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We studied the effect of momentum space anisotropy on heavy quarkonium states using an extended magnetized effective fugacity
quasiparticle model (EQPM). Both the real and imaginary part of the potential has been modified through the dielectric function by
including the anisotropic parameter ξ. The real part of the medium-modified potential becomes more attractive in the presence of
the anisotropy and constant magnetic field. The binding energy of the 1S, 2S, and 1P quarkonium states including anisotropy effects
for both the oblate and the isotropic case were studied. We find that the binding energy of QQ states becomes stronger in the
presence of anisotropy. However, the magnetic field is found to reduce the binding energy. The thermal width of the charmonium
and bottomonium 1S states has been studied at constant magnetic field eB = 0 3GeV2 for isotropic and prolate cases. The effect of
magnetic field on the mass spectra of the 1P state for the oblate case was also examined. The dissociation temperature for the 1S, 2S,
and 1P states of charmonium and bottomonium has been determined to be higher for the oblate case with respect to the isotropic case.

1. Introduction

Quarkonium states are sensitive to several important fea-
tures of the quark-gluon plasma (QGP), including Landau
damping and energy loss as mentioned in ref. [1–3]. Based
on the experimental observations, quarkonium suppression,
among the other signatures, is regarded as the clear probe of
the QGP [4–8]. In the five decades since the discovery of the
J/ψ in 1974 [9, 10], quarkonium dissociation due to color
screening in the deconfined medium suggested by Matsui
and Satz [11] has become a pioneering research area in the
particle physics. Several studies such as [12–17] discuss the
important refinements essential to the study of quarkonium
in the thermal hot quantum chromodynamics (QCD)
medium. The physics of the heavy quarkonia, a strongly
interacting matter, in the last two decades has great interest
in the presence of the magnetic field upto the scale square
mass of the pion m2

π or even larger details of which can be
found in ref. [18]. Such kind of the studies are very relevant
to the highly dense astrophysical compact bodies like the
magnetars [19] and also useful for the study of the cosmo-

logical aspects [20]. Besides of these facts, the main motiva-
tion to study the effect of magnetic field in the heavy
quarkonia was triggered by the fact that the order of the
magnitude of this field, e.g., eB =m2

π at Relativistic Heavy
Ion Collider (RHIC) and eB = 15m2

π at Large Hadron Collider
(LHC) during the lead-lead collision, could be produced in the
laboratory when the two heavy ions, traveling nearly equal to
the speed of light, colliding with each other at zero impact
parameter in the colliding region [21–25]. It is believed that
such a large magnitude of the magnetic field produces at very
early stages of the universe shortly after the big bang. How-
ever, it is not certain how long these generated magnetic field
and to what extent survives in the thermalisation process of
the QGP formation.

Various theoretical model-based studies, as well as the
lattice quantum chromodynamics (LQCD) prediction, discuss
several phenomena effecting the properties of the quarkonia in
the presence of the background magnetic field. However, the
effects related to the magnetic field are of particular interest
because of the fact that the heavy quarkonia are very sensitive
to the earlier condition of the universe. Studies such as [26–33]
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briefly explained the quarkonium spectra and the production
rates in the magnetic field regime. Since QCD with nonzero
magnetic field eB does not have a sign problem, one can obtain
the QCD phase diagram in the T − eB plane using Monte
Carlo calculations of the LQCD as the first ab initio principle.
Since, we know that the magnetic field generally causes the
momentum anisotropy which is responsible for the instability
in the Yang-Mills fields. Hence, this momentum anisotropy
has played a vital role in the evolution of the QCD medium.
When the charged particle placed in the strong magnetic field,
the energy associated with circular motion of the charged
particle, because of Lorentz force, is discretized (quantized).
These quantized energy levels, due to the magnetic field effect,
are known as Landau levels. However, in the presence of the
strong magnetic field qf eB > >T2, only lowest Landau levels
are populated l = 0 . This indicates the importance of the
lowest Landau level dynamics.

