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Considering the formalism of symplectic quantum mechanics, we investigate a two-dimensional nonrelativistic strong interacting
system, describing a bound heavy quark-antiquark state. The potential has a linear component that is analyzed in the context of
generalized fractional derivatives. For this purpose, the Schrödinger equation in phase space is solved with the linear potential. The
ground state solution is obtained and analyzed through the Wigner function for the meson c�c. One basic and fundamental result is
that the fractional quantum phase-space analysis gives rise to the confinement of quarks in the meson, consistent with
experimental results.

1. Introduction

Over the last decades, strong interaction has been analyzed
by different approaches, including quantum chromodynam-
ics (QCD) sum rules and lattice QCD, providing quantita-
tive and qualitative characteristics of the hadronic matter
[1]. In particular, systems such as quark-antiquark lead to
interesting descriptions and a quantitative test for QCD
and for both the particle-physics standard model [2–15].
In the case of a quarkonium, a popular approach considers
the interaction between a quark-antiquark in a meson
through a spatial (Euclidean) potential, such as VðrÞ, where
r is the distance between the quarks. The quantum nature of
the state and the mass spectrum are studied by considering
as a model for the state time-evolution of the Schrödinger
equation. This corresponds to a specific sector of the strong
interaction, which is called nonrelativistic QCD.

From the spectral analysis, it appears that the interac-
tion in such systems as a heavy quark and an antiquark

(charmonium c�c) is successfully modeled by the Cornell
potential, which is defined by

V rð Þ = λr −
σ

r
, ð1Þ

where λ is the string tension and σ is the strong cou-
pling constant. The linear term is associated with the
confinement, while the Coulomb-like term is a conse-
quence of the asymptotic freedom. This potential has
been used to investigate, as an instance, the confine-
ment/deconfinement phase transition in hadronic matter
[16–20]. In addition, the Schrödinger equation with the
Cornell potential as a model has been extensively used
to explore quarkonium systems in the configuration space.
This is the case of investigations of the heavy quarkonia mass
spectroscopy and the bound state properties of c�c and b�b
mesons [17, 21–28].
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Considering theoretical aspects, the heavy quarkonium
characteristics have been analyzed by the Schrödinger equa-
tion with the Cornell potential through variational method
in the framework of supersymmetric quantum mechanics
[18, 29–31]. The mass spectra of heavy quarks b�b, c�c, and
b�c within the framework of the Schrödinger equation with
a general polynomial potential were also addressed [1]. In
this formulation, the Nikiforov-Uvarov (NU) method [18]
was used to calculate energy eigenvalues. The radial Schrö-
dinger equation is extended to higher dimensions, and the
NU method is applied to a Cornell-type potential. As a
consequence, in order to obtain the heavy quarkonium
masses, the energy eigenvalues and the associated wave
functions are determined [2]. The eigen-solutions and an
inverted polynomial potential were obtained by using the
NU procedure [30–33].

It is important to notice that although the Cornell poten-
tial presents theoretical and experimental consistency with
the standard model, aspects of the hadronic matter as con-
finement are not obviously derived from the model-
dependent Schrödinger equation. Indeed, this is the case of
solutions of the Schrödinger equation in the Euclidean space
representation. However, the recent analysis of the Wigner
function of such a system as c�c mesons provides an inter-
esting description of the confinement, by using the charac-
teristics of the phase-space quantum mechanics. These
achievements were carried out by considering the symplec-
tic quantum mechanics, in which the Schrödinger equa-
tion is written in a phase-space representation [33].
Nevertheless, accounting for the physical richness of phase
space, many aspects remain to be explored, such as the
fractional structure of the symplectic Schrödinger describ-
ing a quark-antiquark system.

The use of fractional calculus has attracted attention in a
variety of areas in physics [34–39]. For heavy quarkonium
systems, methods as the NU formulation and analytical iter-
ation have been explored to provide analytical solutions of
the N-dimensional radial Schrödinger equation in the
framework of fractional space [35, 40]. A category of poten-
tials including the oscillator potential, the Woods-Saxon
potential, and the Hulthen potential have also been studied
analytically with fractional radial Schrödinger equation by
NU method [40, 41]. In order to investigate the binding
energy and temperature dissociation, the conformable frac-
tional formulation was extended to a finite temperature con-
text [40]. A fundamental goal of the present work is to
survey the applicability of the fractional approach to the
study of quark dynamics in phase space.

