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We study pair production of particles in the presence of an external electric field in a large N non-supersymmetric Yang-Mills
theory using the holographic duality. The dual geometry we consider is asymptotically AdS and is effectively parametrized by
two parameters, u0 and −

ffiffiffiffiffiffiffi
5/2

p
< δ ≤ 0, both of which can be related to the effective mass of quark/antiquark for non-

supersymmetric theories. We numerically calculate the interquark potential profile and the effective potential to study pair
production and analytically find out the threshold electric field beyond which one gets catastrophic pair creation by studying
rectangular Wilson loops using the holographic method. We also find out the critical electric field from DBI analysis of a
probe brane. Our initial investigations reveal that the critical electric field necessary for spontaneous pair production increases
or decreases w.r.t. its non-supersymmetric value depending on the parameter δ. Ultimately, we find out the pair production
rate of particles in the presence of an external electric field by evaluating circular Wilson loops using perturbative methods.
From the later investigation, we note the resemblance with our earlier prediction. However, we also see that for and below
another certain value of the parameter δ, the pair production rate of particle/antiparticle pairs blows up as the external electric
field is taken to zero. We thus infer that the vacuum of the non-SUSY gauge theory is unstable for a range of non-
supersymmetric parameter δ and that the geometry/non-SUSY field theory under consideration has quite different
characteristics than earlier reported.

1. Introduction

For the last few decades, the AdS/CFT correspondence [1–4]
(relating N = 4 superconformal Yang-Mills in 4 space-time
dimensions to quantum gravity in asymptotic AdS5 ⊗ S5

spaces), and some of its modifications are one of the exem-
plary ideas in theoretical physics. AdS/CFT chiefly comes
from black hole thermodynamics [5], and type IIB string
theory [6] is thus inherently supersymmetric in nature. This
is a strong-weak duality meaning; strong coupling in the
field theory side corresponds to weak coupling in the quan-
tum gravity side and vice versa. However even after so many
years, no trace of supersymmetry has been found by experi-
ments, and again, conformal symmetry is not found quite
much in nature. Thus, it is necessary to formulate a modifi-
cation of AdS/CFT without supersymmetry and conformal
symmetry yet respecting its string theory/supergravity ori-
gins. Such a solution is obtained in [7, 8]. This solution for

D3 branes has two parameters δ and u0, (i.e.., the field the-
ory dual is a two-parameter deformation over usual N = 4
super Yang-Mills) and has certain features which makes it
an attractive dual for large N QCD studies via holography
[9]. To the best of our knowledge, an explicit interpretation
of these two parameters in terms of dual field theory mea-
surables lacks till date. It had been previously reported that
[7–9] those include running coupling+confinement in the
infrared and absence of both SUSY and conformal symmetry
(thus, the two-parameter deformation commented above
violates both SUSY and conformal symmetry). Part of what
makes AdS/CFT alluring is that when the field theory cou-
pling is high, the corresponding coupling in the quantum
gravity side is low, and thus, we are left with classical gravity
which is easily computable.

The coupling constant in field theory is usually used as a
perturbative parameter, and observables are expressed in a
series w.r.t. this parameter; this is called perturbative field
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theory. However, there are quite some effects in quantum
field theory which cannot be explained as such, i.e., nonper-
turbative effects. Amongst them, the Schwinger effect stands
its ground. The vacuum of QED or any gauge theory inter-
acting with charged matter is full of virtual particles and
antiparticles (henceforth, q�q). In the presence of an external
electric field/gauge field, these particles get the required
energy and become real particles. There is no magic involved
in this. In realistic situations, the energy of the real q�q pairs
is obtained from the electric field. Schwinger calculated [10]
the pair production rate for this process in U(1) gauge the-
ory and obtained

Γ = eEð Þ3
2πð Þ3 e

−πm2/eE: ð1Þ

The exponential suppression hints that pair productions
can be modeled as a tunneling process. Assuming that the
virtual q�q pair has a separation x, the potential on a virtual
quark in the presence on an external electric field is given as

V eff = −
α

x
− eEx + 2m: ð2Þ

Imagine this to be the potential barrier though which the
q�q pairs tunnel out in the opposite direction and become
real. For E <m2/eα, there exists two zero points of the poten-
tial, and V eff is positive for intermediate values of x. That
means there is a potential barrier, and quarks have to tunnel
out through them justifying the exponential factor stated
above. However for E >m2/eα, the potential becomes nega-
tive all along and stops putting up a potential barrier, indi-
cating a catastrophic instability of vacuum where the q�q
are produced spontaneously. The value of electric field for
which the potential stops putting up a tunneling barrier is
called “critical/threshold electric field” Ec.

The Schwinger effect in holographic setting was first cal-
culated in [11] (see [12] for an even earlier work) wherein
the pair modified pair production rate was found to be

Γ ~ exp −
ffiffiffi
λ

p

2

ffiffiffiffiffi
Ec

E

r
−

ffiffiffiffiffi
E
Ec

s !22
4

3
5, Ec =

2πm2ffiffiffi
λ

p : ð3Þ

This formula matches with the one above for low electric
field (much lower than Ec). For field much higher than Ec,
we do not see an exponential suppression anymore hinting
at catastrophic decay. The chief idea of this work was to
place the probe brane at a finite position unlike what is done
usually (placing the probe brane at the conformal boundary
of AdS) and then to calculate the circular Wilson loop.
Another approach was pioneered in [13] which calculated
the rectangular Wilson loop for virtual q�q pair and relate it
to interquark potential and then find the critical electric field
from the same. Holographic Schwinger effect for confining
gauge theories has also been studied in literature [14, 15],
and the confinement manifests itself in the presence of
another “threshold” electric field, below which pair produc-

tion does not happen at all. In this work, we want to study
the Schwinger effect for non-supersymmetric gauge theories
via holographic methods using both of this methods, our
chief interest being twofold. On the one hand, we like to
see the theoretical effect absence of supersymmetry yields
on the value of critical electric field at least for large N
Yang-Mills theories (and if such a relation can be reframed
to be an indirect experimental evidence towards the presence
or absence of supersymmetry in real-world nature). We also
like to demonstrate the effect of confinement (as reported
earlier for large N non-supersymmetric YM theories via
holography) towards holographic Schwinger particle decay
and look into exotic results if any. For our purpose, the vir-
tual q�q pairs are imagined to be endpoint of a string in the
boundary. We calculate the rectangular Wilson loop in
space-time direction to find out the interquark potential.
To account for an external electric field, we add an extra
term. We analytically find out the critical electric field from
the same. We also plot figures to illustrate the tunneling phe-
nomenon. Next, we move on to finding out the critical elec-
tric field from analysis of the DBI action using the fact that
the action should be real valued. Then, we move on to find-
ing out the circular Wilson loop. It is impossible to do so
without any simplification. We thus expand the expressions
to first order of the non-SUSY deformation parameter ðu0Þ4.
Doing so, we explicitly find out the profile of circular Wilson
Loop up to the first order of ðu0Þ4 from which we find out
the pair production rate.

