomorphism
invariant theory is different from our earlier works on the
1D diffeomorphism (i.e., reparameterization) invariant theo-
ries (see [14] and the references therein) in the sense that the
latter theoretical models have the gauge symmetry transfor-
mations, too, which are equivalent to the reparameterization
(i.e., 1D diffeomorphism) symmetry transformations in the
specific limits (see [14, 19] for details). It is worth emphasi-
zing that the gauge symmetry transformations (generated
by the first-class constraints) have been exploited for the
BRST quantization in [19] in the cases of the 1D diffeo-
morphism (i.e., reparameterization) invariant models. The
latter models are nothing but the non-SUSY scalar relativis-
tic and SUSY spinning relativistic particles. We lay emphasis

on the fact that the reparameterization symmetry transfor-
mations of these models have been left untouched in [19]
as far as the BRST quantization scheme is concerned. We
have taken this challenge in our earlier works (see [14] and
the references therein) for the BRST quantization of these
models.
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