Then, the behavior of the Wigner function for the
ground state of c�c meson is analyzed from the perspective
of fractional calculus. For this purpose, the symplectic
Schrödinger equation is rewritten in the fractional form with
the linear term of the Cornell potential for the heavy c�c
meson. Beyond physical aspects, the analysis provides a sim-
pler procedure to study this type of systems.

The work is organized as follows. In Section 2, some
aspects of the Schrödinger equation represented in phase
space are reviewed in particular to fix the notation. In Sec-
tion 3, the concept of fractional derivative is implemented

in the symplectic Schrödinger equation for the linear part
of the Cornell potential. Section 4 is devoted the discussion
of outcomes. In Section 5, summary and final concluding
remarks are presented.

2. Symplectic Quantum Mechanics: Notation
and Wigner Function

Considering a phase-space manifold Γ, where a point is
specified by a set of real coordinates ðq, pÞ, the complex
valued square-integrable functions, ϕðq, pÞ ∈ Γ, such that,Ð
dpdqϕ∗ðq, pÞϕðq, pÞ <∞, is equipped with a Hilbert

space structure, HðΓÞ. Here, q stands by a vector in the
ℝ3 Euclidean manifold, and p stands for points in the dual
ℝ∗3. The point ðq, pÞ is a vector in the cotangent bundle
of ℝ3, equipped with a symplectic two-form [22]. In this
way, ðq, pÞ can be used to introduce a basis in HðΓÞ,
denoted by jq, pi with completeness relation given by

Ð
d

pdqjq, pihq, pj = 1. It follows that ϕðq, pÞ = hq, p ∣ ϕi, where
hϕj is the dual vector of jϕi. The symplectic Hilbert space
HðΓÞ can be used as the representation space of symme-
tries. For the nonrelativistic Galilei group, position and
momentum operators are written as

P̂ = p⋆ = p − i
∂
∂q

, ð2Þ

Q̂ = p⋆ = q + i
∂
∂p

: ð3Þ

A symplectic structure of quantum mechanics is con-
structed in the following way. The Heisenberg commuta-
tion relation ½Q̂, P̂� = i is fulfilled. And then, using the
following operators:

K̂i =mQ̂i − tP̂i,
L̂i = εijkQ̂jP̂k,

Ĥ = P̂
2

2m ,

ð4Þ

the set of commutation rules are obtained

L̂i, L̂j

Â Ã
= iεijkL̂k,

L̂i, k̂j
h i

= iεijkK̂k,

K̂i, Ĥ
Â Ã

= iP̂i,

L̂i, P̂ j

Â Ã
= iεijkP̂k,

K̂i, P̂ j

Â Ã
= imδij1,

ð5Þ

being zero for all the other commutations. It is known as
Galilei-Lie algebra and m is a central extension. The Galilei
symmetries are defined by the operators P̂, K̂ , L̂, and Ĥ, which
stands, respectively, by the generators of spatial translations,
Galilean boosts, rotations, and time translations.
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The time-translation generator, Ĥ, leads to the time evo-
lution of a symplectic wave function, i.e.,

ψ q, p, tð Þ = eĤtψ q, p, 0ð Þ: ð6Þ

The infinitesimal version of this equation reads as

∂tψ q, p ; tð Þ = Ĥ q, pð Þψ q, p ; tð Þ, ð7Þ

the Schrodinger-type equation in Γ [42].
The physical interpretation of this formalism is obtained by

the association of ψðq, p, tÞ with a function f W , i.e., [43–45].

f W q, p, tð Þ = ψ q, p, tð Þ⋆ψ† q, p, tð Þ: ð8Þ

In the next section, the representation symplectic Schrödin-
ger equation in fractional context for the heavy quark system c�c
is obtained.

3. Fractional Symplectic Schrödinger
Equation for the Confinement Potential

In this section, the symplectic Schrödinger equation is
generalized to a fractional-space Schrödinger equation
describing two particles interacting to each other by the
linear part of the Cornell potential. Using the results of
the previous section, the symplectic Schrödinger equation
takes the form [33]

p⋆ð Þ2
2m ψ q, pð Þ + λ q⋆ð Þψ q, pð Þ = Eψ q, pð Þ: ð9Þ

Using Equations (2) and (3) in (9), it leads to

1
2m p2 − ip∂q −

1
4 ∂

2
q

� �
ψ + λ q + i

2 ∂p
� �

ψ = Eψ, ð10Þ

where natural units are used, such that ℏ = 1. By using the
transformation ω = ðp2/2mÞ + λq, this equations reads