This paper is organized as follows: in Section 2, we recap
non-SUSY D3 branes and their decoupling limit from super-
gravity. We also show that the non-SUSY solution goes over
to usual AdS when appropriate limits are taken. In Section 3,
we show the derivation of pair production in theory with
U(1) gauge field coupled to charged matter. Relevant expres-
sion for large N gauge theory is also given. In Section 4, we
carry on potential analysis of virtual q�q pairs from which the
critical electric field is derived both by analytical and numer-
ical means. In Section 5, we use the DBI action and find out
the critical electric field using the fact that the action should
be real valued. In Section 6, we use perturbative analysis to
find out the profile for circular Wilson loop when the string
ends at a finite position (ub). Using this, we find the critical
electric field and pair production rate and make some com-
ments about the later. We close this paper with conclusions
in Section 7.

2. Non-SUSY Dp Branes and Their
Decoupling Limit

In this section, we will take a brief recap of non-
supersymmetric Dp brane solutions [16] and show how to
recover the BPS Dp brane solutions from them. Then, we
will state the decoupling limit of non-SUSY D3 branes by
analogy with the BPS case and make sure that the decou-
pling goes over to the BPS brane decoupling limit when
SUSY is restored [7]. In addition, we also show by taking
suitable coordinate transformation that the decoupled throat
geometry is actually identical with two-parameter solution
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obtained previously by Constable and Myres in which super-
symmetry and conformal symmetry are both broken [8]. We
start with the action for ten-dimensional type II supergravity
which in addition to the string frame metric gμν has a dila-
tion ϕ field and a ð8 − pÞ RR from gauge field F½8−p�.

S = 1
16πG10

ð
d10x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−det gμν

q
R −

1
2 ∂μϕ∂

μϕ −
1

2 8 − pð Þ! F
2
8−p½ �

� �
:

ð4Þ

We will be looking for solutions of the above using the
ansatz.

ds2str = e2A rð Þ −dt2 + dx21+⋯+dx2p
� �

+ e2B rð Þ dr2 + r2dΩ2
8−p

� �
,

ð5Þ

F 8−p½ � =QVol Ω8−p
À Á

: ð6Þ
In the above, the metric has an ISOðp, 1Þ × SOð9 − pÞ

isometry and represents a magnetically charged p brane in
10 dimensions with magnetic charge Q. It can be shown that
the above solution conserves supersymmetry, i.e., saturates
the BPS bound if [17]

p + 1ð ÞB rð Þ + 7 − pð ÞA rð Þ = 0: ð7Þ

Solution of equations of (4) compatible with (5)–(7)
leads to usual BPS p branes. We will be interested in super-
gravity solutions which defy the condition (7) and hence
donot saturate the BPS bound , thus breaks spacetime super-
symmetries. In the rest of the paper, we will be concerned
with non-supersymmetric D3 brane solution and thus will
consider the case where p = 3. The non-supersymmetric D3
brane solution is given as

ds2 = ~F ρð Þ−1/2G ρð Þδ/4 −dt2 + dx21 + dx22 + dx23
Â Ã

+ ~F ρð Þ1/2G ρð Þ 1+δð Þ/4 dρ2

G ρð Þ + ρ2dΩ2
5

� �
,

e2ϕ = g2s G ρð Þδ,

F 5½ � =
1ffiffiffi
2

p 1+⋆ð ÞQVol Ω5ð Þ:

ð8Þ

In the above the functions, ~FðρÞ and GðρÞ are given as

~F ρð Þ =G ρð Þα/2 cosh2θ −G ρð Þ−β/2 sinh2θ, ð9Þ

G ρð Þ = 1 + ρ40
ρ4

: ð10Þ

It can be shown that the non-SUSY solution (8) violates
condition (7) and thus breaks space-time supersymmetries.
In the above, e2ϕ is the effective string coupling constant
and the solution is characterized by six parameters, i.e., α,
β, δ, θ, ρ0, and Q, of which ρ0 has the dimensions of length,

Q has dimensions of four volume, and others are dimension-
less. One should further note from (9) that the solution
given above has a naked singularity at ρ = 0 and the physical
region is given by ρ > 0. In the context of string theory, one
hopes that quantum fluctuations modify the behavior of the
solution near the singularity point. As e2ϕ is the effective
string coupling, for the supergravity description to remain
valid, one needs the parameter δ to be less or equal to zero
so as to make the string coupling small. The parameters of
the solutions are not all independent but satisfy some consis-
tency relations like

α = β,
Q = 2αρ40 sinh 2θ,

α2 + δ2 = 5
2 :

ð11Þ

In arbitrary dimensions, the solutions and the con-
straints are a bit complicated and are given in [18]. Just like
the BPS D3 brane solution, the non-SUSY solution too is
asymptotically flat. One can recover the BPS solution from
the non-SUSY solution given above by considering the limits
ρ0 ⟶ 0 and θ⟶∞ keeping α/2ρ40ðcosh2θ + sinh2θÞ⟶
R4 = fixed. Under this scaling, one has GðρÞ⟶ 1 and ~Fðρ
Þ⟶ 1 + ðR4/ρ4Þ and Q⟶ 4R4 under which the standard
BPS solution is regained.

The decoupling limit is a low energy limit in which inter-
actions between the bulk theory and theory living on the
brane vanish. To work out the decoupling limit and hence-
forth the throat geometry, one needs to make a change of
variables in analogy with the BPS D3 brane.

ρ = α′u,
ρ0 = α′u0,

α cosh2θ = λ

α′2u40
,

α′⟶ 0:

ð12Þ

In the above, u and u0 have the dimensions of energy
and are kept fixed. From (11) and (12), it can be shown that

Q/α′2 ≫ 1 implying that the curvature of space-time in
string units must be very small for the supergravity descrip-
tion to be valid. A justification of the above decoupling limit
is given explicitly in [7, 18]. Under the above said limit,

G ρð Þ⟶G uð Þ = 1 + u40
u4

= fixed,

~F ρð Þ⟶ ~F uð Þ = λ

α′2
F uð Þ:

ð13Þ

In the above, FðuÞ = 1/αu40ðGðuÞα/2 −GðuÞ−α/2Þ, and the
non-SUSY D3 brane throat geometry in the decoupling limit
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mentioned above becomes

ds2 = α′
ffiffiffi
λ

p �
F uð Þ−1/2G uð Þδ/4ημνdxμdxν

+ F uð Þ1/2G uð Þ 1+δð Þ/4 du2

G uð Þ + u2dΩ2
5

� ��
,

ð14Þ

e2ϕ = g2s G uð Þδ: ð15Þ
In the above, the space-time coordinates have been

rescaled as ðt, xiÞ⟶ ffiffiffi
λ

p ðt, xiÞ, where λ is the ‘t Hooft cou-
pling. In the limit u0 ⟶ 0, one has GðuÞ⟶ 1 and FðuÞ
= 1/αu40½ðαu40/u4Þ + Oðu80/u8Þ� ≈ u4. In this limit, the non-
SUSY throat geometry (14) goes over to the known AdS5
× S5, and the effective string coupling becomes constant.
To check the relation of solution (14) with that of the previ-
ously known one by Constable and Myres [8] which was
conjectured to be dual to some non-supersymmetric field
theory, one has to rewrite the solution in the Einstein frame.