In the present case, we are working under strong mag-
netic field qf eB > >T2 using the effective fugacity quasiparti-
cle model to study the anisotropic behavior of the heavy
quarkonia. One of the remarkable reasons to include the
momentum anisotropy is that the QGP produced in the
noncentral collision does not possess isotropy. Moreover,
momentum anisotropy is present at each and every stages
of the heavy ion collisions. This fact triggered most to study
the anisotropic effect on the quarkonium properties in mag-
netic field regime. Several authors [34–41] studied various
observables of the quark-gluon plasma by considering the
momentum anisotropy. Following the ref. [42–44], the
anisotropy has been introduced at the levels of distribution
function. The gluon self-energy is used to obtained gluon
propagator and in turn to determine the dielectric permittiv-
ity in the presence of the anisotropy.

The present manuscript is organized in the following
manner.

Quasiparticle Debye screening mass in the presence of
magnetic field has been briefly discussed in Section 2.1.
The quark-antiquark potential in the anisotropic medium
is described in Section 2.2. The effect of momentum space
anisotropy on the binding energy, dissociation temperature,
thermal width, and the mass spectra of the quarkonium
states in the presence of magnetic field has been briefly stud-
ied in Section 3. We discuss the results of the present work in
Section 4. Finally, we conclude our work in Section 5.

2. Model Setup

2.1. Effective Quasiparticle Model Extension in Magnetic
Field and Debye Screening Mass. In the quasiparticle descrip-
tion, the system of the interacting particles is supposed to be
noninteracting or weakly interacting by means of the effective
fugacity [45] or with the effective mass [46, 47]. Nambu-Jona-
Lasinio (NJL) and Ploylov Nambu-Jona-Lasinio (PNJL) quasi-
particle models [48], self-consistent quasiparticle model
[49–51], etc. include the effective masses. Here, we considered
the effective fugacity quasiparticle model (EQPM), in the pres-
ence of magnetic field, which interprets the QCD EoS as non-
interacting quasipartons with effective fugacity parameter zg

for gluons and zq for quarks encoding all the interacting effects
taking place in the medium. The distribution function for qua-
sigluons and the quasiquarks/quasiantiquarks [52] is given as

f 0g/q =
f g/qe

−βEp

1 ∓ f g/qe
−βEp

1

It is noted that Ep = p = p for the gluons, whereas

Ep = p2 +m2 + 2l qf eB , 2

for quarks/antiquarks, where “l” denotes the Landau levels. In
high energy physics, ℏ = c = KB = 1. Therefore, β = 1/T. One
can look the physical significance of the effective fugacity in
the following dispersion relation:

ωg = T2∂T ln zg + p, 3

ωq = T2∂T ln zg + P2
z +m2 + 2l qf eB 4

The first term in the above equations (Equations (3) and
(4)) represents the collective excitation of the quasigluons
and quasiquarks (quasipartons). Thus, it is infer that the effec-
tive fugacity zg and zq describes the hot QCD medium effects.
The effective fugacity like in the other quasiparticle model
modifies the Tμν energy tensor as discussed in [53]. Now,
the extended version of the effective fugacity quasiparticle
model in the presence of magnetic field requires the modifica-
tion of the dispersion relation as defined in the above Equa-
tions (2) and (3) by the relativistic discretized Landau levels.
Thus, in view of this, the quark/antiquark distribution func-
tion can be obtained as below:

f 0q =
zqe

−β p2z+m2+2l qf eB

1 + zqe
−β p2z+m2+2l qf eB

5

The effect of the magnetic field B = Bẑ is taken along the z
-axis. Since the plasma contains both the charged and the qua-
sineutral particles, hence, it shows collective behavior. The
Debye mass is an important quantity to describe the screening
of the color forces in the hot QCD medium. The Debye
screening mass can be defined as the ability of the plasma to
shield out the electric potential applied to it. In the studies
[54–57], detailed definition of the Debye mass can be found.
To determine the Debye mass, in terms of the magnetic field,
we start from the gluon self-energy as below:

m2
D =Π00 ω = p, p ⟶ 0 6

According to the [58], gluon self-energy modified as

Π00 ω = p, p ⟶ 0 = g2 eB
2π2T

∞

0
dpz f

0
q 1 − f 0q 7
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Thus, Debye mass for quarks using the distribution func-
tion defined by Equation (5) is given below as

m2
D = 4α

πT
eB

∞

0
dpz f

0
q 1 − f 0q 8

Since the magnetic field has no effect on the gluons, there-
fore, the gluonic contribution to the Debye mass will remain
unchanged. In other words, the distribution function for the
gluons with or without magnetic field will remain intact. For
perturbative QCD, in the presence of magnetic field, the
Debye screening mass can be derived with the application of
kinetic theory approach. Both these approaches provide the
similar results for the Debye mass in the presence of the
magnetic field. So, the Debye mass for the nf = 3 and Nc = 3
will be as follows:

m2
D = 4α 6T2

π
PolyLog 2, zg + 3eB

π

zq
1 + zq

9

The Debye mass for the ideal EoS [zq, g = 1] representing
noninteracting quarks and gluons becomes

m2
D = 4πα T2 + 3eB

2π2 10

α is two loop coupling constant depending upon the tem-
perature [59] and is given below:

α T = 6π
33 − 2nf ln T/λT

1 − 3 153 − 19nf
33 − 2nf 2

ln 2 ln T/λT
ln T/λT

,
11

where nf denotes the number of flavor which is 3 in our case
and λT is the QCD renormalization scale.

2.2. Quark-Antiquark Potential in the Anisotropic Medium.
The solution of the Schrödinger equation (SE), although a
century has passed, is still an important tool for both the
physicists and chemists. The SE played a vital role to obtain
not only the energy spectrum of the diatomic and poly-
atomic molecule but also the spectrum of the heavy quarko-
nium system. The solution of the SE for the different
potentials, as found in [60–63], has been obtained using gen-
eralized Boopp’s shift method and standard perturbation
theory. In the present work, medium-modified potential
[64] has been used to investigate the properties of the heavy
quarkonia. The Cornell potential having both coulombic as
well as the string part [64] is given by

V r = −
α

r
+ σr 12

To modify this static potential (Equation (12)), we use
the Fourier transformation. In the above equation, α and σ
are the coupling constant and the string tension, respec-

tively. Here, we take the two loop coupling constant depend-
ing upon on the temperature. The value of the string
constant has been taken σ = 0 184GeV2. “r” is the effective
radius of the respective quarkonium states. The reason
behind the modification of the potential is that the string
tension does not vanish at or near the transition temperature
Tc, and transition is just “crossover” from hadronic to
quark-gluon plasma (QGP). Since the heavy ion collisions
are noncentral, the spatial anisotropy generates at the very
early stages. As the QGP expands or evolves with time, dif-
ferent pressure gradient arises which are responsible for
mapping the spatial anisotropy to the momentum anisot-
ropy. In the present formalism, anisotropy has been intro-
duced at the particle distribution level. Following the
studies [43, 44, 65], the isotropic function has been
employed to determine the anisotropic distribution function
given below:

f p ⟶ f ξ p = Cξ f p2 + ξ p · n̂ 2 , 13

where f p denotes the effective fugacity quasiparticle
isotropic distribution function [66–68]; n̂ is the unit vector
representing the direction of momentum anisotropy. The
parameter ξ represents the anisotropy of the medium. For
isotropic case ξ = 0, for oblate form, and for prolate form,
the parameter ξ in the n̂ direction lies in the ranges ξ > 0
and −1 < ξ < 0, respectively. The effects of different equa-
tions of state (EoS) enter through the Debye mass (mD).
So, to make Debye mass intact from the effects of anisotropy,
present in the medium, we use the following normalization
constant Cξ. With this normalization constant Cξ, the Debye
mass will remain the same for both the isotropic and aniso-
tropic cases [65]. Therefore, the normalization constant, Cξ,
is written as

