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The uncertainty principle stands as a fundamental tenet within the realm of quantum theory. In this study, we embark on a
reexamination of an emerging variant of the uncertainty relation within both pure and mixed quantum systems, leveraging a
geometric elucidation. Subsequently, an enhancement to this relation is achieved by the incorporation of a surface angle
denoted as θ, thereby transforming it from an inequality into an equation. Notably, this surface angle encapsulates the
dynamics inherent in quantum state transitions. Complementing our analysis, a series of calculations are conducted, yielding
results that offer an intuitive elucidation of the uncertainty relation across distinct quantum states. Consequently, this method
bears significance as a pivotal visual insight within the domain of quantum information and measurement.

1. Introduction

Uncertainty relations, often referred to as Heisenberg’s
uncertainty principle, are a fundamental concept in quan-
tum mechanics that describes the inherent limits on our
ability to simultaneously measure certain pairs of physical
properties of a particle, such as position and momentum
[1, 2], yielding the venerable inequality ΔxΔp ≥ ℏ/2. Subse-
quent to this, Robertson extended the notion of the uncer-
tainty relation [3] by considering two arbitrary observables,
denoted as A and B. This extension results in the generalized
form ΔAΔB ≥ C , where C denotes the commutator
(2iC = A, B ). Within the quantum information domain,
the uncertainty relation also finds expression through the
lens of the Shannon entropies [4, 5]. An improved formula-
tion takes the following shape: H A +H B ≥ −2 log cab,
where the Shannon entropy is defined as H A = −∑jPj ln
Pj, cab = maxj,k aj bk , aj with j = 1,⋯,N be the corre-
sponding complete sets of normalized eigenvectors [6].

Advancements in the exploration of the uncertainty rela-
tion hold substantial implications for the structure of quan-
tum mechanics, while also yielding extensive repercussions
within the realm of quantum information sciences [1]. Note-
worthy contributions include the derivation of quantum
separability criteria [7] and the determination of quantum
nonlocality [8, 9], as exemplified in a recent review such as
Ref. [10]. As such, the uncertainty principle remains an endur-
ing and indispensable cornerstone in contemporary physics.

While advances have been achieved in enhancing the
variance-based uncertainty relation [11, 12], the persistent
issue of lower bound reliance on the quantum state remains.
Furthermore, these advancements are not exempt from the
challenge known as the “triviality” problem [13]. By amal-
gamating the methodologies of entropic measures and vari-
ance analyses, a nearly flawless lower bound was successfully
derived [14]. Consequently, the pursuit of an optimal trade-
off uncertainty relation for variances of physical observables
that remain independent of the quantum state continues to
stand as an important and unresolved inquiry.
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Evidently, the majority of quantum uncertainty relation
theories adopt a bounded form. This indicates that the
variance of an observable is equal to or greater than a spe-
cific value; however, the means to effectively manipulate
measurement deviation have remained elusive.

The motivation for using geometric illustrations to
represent the uncertainty principle comes from the desire
to visualize and intuitively grasp these abstract and probabi-
listic concepts. While the uncertainty principle can be math-
ematically expressed using operators in quantum mechanics,
it can be difficult to conceptualize in purely mathematical
terms. Geometric representations, such as the Heisenberg
uncertainty principle’s phase space diagram, offer a way to
visualize the trade-off between precision in position and
momentum measurements. By representing uncertainty
geometrically, it becomes more accessible and helps physi-
cists and students gain a deeper insight into the fundamental
limitations of our knowledge at the quantum level.

In the present study, through a detailed derivation
process, a significant revelation emerges. By employing the
geometric framework encompassing both the quantum state
and observable state, an uncertainty relation emerges that
hinges upon a surface angle. Notably, this relation transi-
tions from an inequality to an equation. The crux of this
surface angle lies in its correlation with the dynamics inher-
ent in quantum state transitions. To elucidate these findings,
several illustrative visual representations are employed,
offering a collection of examples and applications.