ds2E = α′
ffiffiffi
λ

p �
H uð Þ−1/2G uð Þα/4ημνdxμdxν

+H uð Þ1/2G uð Þ 1−αð Þ/4 du2

G uð Þ + u2dΩ2
5

� ��
,

ð16Þ

e2ϕ = g2s G uð Þδ: ð17Þ

In the above, the function HðuÞ is defined by HðuÞ =G
ðuÞα/2FðuÞ = GðuÞα − 1. Now, one has to make a coordinate
transformation like u = rð1 + ðω4/r4ÞÞ−1/4, where ω4 = u40/4.
Under this transformation, GðuÞ⟶ ð1 + 2ðω4/r4ÞÞ2 and H
ðuÞ⟶ ð1 + 2ðω4/r4ÞÞ2α − 1. From these relations and (16),
one can exactly produce the two-parameter family of solu-
tions as found in [8] in which both supersymmetry and
conformal symmetry are broken. The solution in [8] also
exhibits QCD-like behavior like running gauge coupling
and confinement in the infrared. The geometry (16)
exhibits a naked singularity at u = 0 and thus should be
corrected by stringy corrections which should become
dominant at low length scales. Moreover, the proper dis-
tance (spatial) from the exterior (say u = ub) to the interior
is finite (which says that stringy corrections are a must).
In holography, the proper distance is identified with mass
of the string hanging from the boundary to the interior
[19]. To find the same, we have to choose a gauge of
the form: x0 = t, u = s, and all others = constant. With this
gauge, the mass is given by

m =
ffiffiffi
λ

p

2π

ðub
0
du

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + u40

u4

� � 2δ−3ð Þ/4
s

= finite and positive for all allowed values of δ:
ð18Þ

The integral can indeed be done in closed form. How-
ever, the result is very complicated (hypergeometric func-

tions involved), and it is very difficult to invert ub in
terms of m. Thus, we express our results in this work with
formula for mass (m0) of N = 4 SYM.

m0 =
ffiffiffi
λ

p

2π ub: ð19Þ

3. Pair Production in Presence of
External Fields

In this section, we will revisit the concept of pair produc-
tion in the presence of external electric fields. i.e., the
“Schwinger effect.” We will demonstrate the effect using
Euclidean version of the electromagnetic action [20] and
generalize to large N gauge theories. The Euclidean ver-
sion of U(1) gauge theory coupled to a massive complex
scalar field is given by

S =
ð
d4x

1
4 F

2
μν + ∂μ + ieAμ + ieaexμ

� �
ϕ

��� ���2 +m2 ϕj j2
� �

: ð20Þ

In the above, Aμ refers to the dynamical U(1) gauge
field and aexμ refers to the external value of (constant) elec-
tromagnetic field. The pair production rate, Γ, can be writ-
ten as [21]

VΓ = −2 Imln
ð
DADϕ e−S = −2 Imln

ð
DAe−Seff , ð21Þ

where Seff = 1/4
Ð
d4xF2

μν + trln½−ð∂μ + ieAμ + ieaexμ Þ2 +m2�.
For leading order calculations, one can ignore the coupling
of the dynamical gauge field with the scalar field. Thus,
the expression above reduces to

VΓ = −2 Im trln − ∂μ + ieaexμ
� �2

+m2
� �

: ð22Þ

Using the relation, trlnðAÞ = −
Ð∞
0 ðdT/TÞtre−AT and

evaluating the trace in position basis, one can rewrite the
above expression to

VΓ = Im
ð∞
0

dT
T

e−m
2T/2
ð
d4x

Á x exp −T − ∂μ + ieaexμ
� �2� �� �����

����x
� �

:

ð23Þ

Note that the integrand under d4x is synonymous to
the path integral of a nonrelativistic particle under the
influence of the Hamiltonian H = 1/2½Pμ + eaexμ �2. Using
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quantum mechanical path integral representation [22], one
can write

VΓ = Im
ð∞
0

dT
T

e−m
2T/2
ð
x 0ð Þ=x Tð Þ

Dx exp

Á −
1
2

ðT
0
dτ _x2 + ie

þ
aexμ dxμ

� �

= Im
ð∞
0

dT
T

ð
x 0ð Þ=x 1ð Þ

Dx exp

Á −
1
2T

ð1
0
dτ _x2 −

m2T
2 + ie

þ
aexμ dxμ

� �
,

ð24Þ

where in the last line, we have rescaled τ⟶ 1/Tτ. We
assume m2Ð 1

0dτ _x
2 ≫ 1 (a condition signifying heavy mass)

and note that the integration over T has the form of a
modified Bessel function K0ðxÞ =

Ð∞
0 ðdt/tÞ exp ð−t − ðx2/4t

ÞÞ with the asymptotic behavior, K0ðxÞ ≃
ffiffiffiffiffiffiffiffiffi
π/2x

p
e−x, for

large x. Thus, the above integral becomes

VΓ = Im
ð
Dx exp −Sp

Â Ã 1
m

ffiffiffiffiffiffi
2π
T0

s
: ð25Þ

In the above, T0 = 1/m
ffiffiffiffiffiffiffiffiffiffiffiffiffiÐ
dτ _x2

q
and Sp =m

ffiffiffiffiffiffiffiffiffiffiffiffiffiÐ
dτ _x2

q
−

ie
Þ
aexμ dxμ and aex1 = −iEx0 (signifying constant electric

field of value E in x1 direction, iota comes in due to
Euclidean signature). We like to evaluate the above inte-
gral by the method of steepest descent. The argument
within the exponential is the action for a relativistic parti-
cle executing a periodic motion under influence of aexμ .
The equation of motion for it is given by

1ffiffiffiffiffiffiffiffiÐ
_x2

q m€xμ = eFex
μν _xν: ð26Þ

Keeping in mind the periodic boundary conditions xμ
ð0Þ = xμð1Þ and Fex

01 = E, one has the following classical
solution:

xclμ = R 0, 0, cos 2πτ, sin 2πτð Þ,

R = m
eE

,

Sclp =
πm2

eE
:

ð27Þ

Using the above values, one has 1/m
ffiffiffiffiffiffiffiffiffiffiffiffi
2π/T0

p
=

ffiffiffiffiffi
eE

p
/m.

Thus, decay rate can be approximated as

VΓ ≈
ffiffiffiffiffi
eE

p

m
e−πm

2/eE ð28Þ

Ideally one should go around calculating the one loop
prefactor and complete the steepest descent process [20,

23], the calculation of which is indeed complicated. The
modified prefactor is given by ðeEÞ2/ð2πÞ3. Thus, we see
that the pair production rate goes to zero if the external
electric field is switched off. In arbitrary coupling, one
can no longer neglect the effect of the dynamical fields
and one has to include contribution from the Wilson
loops.

VΓ = −2 Im
ð∞
0

dT
T

e−m
2T/2
ð
Dx exp −

1
2T

ð1
0
dτ _x2

�

+ ie
þ
aexμ dxμ

�
exp ie

þ
Aμdxμ

� �� �
:

ð29Þ

The pair production rate gets modified to [15, 20]

Γ = eEð Þ2
2πð Þ3 〠

∞

n=1

−1ð Þn+1
n2

exp −n
πm2

eE
−
e2

4

� �� �
: ð30Þ

From the above, one can work out that the pair pro-
duction rate is not exponentially suppressed once the value
of electric field exceeds the so-called critical value Ec = 4π
m2/e3, beyond which the vacuum becomes unstable.