Cξ =

ξ

tan−1 ξ
if − 1 ≤ ξ < 0

ξ

tan−1 ξ
if ξ ≥ 0

14

Equation (14) can be simplified as

Cξ =
ξ

tan−1 ξ
for ξ ≥ −1 15

For small anisotropic effect, ξ can be written as

Cξ =
1 − ξ +O ξ3/2 if − 1 ≤ ξ < 0

1 + ξ +O ξ3/2 if ξ ≥ 0,
, 16
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or simply in the small ξ limit, we have

Cξ = 1 + ξ

3 +O ξ2 17

Following the assumption given by [14, 69, 70], the
potential of the dissipative anisotropic medium has been
modified in the Fourier transform by dividing it with
medium dielectric permittivity, ϵ k :

V k = V k
ϵ k

18

Taking the inverse of Fourier transform defined above,
the in medium/corrected potential reads off:

V r = d3k

2π 3/2 eik·r − 1 V k 19

V k is the Fourier transform ofV r defined by Equation
(12) and given as

V k = −
2
π

α

k2
+ 2 σ

k4
20

Thus, to obtain the modified form of the potential, it is
necessary to calculate the dielectric permittivity ε k , and this
can be done by twomethods: (I) using the gluon self-energy in
finite temperature QCD [71, 72] and (II) using semiclassical
transport theory (many particle kinetic theory upto one loop
order) [44, 73, 74]. By using the above mentioned methods,
one can obtain the gluon self-energy Πμν which in turn pro-
vides static gluon propagator as given below:

Δμν = k2gμν − kμkν +Πμν ω, k 21

Now, from the temporal component of the gluon prop-
agators [75], the dielectric tensor in the Fourier space can
be written as below:

ϵ−1 k = − lim
ω⟶0

k2Δ00 ω, k , 22

where Δ00 represents the static limit of the “00” component
of the gluon propagators in the Coulomb gauge. Also,
Equation (22), according to linear response theory, provides
the relation between the dielectric permittivity and the Δ00.
The real and the imaginary part of the dielectric tensor
obtained from the real part of the retard propagator and
imaginary part of symmetric propagators, respectively
[76], in the static limit, are given below by

ϵ−1 k = k2

k2 +m2
D

+ k2ξ
1

3 k2 +m2
D

−
m2

D 3 cos 2θn − 1
6 k2 +m2

D
2 ,

23

ϵ−1 k = πTm2
D

k2

k k2 +m2
D

2 − ξk2
−1

3k k2 +m2
D

2

+ 3 sin2θn
4k k2 +m2

D
2 −

2m2
D 3 sin2 θn − 1
3k k2 +m2

D
3 ,

24

where

cos θn = cos θr cos θpr + sin θr sin θpr cos ϕpr

25

θn is the angle between the particle momentum p and
anisotropy direction n̂. θr is the angle between r and n.
The azimuthal ϕpr and the polar angle θpr lie between p
and r. The term mD denotes the quasiparticle Debye mass
which depends on the temperature and magnetic field and
is briefly described in Section 2.1.

As the limit, T ⟶ 0 real part of the potential goes to
unity, and when ξ = 0, the imaginary part becomes zero.
With these limits, the modified form of the potential simply
reduces to the Cornell potential. Now, by substituting the
real part of the dielectric tensor ϵ−1 k defined by Equation
(23) in Equation (19), the real part of the interquark poten-
tial can be written as below:

Re V r, ξ, T , eB = 1 + ξ

3 × σ

mD
− α

1
s
+ 1
2 mD

+ ξs
16

7
3 − cos 2θr

26

After separating the coulombic (α) and string (σ) term
from the above equation, the real part of the potential will
look like

Re V r, ξ, T , eB = sσ
mD

1 + ξ

3 −
αmD

s
1 + s2

2

+ ξ
1
3 + s2

16 + cos 2θr
27

Similarly, by putting the imaginary part of the dielectric
tensor defined by Equation (24) in Equation (19), the imag-
inary part of complex potential will become

Im V r, θr , T , eB = − 1 + ξ

3 T
αs2

3 + σs4

30m2
D

log 1
s

+ ξT log 1
s

αs2

10 + σs4

140m2
D

− cos2θr
αs2

10 + σs4

70m2
D

28
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Again, separating the coulombic (α) and the string (σ)
part of above Equation (28), the imaginary potential can be
rewritten as