∂2ψ ωð Þ
∂ω2 −

ω − E
η

ψ ωð Þ = 0, ð11Þ

where η = λ2/8m. Writing Equation (11) in fractional from
[34], it follows that

1
ς2 1−αð Þ D

αDαψ ωð Þ − ω − E
η

ψ ωð Þ = 0, ð12Þ

where

Dαψ ωð Þ = Γ βð Þ
Γ β − α + 1ð Þω

1−α ∂ψ
∂ω

, ð13Þ

and ς is a scalar factor, 0 < α ≤ 1 and 0 < β ≤ 1. Thus,

DαDαψ ωð Þ = Γ βð Þ
Γ β − α + 1ð Þ
� �2

ω2−2α d
2ψ

dω2 + 1 − αð Þω1−2α dψ
dω

" #
:

ð14Þ

Therefore, Equation (11) in the fractional form is
written as

d2ψ
dω2 + 1 − αð Þ

ω

dψ
dω

−
ω − E
Aη

� �
ω2α−2ψ = 0, ð15Þ

where

A = 1
ς2 1−αð Þ

Γ βð Þ
Γ β − α + 1ð Þ
� �2

, ð16Þ

with ς being a scale factor. It worth noting that if α = β = 1, one
obtains the original Equation (11).

4. Discussion of Results

In this section, in order to obtain an analytical function of
Equation (15), the fractional parameter is taken as α = 0:5.
(For other values, perturbative methods can be used. This
will be not addressed in the present paper.) This leads to
the following form:

d2ψ
dω2 + 1

2ω
dψ
dω

−
ω − E
Aηω

� �
ψ = 0: ð17Þ

The solution of this equation is given by

ψ = C1
ffiffiffiffi
ω

p
e−ω/κM −

−3
ffiffiffiffiffiffi
Aη

p
+ 2E

4
ffiffiffiffiffiffi
Aη

p , 32 ,
2ωffiffiffiffiffiffi
Aη

p
 !

+ C2
ffiffiffiffi
ω

p
e−ω/κU −

−3
ffiffiffiffiffiffi
Aη

p
+ 2E

4
ffiffiffiffiffiffi
Aη

p , 32 ,
2ωffiffiffiffiffiffi
Aη

p
 !

,
ð18Þ

where C1 and C2 are constants and Mða, b, zÞ and Uða, b, zÞ
are the Kummer functions. One can regard Uða, b, zÞ as a
physical solution since it is the only one that is square inte-
grable. As a result, one can impose that C1 = 0. Additionally,
if a = −n, the series Uða, b, zÞ becomes a polynomial in ω of
degree not exceeding n, where n = 0, 1, 2,⋯ This circum-
stance allows us to write

ψn ωð Þ = Cn

ffiffiffiffi
ω

p
e−ω/κU −n; ;

2ω
κ

� �
, ð19Þ

where κ =
ffiffiffiffiffiffi
Aη

p
, and

En = κ 2n + 3
2

� �
: ð20Þ
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Notice that the energy does not depend explicitly on the
kinetic energy; thus, the initial condition should be q = p = 0.

For the ground state, making the substitution into q and
p again, one have

ψ0 q, pð Þ = C0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2

2m + λq

r
exp −

p2/2m
À Á

+ λq

κ

� �
,

E0 = κ
3
2

� �
:

ð21Þ

Using the fact that ψðq, pÞ is real, the normalized Wigner
function of the ground state is given by

f W0
= ψ0⋆ψ0 = C2

0 κð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2

2m + λq

r
exp −

p2/2m
À Á

+ λq

κ

� �
,

ð22Þ

where the constant C0ðκÞ depends on the value of κ.
In Figure 1, the behavior of the E0 = E0ðβÞ and E1 = E1

ðβÞ is described. In Figure 2, the difference ΔE = E1 − E0 is
plotted as a function of the parameter β, considering ζ = 1.
This difference has for β ≈ 0:3 reached the order of value
of experimental measurements [46]. It is worth emphasizing
here that the linear part of the Cornell potential only does
not provide a spectrum in agreement with experimental
measurement [46, 47]. Here, since we have the parameters
of the fractional derivatives, those results can be improved
for values of ζ and β. The next point is to explore the behav-
ior of the Wigner function in order to detail the behavior of
the confinement of quark-antiquark.