To implement this argument for AdS/CFT like theo-
ries, one faces a number of problems. Firstly, the field the-
ory in those circumstances is a conformal one, and one
cannot get a mass term a priori. Moreover in the dual
gauge theory, matter fields exist in the adjoint representa-
tion of SU(N) gauge group. To evade these issues, one
uses the Higgs mechanism to break the symmetry group
from SUðN + 1Þ⟶ SUðNÞ ⊗Uð1Þ. Because of this split-
ting, one has 5 massive W bosons transforming in funda-
mental representation of SU(N) and interacting with the
background Yang-Mills theory. Now, the pair production
rate in the presence on an external electric field is given
by [15, 24]

Γ ~ −5N
ð
Dx exp −m

ð1
0
dτ

ffiffiffiffiffi
_x2

p
+ i
ð1
0
dτa Eð Þ

μ _xμ

� �
W x½ �h i,

ð31Þ

where W½x� is the SU(N) Wilson loop and can be calcu-
lated by holographic means.

4. Pair Production in Non-Supersymmetric
Theories via Holography

The ideal way to argue the Schwinger effect [11, 25] is to cal-
culate the expectation value of circular Wilson loops and
relate it to the decay rate. However, one can alternatively
view the vacuum to be made of virtual q�q pairs in the pres-
ence of an attractive potential and study the influence of an
external electric field [13]. This basically amounts to calcu-
lating the interquark potential which one does by consider-
ing the rectangular Wilson loop. In doing so, one has to
make some additional approximations. One considers that
the time scale associated with the Wilson loop is much lesser
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than the length scale. Intuitively, one thinks that the quark
antiquark pairs are separated in the far past and unite in
the far future. In holography, the Wilson loop is given by fol-
lowing formula [26, 27]:

W C½ �h i = 1
Vol

ð
∂X=C

DXDhabe
−S X,h½ �: ð32Þ

S½X, h� is the Wick rotated action of the fundamental
string [6] with endpoints ending at contour C situated on
the probe brane. In the classical limit (α′⟶ 0), the extre-
mal value of the string action dominates, and thus, the Wil-
son loop is the extremal area of string world-sheet ending on
the contour. To study the rectangular Wilson loop, we take
the quark antiquark dipole to be aligned in the x3 direction.
The string action whose on-shell value we are interested with

is the Nambu-Goto action SNG = 1/2πα′ Ð dtds ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det GðinÞ

ab

q
with GðinÞ

ab ≡ Gμνð∂xμ/∂saÞð∂xν/∂sbÞ which has two diffeo-
morphism symmetries. We exploit those to choose the fol-
lowing gauge:

x0 s, tð Þ = t,
x3 s, tð Þ = s,
u s, tð Þ = u sð Þ,

x1,2 = 0,
Θi s, tð Þ = constant:

ð33Þ

For present purposes, x3 ≡ s is assumed to range between
½−L, L� and temporal direction x0 ≡ t is ranged between ½−
T ,T � with the assumption that T ≫ L. 2L indicates the
interquark separation on the probe brane with the boundary
condition uð±LÞ = ub, where ub indicates the position of the
probe brane along the holographic direction (see Figure 1).
Finally another word about the configuration, it is possible
to consider the q�q pairs at a velocity in the x2 direction.
However in the present case where the virtual particles in
vacuum are modeled as q�q dipoles, such a configuration
seems hardly sensible. The induced metric as per the above
gauge choice reads (14) and (33).

1
α′

ffiffiffi
λ

p G inð Þ
ab dsadsb = −F u sð Þð Þ−1/2G u sð Þð Þδ/4dt2

+ ds2
"
F u sð Þð Þ−1/2G u sð Þð Þδ/4 + F u sð Þð Þ1/2

Á G u sð Þð Þ 1+δð Þ/4 1
G u sð Þð Þ

du
ds

� �2
#
:

ð34Þ

From the above, we have the determinant of the induced
metric to be

−det G inð Þ
ab = α′

ffiffiffi
λ

p� �2"
G u sð Þð Þ 2δ−3ð Þ/4

 
du
ds

� �2

+G u sð Þð Þ3/4F u sð Þð Þ−1
!#

:

ð35Þ

It is not possible to carry on analysis without some sim-
plification. We therefore assume that ðu0/uÞ4 ≪ 1, and with
the mentioned, simplify the area, i.e., on-shell Nambu-
Goto action, to

Sng =
1

2πα′

ðT /2

−T /2
dt
ðL
−L
ds

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−det G inð Þ

ab

q

=
ffiffiffi
λ

p

2π T

ðL
−L
ds

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
du
ds

� �2
1 + A

u40
u4

� �
+ u4 1 + B

u40
u4

� �s
,

ð36Þ

wherein

B = δ + 1
2 ,

A = 2δ − 3
4 ,

A + 5
4 = B:

ð37Þ

Crudely speaking, this can be seen as treating the non-
SUSY theory as perturbation over the N =4 supersymmetric
Yang-Mills. Since the expression (36) does not explicitly
depend on the parameter s, the corresponding “Hamilto-
nian,” Q, is conserved.

Q = −
du
ds

dLng
d du/dsð Þ + Lng

= u4 + Bu40ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
du/dsð Þ2 1 + A u40/u4

À ÁÀ Á
+ u4 1 + B u40/u4

À ÁÀ Áq :
ð38Þ

A is indicated in [28]; the fundamental string is assumed
to carry charges at two of its endpoints and is otherwise
symmetric about its origin. From the above expression, we
see that du/ds has both positive and negative signs. Appeal-
ing to its symmetric nature, there exists a point, namely,
turning point (with string parameter st), such that

du
ds

� �
utð Þ = 0: ð39Þ

Using the above expression in (38), the value of the con-
served Hamiltonian is found in terms of the turning point

Q =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u4t + Bu40

q
: ð40Þ

6 Advances in High Energy Physics



Putting the above value in (38), we get

du
ds

= u2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u4 − u4t
À Á

u4 + Bu40
À Á

u4t + Bu40
À Á

u4 + Au40
À Á

s
: ð41Þ

The length of the (virtual) dipole can be calculated to be
(see Figure 1)

L =
ðL/2
−L/2

dx3 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u4t + Bu40

q ðub
ut

du

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u4 + Au40

p
u2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u4 − u4t
À Á

u4 + Bu40
À Áq :

ð42Þ

From (41) and (36), we can find the on-shell value of
interquark potential.

UPE+SE =
Sng

T
=

ffiffiffi
λ

p

2π

ðub
ut

du
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u4 + Au40
À Á

u4 + Bu40
À Áq 1

u2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u4 − u4t

p :

ð43Þ

Notice from (42) that when ut ⟶ ub, the value of the
interquark separation becomes small. But as said earlier,
we are in an approximation where ðu0/uÞ4 ≪ 1. Thus, the
calculations in this section are trustable for large interquark
separation. Now, the expression in (43) (see Figure 2 for the
plot) does not take the presence of an external electric field
into account. Thus, we define an effective potential as

V eff =UPE+SE − E:L = 1 − rð ÞEc:L +G ut Lð Þð Þ: ð44Þ

In the above, we have assumed the presence on a critical
electric field Ec, above which the effective interquark force
becomes repulsive for all values of the interquark separation.

x3

u

x0

(u0)

(uB)

‘‘adiabatic
switching of ’’

‘‘adiabatic
switching on’’

q

L
T

q q–

q–

Probe

(a)

uB

x3

u

L

∞u0

Boundary

(b)

Figure 1: This figure illustrates the setup used. The probe brane is placed at a finite position (ub) on the holographic direction as in (b). On
the probe brane, the placement of the Wilson loop is shown in (a); the arrows indicate the contour of the loop (not the propagation of the
string). For adiabatic interactions, one can neglect the effects of the dotted lines and the string profile becomes static.