Im V r, θr , T , eB = αs2T
3

ξ

60 7 − 9 cos 2θr − 1 log

1
s

+ s4σT
m2

D

ξ

35
1
9 −

1
4 cos 2θr

−
1
30 log 1

s

29

3. Properties of Heavy Quarkonia

3.1. Binding Energy of the Different Quarkonium States. Real
binding energies of the heavy quarkonium can be obtained
by solving the Schrödinger equation with the first-order per-
turbation in anisotropy parameter, ξ, as done in [75, 77, 78].
With this, the real binding energy (EB) becomes

Re EB T , ξ, eB = mQσ
2

m4
Dn2

+ αmD + ξ

3
mQσ

2

m4
Dn2

+ αmD + 2mQσ
2

m4
Dn2

30

This is valid only for the ground and first excited states
of the charmonium and bottomonium, i.e., J/ψ, Y , Ψ′, and
Y ′. But in order to find the binding energies of 1P states of
the charmonium and bottomonium, the correction term
(potential and the kinetic energy) must be added to the bind-
ing energy of the Ψ′ and Y ′. These correction terms have
been obtained by using the variational treatment method
[79–83], in which the total energy consists of the kinetic
energy correction and most importantly the correction
added to the spin-dependent potential which makes the ψ′
and χc (both are first excited state) degenerate and hence
obeys the Pauli’s exclusion principle. The correction energy
term, as found in the [81, 82, 84], is given below:

ECorr
χc ,χb =

mQσ
2

6m8
D

31

Therefore, to evaluate the binding energy of the 1P states
of heavy quarkonia, we add up this correction energy term
to the binding energy of the ψ′, Y ′ as defined in the above
equation. Hence, we have

E χc ,χb
= E ψ′ ,Y ′ + Ecorr

χc ,χb 32

This implies

E χc ,χb
= mQσ

2

m4
Dn2

+ αmD + ξ

3
mQσ

2

m4
Dn2

+ αmD + 2mQσ
2

m4
Dn2

+ mQσ
2

6m8
D

33

In the present work, the masses of 1P state as charmonium
(mχc

= 1 865GeV) and bottomonium (mχb
= 5 18GeV) have

been taken, and details of which can be found in [85] and ref-
erences therein.

3.2. Dissociation of Quarkonium States in the Presence of
Anisotropy and Strong Magnetic Field. Once we obtained
the binding energies of the quarkonium states, it is custom-
ary to study the dissociation pattern of the quarkonium
states when their binding energies become zero. But in the
ref. [86], the authors have argued that it is not essential to
have zero binding energy to dissociate the states, but when
the binding energy is less than the temperature EB ≤ T , a
state is weakly bound, and hence, it is destroyed by the ther-
mal fluctuations. The authors in [75, 86, 87] propose another
condition for the dissociation of the quarkonium states and
that is 2EB ≤ Γ T or Γ T ≥ 2EB, where Γ T is the thermal
width of the respective state. Thus, there are twomajor criteria
used to determine the dissociation temperature (TD). The
upper bound and the lower bound of the dissociation temper-
ature, as one can found in [88] and reference therein, using
thermal effects can be obtained by the following conditions:

E J/ψ,Y ,ψ′,Y ′ = mQσ
2

m4
Dn2

+ αmD + ξ

3
mQσ

2

m4
Dn2

+ αmD + 2mQσ
2

m4
Dn2

=
TD ⟶Upper bound of the quarkonium states

3TD ⟶ Lower bound of the quarkonium states
34

Equation (34) is applicable for the 1S and 2S states of the
heavy quarkonia. The dissociation temperature for the 1P
states of charmonium and bottomonium has been calculated
using the following relation:

E χc ,χb
= mQσ

2

m4
Dn2

+ αmD + ξ

3
mQσ

2

m4
Dn2

+ αmD + 2mQσ
2

m4
Dn2

+ mQσ
2

6m8
D

=
TD ⟶Upper bound of the quarkonium states

3TD ⟶ Lower bound of the quarkonium states
35

3.3. Thermal Width of 1S State of Charmonium and
Bottomonium. Since the imaginary part of the potential gives
rise to the thermal width which in turn also used to calculate
the dissociation point of the quarkonium states. The thermal
width of the quarkonium states can be obtained by using fol-
lowing ansatz:

Γ = − d3r Ψ r 2 Im V r , 36

where Ψ r is the coulombic wave function. The coulombic
wave function for ground state (1S, corresponding to n = 1
(J/ψ and Y)) is given as

Ψ1s r = 1
πa30

e−r/a0 , 37

where a0 = 2/ mQα denotes the Bohr radius of the quarko-
nium system. Now, from Equation (36), we have
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Γ1s =
ξ

3 + 1 d3r Ψ1s r
2 αTs2 log 1

s
1
3 − ξ

3 − cos 2θr
20

+ 2σT
m2

D

s4 log 1
s

1
20

1
3 − ξ

2 − cos 2θr
14

38

Solving the above equation, we get the thermal width for
1S-state as below:

Γ1s = T
ξ

3 − 2 m2
D

αm2
Q

1
6 −25 + 12γE + 12 log 2

− 12 log a0 − 12 log mQ + 3σ
10α3m2

Q

− 49 + 20γE − 12 log a0 + 20 log 2
mQ

39

It is important to note that in ref. [75], while considering
up to leading logarithmic order of imaginary potential, the
authors too have taken the width up to the leading logarith-
mic. Thus, the dissociation width for 1S-state would be of
the form:

Γ1s = T
4

αm2
Q

+ 12σ
α4m4

Q

1 − ξ

6 m2
D log αmQ

2mD
40

3.4. Mass Spectra of the Different Quarkonium States in
Anisotropic Hot QCD Medium at Finite Magnetic Field. The
mass spectra of the different quarkonium states in the pres-
ence of magnetic field along with the effect of anisotropic
parameter ξ can be obtained by the relation:
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Figure 2: The variation of binding energy of the J/ψ with temperature for the isotropic case (a) and oblate case (b) at different values of the
magnetic field.
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Figure 1: Variation of real potential with distance “r” (fm) for isotropic and the oblate case at fixed value of temperature and magnetic field.
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M = 2mQ + EB 41

But in the current work, we have calculated the mass
spectra of only 1P state of the heavy quarkonia by using the
following relation:

M = 2mQ + E ψ′ ,Y ′ + Ecorr
χc ,χb

42

Hence, using Equations (30) and (33) in Equation (42), we
have

Mass spectra of 1P states = 2mQ + mQσ
2

m4
Dn2

+ αmD + ξ

3
mQσ

2

m4
Dn2

+ αmD + 2mQσ
2

m4
Dn2

+ mQσ
2

6m8
D

43

Where mQ mc,b is the mass of the heavy quarkonia,

E ψ′,Y ′ is the binding energy of the ψ′ and Y ′, and Ecorr
χc,χb

is

the energy correction/mass gap correction obtained using
variational treatment method.

4. Results and Discussion

Heavy quarkonium properties have been investigated, by
means of in medium modification to the Cornell potential
(perturbative as well as nonperturbative), using extended
quasiparticle approach in the presence of strong magnetic
field limit qf eB > >T2. Since at the early stages of the
ultrarelativistic heavy ion collisions (URHIC), the anisot-
ropy arises in the beam direction as the system expands.
At ξ = 0, the string term makes the real potential more
attractive compared to the case when the potential is mod-
ified using coulombic part only. This means that the
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Figure 4: The variation of binding energy of the ψ′ with temperature for the isotropic case (a) and oblate case (b) at different values of the
magnetic field.
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Figure 3: The variation of binding energy of the Y with temperature for the isotropic case (a) and oblate case (b) at different values of the
magnetic field.