2. Reformulating the Uncertainty Relation

Quantum theory characterizes systems through density
matrices, and their physical observables take the form of
operators. Typically, these observable operators exhibit
Hermitian properties. In the context of a specific physical
system described by the density matrix ρ, the uncertainty
variance pertaining to the measurement of an observable A
is articulated as follows:

Δ2
A = Tr A2ρ − Tr Aρ 2 1

Broadly speaking, we contemplate a unitary matrix of
dimensions N ×N , symbolized as SU N . Within this
context, let λj represent the generators of the SU N group,
where the index j spans from 1 to N2 − 1. The generators
follow a commutation relation.

λj, λk = 2i 〠
N2−1

l=1
f jklλl, λj, λk = 4

N
δijI + 〠

N2−1

l=1
djklλl 2

In this context, I represents the identity matrix, while djkl
denotes the symmetric structure constants and f jkl stands for
the antisymmetric structure constants pertaining to SU N .
The quantum states and observable quantity of the system
can be denoted in N ×N Hermitian matrix [15] as

ρ = 1
N
I + 1

2 〠
N2−1

j=1
pjλj, A = 1

2 〠
N2−1

j=1
ajλj 3

In this context, we have pj = Tr ρλ j and aj = Tr Aλj .
This pertains to the Bloch vector representation of the
Hermitian matrix, as expounded in [16].

Several well-established relations hold true; λj exhibit
tracelessness; Tr λjλl = 2δij; Tr λjλkλl = 2djkl − 2if kjl; it is
pertinent to note that ajak features a symmetrical structure,
whereas the antisymmetry structure constant f kjl dictates
that ajak f kjl must necessarily be nullified [1].

Upon substituting Eq. (2) and Eq. (3) into Eq. (1), the
variance associated with observable A within the quantum
state characterized by density ρ can be expressed as [1]

Δ2
A = Tr A2ρ − Tr Aρ 2 = 1

2N a
2 + 1

4 a
′ · p −

1
4 a · p

2

= 1
2N a

2 + 1
4 a′ p cos θpa′ −

1
4 a

2
p

2
cos2θpa,

4

where a = aj, al′= ajakdjkl.

This variance is partly related by the angles cos θpa = a ·
p / a p and cos θpa′ = a′ · p / a′ p .

3. Uncertainty Relation and Relevant Equation

For the sake of convenience, let us begin by briefly revisiting
an insightful reference, Ref. [1]. We adopt the utilization of

3-dimensional vectors p , a , and b for the representation
of the quantum state ρ and the two observables A and B
within a 2-dimensional Hilbert space. By defining aA = 1/2
Tr A2 , bB = 1/2 Tr B2 , and g = 1/2 Tr AB and identify-
ing the generators λj of SU 2 as the Pauli matrices σi (where
i = 1, 2, 3), we proceed. Referring to Eq. (4), the variances are
transformed into

4Δ2
A = a2 − a2p2 cos2θpa, 5

4Δ2
B = b2 − b2p2 cos2θpb 6

Given that N = 2 and σj, σk = 2δjk, coupled with the
application of Eq. (5) and Eq. (6), we deduce

cos2θpa =
a2 − 4Δ2

A

a2p2
, sin2θpa =

a2p2 − a2 + 4Δ2
A

a2p2
, 7

cos2θpb =
b2 − 4Δ2

B

b2p2
, sin2θpb =

b2p2 − b2 + 4Δ2
B

b2p2
8
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Examining Figure 1 reveals that θab ≤ θpa + θpb, where the
ranges satisfy 0 ≤ θab, θpa, θpb ≤ π/2 . This deduction yields

cos θab ≥ cos θpa + θpb ≥ cos θpa cos θpb − sin θpa sin θpb

9

By substituting Eq. (7) and Eq. (8) into Eq. (9), while

considering a pure state p = 1 and adhering to the ini-
tial conditions aA = 1/2 Tr A2 , bB = 1/2 Tr B2 , g = 1/2
Tr AB , and cos θab = a · b / a b , the resultant expression
for the uncertainty relation concerning arbitrary observables
A and B is established [1].