2 4 6 8 10
L

–2.0

–1.5

–1.0

–0.5

0.0

U
P
E

Figure 2: This is the graph of UPE vs. L. The rest mass has been
duly subtracted. Note that for small values of L, the graph is
approximately linear and for large L coulombic behavior is
mimicked. Deviation from usual coulombic behavior is evident.
The values used are δ = −0:75, u0/ub = 0:01, and λ = 4π2.
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The quantity GðutÞ is

G utð Þ =UPE+SE − EcL =
ðub
ut

du

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u4 + Au40

p
u2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u4 − u4t

p
Á

ffiffiffi
λ

p

2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u4 + Bu40

q
− Ec

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u4t + Bu40

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u4 + Bu40

p
" #

:

ð45Þ

The parameter r is the ratio of applied electric field to its
critical value. The slope of the effective potential is given as

dV eff
dL

= 1 − rð ÞEc +
dut
dL

dG utð Þ
dut

: ð46Þ

We now proceed to find the value of the critical electric
field. Note that at ut = ub, the interquark separation (42) and
the interquark potential (43) vanish (see Figure 3). At the
critical value of the electric field r = 1, the 1st term of (46)
ceases to contribute, and the behavior of the interquark force
will be completely governed by the second term of (46). Crit-
icality demands that the potential ceases to put up a tunnel-
ing barrier for all values of interquark separation (see red
line in Figure 4). Given that GðutðLÞÞ vanishes at L = 0, we
need to show that GðutðLÞÞ is a monotonically decreasing
function with respect to L whose slope vanishes at L = 0 (this
is because critical electric field is the least one for which pair
production happens spontaneously). From (42), we have

dL
dut

= −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u4t + Au40

p
u2t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u4t + ϵ
À Á4 − u4t

q

+ 2
ðub
ut+ϵ

du
u3t
u2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u4 + Au40
À Á

u4 + Bu40
À Áq

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u4 − u4t
À Á3 u4t + Bu40

À Áq :

ð47Þ

Similarly, we have from (45)

dG
dut

utð Þ = −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u4t + Au40

p
u2t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ut + ϵð Þ4 − u4t

q
ffiffiffi
λ

p

2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u4t + Bu40

q
− Ec

" #

+ 2u3t
ðub
ut+ϵ

du

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u4 + Au40
À Á

u4 + Bu40
À Áq

u2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u4 − u4t

p� �3
Á

ffiffiffi
λ

p

2π −
Ecffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u4t + Bu40
p

" #

=
ffiffiffi
λ

p

2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u4t + Bu40

q
− Ec

" #
dL
dut

:

ð48Þ

Thus, we get

dV eff
dL

= 1 − rð ÞEc +
ffiffiffi
λ

p

2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u4t + Bu40

q
− Ec

" #
: ð49Þ
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Figure 3: This is the graph of L vs. ut . Note that the function is an
isomorphism. The values used are δ = −0:75 and u0/ub = 0:01.
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Figure 4: The plot indicates the effective potential (in the presence
of external electric field) vs. the interquark separation. Imagine this
to be then potential through which q�q tunnels out. The green line
indicates r = 0:25 and blue line for r = 0:75. The parameter r is
the ratio of the applied field to its threshold value. The red line
which exhibits the threshold behavior, i.e., no potential barrier,
stands for r = 1:0 and cyan for r = 1:75 shows catastrophic decay
of vacuum. Note that at the threshold/critical value, the slope of
the potential vanishes at L = 0 and is negative for nonzero value
of L which is precisely the conditions we have used to analytically
find out the value of Ec. Also note that none of the above plots
exhibit confining behavior as earlier reported in literature. The
values used are δ = −0:75, u0/ub = 0:01, and λ = 4π2.
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At threshold condition, the slope of the potential should
be zero at when interquark separation vanishes, i.e., ut = ub.
Implementing the same in (49), we get

Ec =
ffiffiffi
λ

p

2π u2b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + δ + 1

2
u40
u4b

s
= 2πffiffiffi

λ
p m2

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + λ2

32π4 δ + 1ð Þ u
4
0

m4
0

s
:

ð50Þ

We thus have

dV eff
dL

= 1 − rð ÞEc +
ffiffiffi
λ

p

2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u4t + Bu40

q
−

ffiffiffi
λ

p

2π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u4b + Bu40

q" #
:

ð51Þ

From Figure 3, we see that L increases as ut decreases
using which we can say from (51) that dV eff /dL is a mono-
tonically decreasing function of L at r = 1. It can be easily
understood that from r > 1, the effective potential is totally
repulsive. Thus, we establish the existence of a critical elec-
tric field with value given by (50). We see that as δ switches
over −1, the critical electric field increases and decreases,
respectively, compared to the supersymmetric value. Not
even that, just at δ = −1, the critical field has the same value
as that of the supersymmetric theory. Will this kind of
behavior remain when one considers higher orders? How
much of the calculation in this section should be trusted

for small values of interquark separation? The answer to this
question will be found in the next section.

It so happens that analytical solutions to (42), (43), and
(44) cannot be found out in a closed from via Mathematica.
Thus, we resort to numerical methods. Some plots to illus-
trate the situation are given.

5. DBI Analysis of Critical Electric Field

In this section, we look to find out the critical electric field
from analysis of the DBI action of the probe brane in the
presence of an external electric field. In due course, we will
also answer the question raised in Section 4.

As earlier, we imagine the probe brane situated at u = ub
(see Figure 1) in the holographic dual with an electric field
switched on at the brane position. The DBI action is given as

SDBI =
1

2πð Þ3gsα′
ð
u=ub

d4x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−det P g½ �μν + Bμν + 2πα′Fμν

� �r
:

ð52Þ

In the above, P½g�μν is the pullback of the curved metric
on the probe brane, Bμν is the NS 2-form which is zero in the
present case, and Fμν is the Faraday tensor which we set to
the value F03 = E, to indicate the presence of an external
electric field. Evaluating the above from (14), we have

Thus, the DBI action becomes

SDBI =
α′λ
2πð Þ3gs

ð
u=ub

d4xF ubð Þ−1/2G ubð Þδ/4

Á
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F ubð Þ−1G ubð Þδ/4 − 2πEffiffiffi

λ
p

� �2
s

:

ð54Þ

Thus, we see that (54) is not real for all values of the
external electric field and there is an upper limit of the same.
This limiting value is nothing but the critical electric field is

Ec =
ffiffiffi
λ

p

2π F ubð Þ−1/2G ubð Þδ/4: ð55Þ

The functions FðuÞ and GðuÞ have been defined before in
(9). One can check that up to Oðu0/ubÞ4, (55) reduces to (50).
However in finding (55), we have refrained from using pertur-
bations of any sort, and thus, (55) is the exact value. Let us
check the behavior of it with respect to the parameter δ.