7Advances in High Energy Physics



respective quarkonium states become more bound with
both the coulombic and string part in comparison to the
case when coulombic part is modified alone. Here, in the
present work, we have consider the weak anisotropy for
the oblate case, ξ = 0 3, and isotropic case, ξ = 0, with the
fixed value of the critical temperature Tc = 197MeV. The
variation of the real potential with the distance (r in f m)
is shown in Figure 1 at eB = 0 3GeV2 and temperature T
= 300MeV for oblate and isotropic case. For the isotropic
case, ξ = 0, we have the same variation for both parallel
and perpendicular case. This is because of the fact that
the system is expanding longitudinally. On the other hand,
for the oblate case ξ = 0 3, the real potential has a lower
value for the parallel case (θ = 0o) in comparison to the
perpendicular case (θ = 90o).

Figures 2–7 show the variation of the binding energy of
J/ψ, Y , ψ′, Y ′, χc, and χb with the temperature at finite
values of the magnetic field for both the isotropic case ξ =
0 (a) and oblate case ξ = 0 3 (b), respectively. From all these
figures, it has been deduced that the binding energy of all the
quarkonium states 1S (J/ψ, Y), 2S (ψ′, Y ′), and 1P (χc, χb)
decreases with the temperature. Also, as we go from lower to
higher magnetic field values, the binding energy also has
lower values as can be seen from Figures 2–7. However, it
is noticed that binding energy of all the above mentioned
states has higher values for the oblate case in competition
to the isotropic case. In other words, the anisotropy seems
to be an additional handle to decipher the properties of the
quarkonium states. In anisotropic medium, the binding
energy of the QQ pair gets stronger with increase in the
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Figure 6: The variation of binding energy of the χc with temperature for the isotropic case (a) and oblate case (b) at different values of the
magnetic field.
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Figure 5: The variation of binding energy of the Y ′ with temperature for the isotropic case (a) and oblate case (b) at different values of the
magnetic field.
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anisotropy. This is due to the fact that the Debye screening
mass in anisotropic medium is always much lower com-
pared to the isotropic one. Hence, quarkonium states are
strongly bound.

Figure 8 shows the variation of the thermal width of
charmonium (ΓJ/ψ) (a) and bottomonium (ΓY ) (b) at eB =
0 3GeV2 for the isotropic case and oblate case. It has been
noticed from Figure 8 that there is an increase in the thermal
width with the temperature for both cases. Although, ther-
mal width has lower value for the oblate case in competition
to the isotropic case. It is also noticed that the thermal width
of the upsilon (ΓY ) is much smaller than the J/ψ (ΓJ/ψ). This
is due to the fact the bottomonium states are smaller in size
and larger in masses than the charmonium states and hence
get dissociated at higher temperatures. Mass spectra of the

χc and χb have been shown in Figure 9. There is a decreasing
pattern of the mass spectra of χc and χb with the tempera-
ture at ξ = 0 3 at finite magnetic fields. Mass spectra of these
states at ξ = 0 3 (oblate case) are found to be very close to the
particle data group 2018 [89].

The dissociation temperatures for the 1S (J/ψ, Y), 2S (ψ′,
Y ′), and 1P (χc, χb) have been given in Tables 1–4. Lower
bound of dissociation temperatures for different states is
shown in Tables 1 and 3 for the isotropic case. Tables 2 and
4 show the different values of dissociation temperatures for
the oblate case ξ = 0 3. In general, the dissociation tempera-
tures decrease with the magnetic field. It is pertinent to men-
tion here that for the oblate case, dissociation temperatures
have found to be higher in comparison to the isotropic case
as seen from the tables.
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Figure 8: Variation of thermal width of J/ψ and Y with the temperature (a, b), respectively, at ξ = 0 3 and eB = 0 3GeV2.
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Figure 7: The variation of binding energy of the χb with temperature for the isotropic case (a) and oblate case (b) at different values of the
magnetic field.
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5. Conclusions

The dissociation process of the heavy quarkonium states 1S
(J/ψ, Y), 2S (ψ′, Y ′), and 1P (χc, χb) in the anisotropic
medium at finite magnetic field using extended quasiparticle
model has been investigated. The real part of potential

becomes more attractive in anisotropic hot QCD medium
compared to isotropic case at constant magnetic field. The
binding energy of the different quarkonium states decreases
with the temperature as well as with magnetic field for both
the isotropic and oblate case. However, the binding energy
has higher values for the oblate case ξ = 0 3 compared to

Table 3: Upper bound of dissociation temperature for isotropic
case at Tc = 197MeV.