ΔAΔB ≥ aA − Δ2
A bB − Δ2

B − g 10

An intriguing point surfaces here. Upon revisiting
Figure 1, it is notable that the three angles conform to the
inequality θpa − θpb ≤ θab ≤ θpa + θpb. This relationship

becomes evident as we visualize the surface b , p enveloping

the p axis. This prompts us to investigate the exact relation-
ships among these three angles.

Pursuing the guidance of Figure 2, we unveil the correla-
tion among the angles. To streamline the procedure, we

establish a ⟶OA , b ⟶ OB , and p ⟶ OP , transition-
ing from Figures 1 and 2. Accordingly, θab ⟶ θAOB, θpb
⟶ θPOB, and θpa ⟶ θPOA once more come into play.

In Figure 2, we observe three real vectors: OA , OP , and
OB . Rescaling the lengths of these vectors offers a conve-
nient approach to determine the interrelation of angles. To

achieve this, we set the length of vector OP such that AP
is perpendicular to OA and BP is also perpendicular to

OP . Consequently, both θAPO and θBPO become right angles,

and θAPB is denoted as θ. This leads us to ascertain that

AP = OA sin θAOP, OP = OA cos θAOP, BP = OP
tan θBOP = OA cos θAOP tan θBOP, and OB = OP /cos
θBOP = OA cos θAOP/cos θBOP.

Then, it follows from ΔAPB that

AB
2
= AP

2
+ BP

2
− 2 AP BP cos θ

= OA
2
sin2 θAOP + OA

2
cos2θAOP tan2θBOP

− 2 OA
2
sin θAOP cos θAOP tan θBOP cos θ

11

For ΔAOB, we have a new relevant equation

cos θAOB =
OA

2
+ OB

2
− AB

2

2 OA OB

= cos θBOP cos θAOP + sin θBOP sin θAOP cos θ,
12

when θ = 0, cos θAOB = cos θBOP − θAOP , and when
the two surfaces are coplane (θ = π), cos θAOB = cos
θBOP + θAOP .

4. The Surface Angle

Now, we have a special angle θ, and it is the surface angle of

the surface a , p and surface (b , p ). From Eq. (10), we
know that uncertainty ΔAΔB has the relation

aA − Δ2
A bB − Δ2

B − g

ΔAΔB
≤ 1, 13

where both ΔA and ΔB are greater than zero. When we use
surface angle θ to express cos θab in Eq. (9), we have

cos θab = cos θpa cos θpb + sin θpa sin θpb cos θ 14

�pa

a
�pb

�pc

�ab

→c→

p→
b
→

Figure 1: The geometric correlation existing within the 3-

dimensional real space between the quantum state p and various

observables like a , b , and c is depicted. This figure is copied
from Ref. [1].

A P

B

O

Figure 2: Three real vectors, denoted as l1 , l2 , and l3 , exhibit

angles of θp, θa, and θb between l1 and l2 , l2 , and l3 , and l1

and l3 , respectively.
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Substituting Eq. (7) and Eq. (8) into Eq. (14), we get

ΔAΔB cos θ = aA − Δ2
A bB − Δ2

B − g 15

When ΔA and ΔB are nonzero, we have

aA − Δ2
A bB − Δ2

B − g

ΔAΔB
= cos θ 16

We rigorously derive an equation of equality (16), rather
than an inequality (13). In other words, the choice of cos θ is
not arbitrary. cos θ possesses a meaningful interpretation
that applies to both geometrical and physical explanations
of the uncertainty relation.

The angle θ represents the angular separation between
two surfaces, each composed of vectors. In regard to Eq.
(16), we ultimately establish that the uncertainty relation
governing the observables A and B (as indicated in Eq.
(10)) not only adheres to a value less than one, but it also
adopts the form of cos θ, with θ being no mere arbitrary
quantity; rather, it exhibits an intricate connection with the

vectors a , b , and p .
Assuming A = σ · na and B = σ · nb , with na and nb ,

denoting arbitrary unit vectors, applying Eq. (16), we obtain

ΔAΔB cos θ = 1 − Δ2
A 1 − Δ2

B − cos θab 17

In this quantum system, suppose Δ2
A = 1/4 and the angle

between observables A and B is π/2, Eq. (18) can tell us

ΔB =
6

5 − cos 2θ
or ΔB =

6
7 + cos 2θ

18

Nonetheless, if we were to utilize the conventional rela-
tionship stated in Eq. (10), the outcome would be confined
to a bound-form result.