We see from Figure 5 that the critical electric field is the
same as that of its supersymmetric cousin somewhere
around δ = −0:85, which matches more or less with our per-
turbative analysis in the last section. For values of δ > 0:85,
the critical electric field is greater than the supersymmetric
counterpart, and for δ < 0:85, the critical field is lesser. Thus,
the question raised in the last section is answered in the affir-
mative. The calculation in Section 4 will not be affected dras-
tically for small values of interquark separation. (This is
because it is the small separation behavior that decides the
critical value.)

P g½ �μν + 2πα′Fμν =

−α′
ffiffiffi
λ

p
F ubð Þ−1/2G ubð Þδ/4 0 0 2πα′E

0 α′
ffiffiffi
λ

p
F ubð Þ−1/2G ubð Þδ/4 0 0

0 0 α′
ffiffiffi
λ

p
F ubð Þ−1/2G ubð Þδ/4 0

−2πα′E 0 0 α′
ffiffiffi
λ

p
F ubð Þ−1/2G ubð Þδ/4

0
BBBBBB@

1
CCCCCCA
:

ð53Þ
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6. Holographic Pair Production Rate for Non-
Supersymmetric Theories

In this section, we calculate the pair production rate by using
the method of circular Wilson loops. As indicated earlier in
(31) and (32), to find the pair production rate, we need to
find the on-shell value of the Nambu-Goto action with string
endpoints ending on a circular contour at the probe brane
(u = ub). For pure AdS, the calculation of the same has been
presented in [11, 15, 29]. However, it is not possible to find
exact solutions to the relevant equation of motions for the
present case (14). Thus, we will resort to perturbative treat-
ments like that of [30] to calculate the circular Wilson loop,
and hence, the decay rate to first order of the non-SUSY
deformation parameter (u40). Since the metric (14) enjoys
circular symmetry, we start by making an ansatz.

x0 = r σð Þ cos τ,
x3 = r σð Þ sin τ,
u = u σð Þ:

ð56Þ

In the above, all other coordinates have been put to be
constants as circular symmetry would imply. The parameter
τ ranges from ð0, 2πÞ while the parameter σ is still arbitrary.
There exists a diffeomorphism invariance of the Nambu-
Goto action with which we can set u = uðσÞ to a function
of our choosing. Putting the ansatz (56) in (14), we have
the induced metric to be

ds2 = α′
ffiffiffi
λ

p " 
F uð Þ−1/2G uð Þδ/4 dr

dσ

� �2

+ F uð Þ1/2G uð Þ δ−3ð Þ/4 du
dσ

� �2
!
dσ2

+ r2F uð Þ−1/2G uð Þδ/4dτ2
#
:

ð57Þ

From the above, one can get the Nambu-Goto action to
be of the form

Sng =
α′

ffiffiffi
λ

p� �
2πα′

ð2π
0
dτ
ðσb
0
dσ

Á
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2G uð Þδ/2 F uð Þ−1 r′

� �2
+G uð Þ−3/4 u′

� �2� �r
:

ð58Þ

For purposes of calculation, we expand the function Fð
uÞ and GðuÞ in their leading order to the non-
supersymmetric deformation parameter, and we have

wherein

B = δ + 1
2 ,

A = 2δ − 3
4 ,

A + 5
4 = B:

ð60Þ

The above binomial expansion and all the others that
follow are simply treating the non-SUSY theory as a pertur-

bation over the regular N = 4 SYM. In this paper, we limit
ourselves to the first-order perturbations. Recall that we still
had one diffeomorphism invariance left as mentioned
before, with the help of which we set duðσÞ/dσ = 1. Thus,
(59) is simplified to

Sng =
ffiffiffi
λ

p ðub
ut

du

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

dr
du

� �2
u4 + Au40
À Á

+ r2

u4
u4 + Bu40
À Ás

: ð61Þ

We would like to find out the function r = rðuÞ which
extremizes (61). Extremizing the same, one has to encounter

–1.5 –1.0 -0.5 0.0
𝛿0.20
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E
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Figure 5: This is the plot of critical electric field Ec vs. the non-
supersymmetric parameter δ. In this figure, we have set

ffiffiffi
λ

p
/2π =

1 and u0/ub = 1/0:5. According to this values, the supersymmetric
critical field would have been 0.25.

Sng =
ffiffiffi
λ

p ðσb
0
dσ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 1 + δ

2
u40
u4

� �
r′
� �2

u4 1 + 1
2
u40
u4

� �
+ u′
� �2

1 − 3
4
u40
u4

� �� �
+ O

u8o
u8

� �s

≈
ffiffiffi
λ

p ðσb
0
dσ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 r′
� �2

u4 1 + A
u40
u4

� �
+ u′
� �2

1 + B
u40
u4

� �� �s
,

ð59Þ
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the equation

u4 u4 + Au40
À Á dρ

du

� �2
2 u4 + Bu40
À Á

− u7
dρ
du

� �

− 4ρ u3
dρ
du

ABu80 + 3Bu4u40 + 2u8
À Á

− u4 + Bu40
À Á2� �

− 2u4 u4 + Au40
À Á

u4 + Bu40
À Á

ρ
d2ρ
du2

= 0,

ð62Þ

where ρ = r2. The above equation is very hard to solve in
closed form. Thus, we adopt perturbative techniques like
that of [24]. To do so, we decompose the solution to (62)
as ρ = ρ0 + u40ρ1 in which ρ0 = −1/u2, and ρ1 indicates the
perturbation. From (62), the equation for ρ1 to the leading
order of u40 is

2u2 6 B − Að Þ + 2u7 dρ1
du

+ u8
d2ρ1
du2

 !
= 0: ð63Þ

One can check that the above is solved by

ρ1 uð Þ = A − B
5u6 + K ′: ð64Þ

Thus, the full solution is

r2 uð Þ = ρ uð Þ = u40K ′ − 1
u2

+ A − B
5u6

u40
u6

≡ K −
1
u2

+ A − B
5

u40
u6

= K −
1
u2

−
1
4
u40
u6

,

ð65Þ

where a redefinition of constant has been made. Now, it is
time to relate the constant K to physical parameters. At u
= ub, the value of r is the radius of the Wilson loop R. Thus,
we have

K = R2 + 1
u2b

−
A − B
5

u40
u6b

: ð66Þ

From the above, we can also find the value of the turning
point ut , since at the turning point, the radius rðutÞ = 0.
Thus, the equation which determines the turning point is

K = 1
u2t

1 − A − B
5

u40
u4t

� �
: ð67Þ

Now, we proceed to calculate the on-shell value of the
Nambu-Goto action (61) on the solution (65). We have

We neglect the Oðu80Þ term in the above. The integral of
the remaining part cannot be done in closed form by using
Mathematica. So we resort to perturbative methods again
and write

Sng =
ffiffiffi
λ

p ðub
ut

du
ffiffiffiffi
K

p
1 + B

2
u40
u4

+ O u80
À Á� �

≈
ffiffiffi
λ

p ffiffiffiffi
K

p
u

h iub
ut
−

2B
ffiffiffiffi
K

p
u40

u3

" #ub
ut

0
@

1
A:

ð69Þ

So far so good, however, the reader may agree that work-
ing with (69) is still daunting given that we now have to sub-
stitute the highly nonlinear relations (66) and (67) into it.