Temperatures are in the unit of Tc
For isotropic case (ξ = 0)

States eB = 0 3GeV2 eB = 0 5GeV2 eB = 0 7GeV2

J/ψ 2.0304 1.8908 1.6757

Y 2.6522 2.5507 2.3857

ψ′ 1.4213 1.2182 0.9010

Y ′ 1.8908 1.7385 1.5101

χc 1.6243 1.4467 1.1299

χb 2.0431 1.9035 1.6751

Table 4: Upper bound of dissociation temperature for oblate case
at Tc = 197MeV.

Temperatures are in the unit of Tc
For oblate case (ξ = 0 3)

States eB = 0 3GeV2 eB = 0 5GeV2 eB = 0 7GeV2

J/ψ 2.1827 2.0558 1.8654

Y 2.8299 2.7411 2.5888

ψ′ 1.5355 1.3578 1.0659

Y ′ 2.030 1.8908 1.6878

χc 1.7131 1.5482 1.2690

χb 2.1573 1.9035 1.6751

Table 2: Lower bound of dissociation temperature for oblate case
at Tc = 197MeV.

Temperatures are in the unit of Tc
For oblate case (ξ = 0 3)

States eB = 0 3GeV2 eB = 0 5GeV2 eB = 0 7GeV2

J/ψ 1.6497 1.4847 1.1928

Y 2.1700 2.0431 1.8401

ψ′ 1.1421 0.8756 0.4568

Y ′ 1.5355 1.3451 1.0279

χc 1.3452 1.1040 0.6598

χb 1.6878 1.5101 1.2055

Table 1: Lower bound of dissociation temperature for isotropic
case at Tc = 197MeV.

Temperatures are in the unit of Tc
For isotropic case (ξ = 0)

States eB = 0 3GeV2 eB = 0 5GeV2 eB = 0 7GeV2

J/ψ 1.5482 1.3578 1.0406

Y 2.0304 1.8908 1.6751

ψ′ 1.0532 0.7614 0.3553

Y ′ 1.4340 1.2309 0.8756

χc 1.2944 1.0406 0.5203

χb 1.6116 1.4213 1.091
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Figure 9: Dependency of mass spectra of the χc and χb with temperature (a, b), respectively, at different magnetic fields and ξ = 0 3.
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isotropic case (ξ = 0). From Figures 2–7, it is deduced that
the binding energies of the 2S states (ψ′, Y ′) are smaller
than the binding energies of 1S (J/ψ, Y) and 1P (χc, χb)
states for both the isotropic and oblate case in the presence
of magnetic field. The dissociation temperatures reduce as
we increase the magnetic field for both the isotropic and
oblate case. It is also found that the dissociation temperature
for all the 1S, 2S, and 1P states has higher values for the
oblate case 0 < ξ < 1 compared to the case when ξ = 0. It is
also noted here that the dissociation temperature of 1S and
1P states of charmonium and bottomonium are higher than
the 2S states. This is because of the fact that the ψ′ and Y ′
states are highly unstable or loosely bound states. The hierar-
chical order of dissociation temperatures (TD) for the different
quarkonium states is TD

’s 1S > TD
’s 1P > TD

’s 2S . Ther-
mal width is found to increase with the temperature at con-
stant magnetic field eB = 0 3GeV2. The thermal width also
increases with ξ indicating quicker dissociation of the states.
In the future, this work will be extended to calculate the sur-
vival probability or the nuclear modification factor of different
quarkonium states with respect to transverse momentum,
centrality, and rapidity which is the key point to quantify the
various properties of the medium produced during heavy
ion collisions (HIC) at LHC and RHIC.
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