The Wigner function for the fractional parameter for α
= 0:5 and different values of β are presented in Figure 3.
The figure compares fractional Wigner functions to the orig-
inal one, which is α = β = 1. We observe that the peaks
diminish by lowering β.

The curves (a) to (c) of Figure 3 show that with the
increase ofβ, the peaks of theWigner functions increase. Addi-
tionally, we see that the peaks decrease to zero as β goes to
zero. Does β functions as a fitting parameter for the fractional
Wigner function of the c�cmeson? The curve (d) is the original
Wigner function without the fractional parameters for c�c
meson [34]. Figure 4 shows that with the increase ofβ, the dis-
tanceqdecreases. The maximum value of β is the best fit for the
case of α = 0:5. When compared to the experimental evidence,
for comparison, the experimental value for the maximum dis-
tance is q0 = 4:077 · 10−3MeV-1 [1].

For the case of general Cornell potential (Equation (1)),
one can linearize to get an approximation form. In the first
approximation,

V qð Þ = −
2σ
q0

+ λ + σ

q20

� �
q, ð23Þ

where a, b, and q0 are constants. Then, the Hamiltonian is

H⋆ð Þψ = p⋆ð Þ2
2m ψ + λ + σ

q20

� �
q⋆ð Þψ = E + 2σ

q0

� �
ψ: ð24Þ

This equation leads to

H⋆ð Þψ = p⋆ð Þ2
2m ψ + λ′ q⋆ð Þψ = E′ψ: ð25Þ

It is worth noting that Equation (25) is the same as

Equation (9) with λ′ = λ + σ/q20 and E′ = E + 2σ/q0.
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Figure 1: The dot line (......) stands for the fundamental level of
energy, E0, and the dashed line (- - - - -) represents the first
exited energy level, E1, both as a function of the parameter β,
with ς = 1: The mass of the quarks is taken as m = 0:336MeV and
λ = 0:22MeV2 [46, 47].
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Figure 2: The difference of the levels of energy ΔE = E1 − E0 as a
function of the parameter β, with ς = 1:
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Therefore, the same analysis applies here. The energy is
given by

En = κ 2n + 3
2

� �
−
2σ
q0

, ð26Þ

where κ =
ffiffiffiffiffiffi
Aη

p
and η = λ′2/8m. It is noteworthy that, when

q⟶ 0, in the general Cornell potential has the q−1 that is
responsible by interaction at short distances and corre-
sponding to one gluon exchange. In addition, Table 1 pre-
sents the theoretical results from the fractional model for
α = 0:5 and β = 1:0, calculated from Equation (20), and the
respective experimental values. Comparisons were estab-
lished only for 1S states, as our theoretical model is applica-
ble only to such states. We did not include spin in our

theoretical model. We noticed that there is good accuracy
between the theoretical and experimental results [48], better
than those obtained by other theoretical models [46].

5. Remarks

We have studied the symplectic Schrödinger-like equation in
the presence of a linear potential using the formalism of gen-
eralized fractional derivatives for nonrelativistic heavy quar-
konium bound state. For this purpose, we have investigated
the behavior of the Wigner function for the ground-state c�c
meson considering the symplectic quantum mechanics and
the generalized fractional derivative constructed in [33, 34].
The Wigner function has been obtained for the charmonium
state in the fractional form using the generalized fractional
derivative as in Ref. [36], where we obtained the classical
case at α = β = 1. To obtain an analytical solution, we analyse
the case α = 0:5. For this value of α, it was observed that the
peaks of the Wigner function are lowered by decreasing frac-
tional parameter β; therefore, this parameter can be used as
a fitting parameter. For the case of α = 0:5, the value β = 1 is
the best fit considering the experimental evidence. There-
fore, the present analysis seems to indicate the relevance of
such a generalized fractional model based on the symplectic
Schrödinger equation with linear term (Cornell potential) as
far as quarkonium dynamics in phase space is concerned. To
further the study of a quarkonium system within the frac-
tional and phase-space approaches, we will include a qua-
dratic term (or correction term) at the Cornell potential
and other values for the fractional parameter α. We also
intend to study spinorial systems.
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Table 1: Experimental and theoretical masses (in MeV) of
charmonium mesons.

Meson Fractional Cornell potential Experimental data [48]

J/Ψ 1Sð Þ 3,1003 3,0969

Y 1Sð Þ 9,4818 9,4603

η 1Sð Þ 2,7992 2,9796
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