Happily, there is a way out of this mess. Recall that our
theme has been to work in the leading order of u40 and the
last two terms of (69) come with a u40 of their own. Thus
to leading order, we may substitute the usual AdS relations
(relating K to ut and ub) in the last term of (69), but use
the non-SUSY relations (66) and (67) in the first term of
the same. Doing so, we have

Sng =
ffiffiffi
λ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2u2b + 1
À Á

−
A − B
5

u40
u4b

s 

−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − A − B

5
u40
u4t

s
+ u40

2B
u4t

−
2B

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2u2b + 1

p
u4b

" #1A

Sng =
ffiffiffi
λ

p ðub
ut

du

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
4

d r2ð Þ
du

� �2
u4 + Au40
À Á

+ r2
À Á

1 + B
u40
u4

� �s

=
ffiffiffi
λ

p ðub
ut

du

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
4 · 4

u6
1 − 3

5 A − Bð Þ u
4
0

u4

� �2
u4 + Au40
À Á

+ 1 + B
u40
u4

� �
K −

1
u2

+ A − B
5

u40
u6

� �s

=
ffiffiffi
λ

p ðub
ut
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ð70Þ

In the second line of the above, we have used the usual
AdS relations for the term 1/u4t to leading order as it is
accompanied by a u40. Again in the third line, we have used
a binomial expansion and retained terms of leading order
in u40/u4b. Now, in the presence of an electric field, the effec-
tive action of the string has an extra piece, SB = T0

Ð
dσdτ

Bμν∂σxμ∂τxν. Specializing to constant electric field, the con-
tribution of SB is a pure boundary term with on-shell value
πR2E, where R is the radius of the Wilson loop, E = B01,
and all other components of the Bμν are set to zero. The
effective action is given by

Sef f = Sng + SB =
ffiffiffi
λ

p � ffiffiffi
x

p
− 1 + u40

u4b

�
A + 19B

10 x2

−
A − B

10 ffiffiffi
x

p − 2B
ffiffiffi
x

p �
−Ex +E

�
:

ð71Þ

In the above, x = R2u2b + 1 and E = ð ffiffiffi
λ

p
u2b/πÞE. Thus, the

radius RðxÞ is a free parameter in expression (71). Following
[11, 25], the radius should be set to an extremum of (71).
Instead of extremizing w.r.t. R, we extremize the action
(71) w.r.t. the parameter y = ffiffiffi

x
p

. Doing so, we find

0 = dSeff
dy

=
ffiffiffi
λ

p �
1 − 2Ey + u40

u4b

Á 2 A + 19Bð Þ
5 y3 + A − B

10y2 − 2B
� ��

:

ð72Þ

The radius R should be set to be the solution of (72);
recall y =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2u2b + 1

p
. Thus, the value of y in the above equa-

tion is constrained and should always be greater than 1. This
is because the radius of the Wilson loop should be a real
number. A subtle point is that the range of parameter y
should be restricted to half of the real line, because the radius
R is nonnegative. The critical electric field Ec is the one for
which the radius R = 0, i.e., y = 1. Setting so in the above,
we see

1 − 2Ec +
u40
u4b

2 A + 19Bð Þ
5 + A − B

10 − 2B
� �

= 0: ð73Þ

Thus,

Ec =
ffiffiffi
λ

p

2π u2b 1 + 1
8
u40
u4b

23 + 24δð Þ
� �

= 2πffiffiffi
λ

p m2
0 1 + λ2

128π4 23 + 24δð Þ u
4
0

m4
0

" #
:

ð74Þ

We see that like (50) and (55), the value of the critical
electric field is greater than the supersymmetric value for
the value δ = −23/24 and less than the supersymmetric
cousin otherwise. Our perturbative analysis has even shown
that the value of parameter δ for which this phase transition
occurs is slightly bigger than -1 as can be seen from the non-
perturbative DBI analysis. Now to find the expression of the
pair production rate, we need to solve (72) for y. As can be
seen, that is not analytically possible. We thus resort to per-
turbative treatments again and write

y = y0 +
u40
u4b

y1: ð75Þ

y0 is the usual AdS solution, i.e., u0 = 0 in (72). The value
of y0 is 1/2E. We put the above relation in the equation in
(72) to get up to leading order in u40/u4b.

y1 =
1
2E

A + 19B
20

1
E3 + 2 A − Bð Þ

5 E2 − 2B
� �

: ð76Þ

Now, we put (75) and (76) in (71), i.e., find out the on-
shell action. Retaining terms in leading order of u40/u4b leads
us to

Son‐shelleff =
ffiffiffi
λ

p

2

� 1
2E − 2 + 2E + u40

u4b

Á
�
A + 19B

80
1
E4 + B − A

10 E −
2B
E

��

=
ffiffiffi
λ

p

2

� 1
2E − 2 + 2E + u40

u4b

Á 40δ + 39
320

1
E4 + 1

40E −
δ + 1
E

� ��
:

ð77Þ

The pair production rate of quark antiquark pairs per
unit volume per unit time is given by the formula Γ ~
e−S

on‐shell
eff . Note that we are using reduced parameter E = ðπ/ffiffiffi
λ

p
u2bÞE, in terms of which the pure AdS pair production

rate (per unit volume per unit time) is given by [11, 25, 29]

ΓSUSY ~ exp −
ffiffiffi
λ

p

2

ffiffiffiffiffiffiffi
1/2
E

r
−

ffiffiffiffiffiffiffi
E

1/2

r !2" #
: ð78Þ
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For the pure AdS/Supersymmetric scenario, the critical
electric field is Ec = 1/2, i.e., Ec =

ffiffiffi
λ

p
u2b/2π. Now unlike

the supersymmetric case, the pair production rate cannot
be brought in closed form. We will have to resort to
numerical calculations. We present the plots of pair pro-
duction rate. Computation of the fluctuation prefactor
(i.e., the ðeEÞ2/ð2πÞ3 term in (30)) is somewhat an open
question in holography, which is the reason we have plot-
ted e−Son‐shell instead of Γ.

Physical interpretation of the plots: as commented in
the caption, no stark contrast is found between the SUSY
and non-SUSY case in Figure 6. This is the case when the
parameter is greater than (somewhere around) -0.975. The
reason for this can be seen from (77). For low electric
field, the pair production rate is dominated by the ðu40/u4b
Þðð40δ + 39Þ/320Þð1/E4Þ term. Above δ = −0:975, the effec-
tive correction at the low electric field limit is positive. At
the limit of high electric field limit, the correction of pair
production rate due to the non-SUSY deformation param-
eter is always positive. This is reason that at the high elec-
tric field limit, the behavior of non-SUSY pair production
rate is same as its supersymmetric cousin for all values of
parameters. Startling effects happen when the parameter
δ < −0:975, for which the plot is shown in Figure 7. Let
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Figure 6: The figure on the left illustrates relation between the pair production rate and applied electric field for pure N = 4 SYM (78). In
our units, the critical electric field is at Ec = 1/2. The right figure is for non-supersymmetric case (77) for the value δ = −0:75. Almost no
change in the profile is found.
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Figure 7: We plot the pair production rate for non-supersymmetric Yang-Mills for the value δ = −
ffiffiffi
2

p
. On the right, we have ðu0/ubÞ4 =

ð1/5Þ4 and on the left ðu0/ubÞ4 = ð1/3:75Þ4.

us recall that the prefactor of the pair production rate is
given by field theoretic calculations to be ðeEÞ2/ð2πÞ3
(see (30)). Although the holographic calculation of the
fluctuation prefactor is currently a mystery, it should def-
initely match with field theoretic calculation for low elec-
tric field. For small applied electric fields, the production
rate shoots up signaling in nonperturbative instability of
the vacuum. We say “nonperturbative” because the
Schwinger effect is by itself a nonperturbative phenome-
non. We see that the limit δ = −0:975 approx. is for more
interesting than earlier imagined.