3
2 ≤ ΔB ≤

3
2 19

However, within this context, we unveil a precise
solution linking the uncertainty of an observable ΔB and
the surface angle θ, as exemplified in Figure 3.

However, in practice, this does not align with a true
physics experimental procedure. The surface angle θ
signifies a quantum state’s position as it navigates
through the Hilbert space, guided by the parameter θ.
This is due to the fact that each quantum state ρ position
establishes a connection with measurement states a and b
. When performing measurements in an actual experi-

ment, it is not possible to confine the quantum state
within a preparatory phase. All that can be achieved
beforehand is the accurate determination of the two
observables’ states.

Let us delve into the practical measurement process. To
begin with, we revert to the scenario of a pure state,

denoted by p = 1. As an angular vector, p entails two
parameters, namely, θ, ϕ , where θ signifies the polar angle
and ϕ represents the azimuthal angle. During an actual
experiment, if we have designated two observables, a and
b, the angle θab between them must already be established.
Subsequently, leveraging geometrical principles, we can
deduce θap and θbp. Thus, the surface angle θs is directly
derived via Eq. (14),

cos θap = sin θ cos ϕ, cos θbp = sin θ cos θab − ϕ , 20

cos θs =
cos θab − cos θap cos θbp

sin θap sin θbp
21

Putting Eq. (20) and Eq. (21) into Eq. (18), we reach the
final result in Figure 4 that shows ΔB versus θ, ϕ in the
cases of ΔA = 1/2 and θab = π/2.

In Figure 4, it becomes evident that distinct placements

of a quantum state p yield varying degrees of uncertainty.
This vividly illustrates that the dynamic nature of quantum
states gives rise to the presence of uncertainty. Figure 5
demonstrates alternative scenarios depicting varied values
of ΔA and θab.

2.2

2.6

2.8

3.0
�B

�
�—2

�—4
�—4–�—2–

6
5 – cos (2�)

6
7 + cos (2�)

Figure 3: The changing of ΔB with surface angle θ, where 3/2
≤ ΔB ≤ 3/2 . In the case of A = σ · na , B = σ · nb and Δ2

A = 1/4,
θab = π/2.
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5. Summary and Conclusions

We revisit Li and Qiao’s method pertaining to a novel uncer-
tainty relation [1], elaborating on certain calculation and
proof specifics. We then recognize the potential for a more
precise generalization of this relation through geometric
interpretation, succinctly encapsulated by a surface angle θ.
By incorporating the cos θ term into the uncertainty rela-
tion, we not only transform it into an equality equation
but also establish a means to determine any value of uncer-
tainty ΔAΔB via the surface angle θ. This paper marks the

inaugural discovery of this shift from inequality to equation.
The intrinsic significance of this surface angle lies in capturing
the dynamic behavior of quantum states. Through specialized
calculations in a specific scenario, we attain results that vividly
elucidate the interplay between uncertainty and distinct
quantum states. This method stands as a pivotal approach
and an indispensable visual outcome in the realm of quantum
information and measurement. Building upon the visual out-
comes observed in the Bloch vector space [16], our findings
could also find application in various aspects of the uncer-
tainty relation, such as incompatible observables [17–19].
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Figure 4: (a) In the case of Δ2
A = 1/4 and θab = π/2, we can find ΔB has a specific scope from 3/2 to 3/2 for the θ, ϕ plane. (b) We

can change it to polar coordinates to make ΔB be radius; it can be understood directly that different positions of the quantum state will lead
to uncertainty of measurement.
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Figure 5: (a) When Δ2
A = 1/9 and θab = π/3, ΔB corresponds to the radius in polar coordinates. (b) When Δ2

A = 1/25 and θab = π/4, ΔB also
represents the radius in polar coordinates.
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