Let us end by writing down the pair production rate per
unit spatial volume per unit time for non-SUSY Yang-Mills.

Γnon−SUSY ≈ exp
"
−

ffiffiffi
λ

p

2

 
2πm2

0ffiffiffi
λ

p 1
E
− 2 +

ffiffiffi
λ

p

2πm2
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E

+ λ2u40
16π4m4

0

(
4π4m8

0 40δ + 39ð Þ
5λ2

1
E4
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ffiffiffi
λ

p

160πm2
0
E −

4πm2
0 δ + 1ð Þffiffiffi
λ

p 1
E

)!#
:
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7. Conclusion

In this paper, we have studied pair production (Schwinger
effect) in the presence of external electric field for non-
SUSY AdS/CFT using three methods in the literature. In
Section 4, we have done a potential analysis by calculating
rectangular Wilson loops and have analytically calculated
the critical electric field below which pair production hap-
pens via a tunneling phenomenon (and above which the
quark-antiquark potential ceases to put up a potential bar-
rier). We have seen that the critical electric field is higher/
lower than its supersymmetric counterpart depending on
the value of the non-supersymmetric parameter δ (in that
section, we have used a metric perturbation to ease up the
calculation). We have also confirmed the same from the
DBI analysis of the critical electric field in Section 5 where
no such approximation has been made. As can be seen from
the main body of this work, the correction absence of super-
symmetry yields on the critical electric field (w.r.t. its super-
symmetric value) is neither positive nor negative definite
((50), (55), and (74)). Thus, such a relation cannot be conve-
niently used to be an indirect evidence for the presence or
absence of supersymmetry since the modulus of the correc-
tion is parameter dependent. Also note that from Figure 4,
no trace of confinement is seen contrary to the earlier find-
ings in the literature (for confinement, some of the plot
should have been positive with nonnegative slope all along).
Next in Section 6, we have performed the analysis for pair
production rate for quark-antiquark pairs using circular
Wilson loops. Since the relevant equations are rather impos-
sible to solve, we have resorted to perturbative analysis,
which can be thought of as perturbation over N = 4 SYM
by a supersymmetry breaking term with coupling constant
proportional to ðu0/ubÞ4 parametrized by δ. We have explic-
itly found out the profile for circular Wilson loop for non-
SUSY AdS/CFT up to the first order of u40. To our knowl-
edge, this is the first time such a solution has been obtained.
We proceed to find the on-shell value of the Nambu-Goto
action on the profile found and relate it to pair production
rate. We see that for a regime of allowed value of the param-
eter δ, the pair production rate shoots up as external electric
field decreases towards zero. In stark contrast to confine-
ment (as earlier reported), this signals that the vacuum of
the dual non-SUSY gauge theory is nonperturbatively unsta-
ble for the regime of the parameter −

ffiffiffiffiffiffiffi
5/2

p
≤ δ < −39/40

(approx.) (a confining potential would show the exact oppo-
site). Thus, the field theory dual of the non-SUSY geometry
considered here is not confining but is the exact opposite,
i.e., nonperturbatively unstable. A relevant question is to
find this instability from potential analysis and DBI analysis,
something which eludes us at this moment.

Data Availability

No external data was used in this manuscript.

Conflicts of Interest

The author declares that there are no conflicts of interest.

References

[1] J. Maldacena, “The large N limit of superconformal field theo-
ries and supergravity,” Advances in Theoretical and Mathe-
matical Physics, vol. 2, no. 2, pp. 231–252, 1998.

[2] E. Witten, “Anti-de Sitter space and holography,” Advances in
Theoretical and Mathematical Physics, vol. 2, no. 2, pp. 253–
291, 1998.

[3] O. Aharony, S. S. Gubser, J. Maldacena, H. Ooguri, and Y. Oz,
“Large N field theories, string theory and gravity,” Physics
Reports, vol. 323, no. 3-4, pp. 183–386, 2000.

[4] M. Ammon and J. Erdmenger, Gauge/Gravity Duality: Foun-
dations and Applications, Cambridge University Press, Cam-
bridge, 2015.

[5] P. K. Townsend, “Black holes: lecture notes,” https://arxiv.org/
abs/gr-qc/9707012.

[6] R. Blumenhagen, D. Lüst, and S. Theisen, Basic Concepts of
String Theory, Theoretical andMathematical Physics, Springer,
Heidelberg, Germany, 2013.

[7] K. Nayek and S. Roy, “Decoupling limit and throat geometry
of non-susy D3 brane,” Physics Letters B, vol. 766, pp. 192–
195, 2017.

[8] N. R. Constable and R. C. Myers, “Exotic scalar states in the
AdS/CFT correspondence,” Journal of High Energy Physics,
vol. 1999, no. 11, p. 020, 1999.

[9] K. Nayek and S. Roy, “Some aspects of non-perturbative QCD
from non-susy D3 brane of Type IIB string theory,” https://
arxiv.org/abs/1809.00851.

[10] J. Schwinger, “On gauge invariance and vacuum polarization,”
Physics Review, vol. 82, no. 5, pp. 664–679, 1951.

[11] G. W. Semenoff and K. Zarembo, “Holographic Schwinger
effect,” Physical Review Letters, vol. 107, no. 17, article
171601, 2011.

[12] A. S. Gorsky, K. A. Saraikin, and K. G. Selivanov, “Schwinger
type processes via branes and their gravity duals,” Nuclear
Physics B, vol. 628, no. 1-2, pp. 270–294, 2002.

[13] Y. Sato and K. Yoshida, “Potential analysis in holographic
Schwinger effect,” Journal of High Energy Physics, vol. 2013,
no. 8, p. 2, 2013.

[14] Y. Sato and K. Yoshida, “Holographic Schwinger effect in con-
fining phase,” Journal of High Energy Physics, vol. 2013, no. 9,
p. 134, 2013.

[15] D. Kawai, Y. Sato, and K. Yoshida, “A holographic description
of the Schwinger effect in a confining gauge theory,” Interna-
tional Journal of Modern Physics A: Particles and Fields; Grav-
itation; Cosmology; Nuclear Physics, vol. 30, no. 11, article
1530026, 2015.

[16] J. X. Lu and S. Roy, “Static, non-SUSY p-branes in diverse
dimensions,” Journal of High Energy Physics, vol. 2005, no. 2,
p. 001, 2005.

[17] M. J. Duff, R. R. Khuri, and J. X. Lu, “String solitons,” Physics
Reports, vol. 259, no. 4-5, pp. 213–326, 1995.

[18] K. Nayek and S. Roy, “Decoupling of gravity on non-susy Dp
branes,” Journal of High Energy Physics, vol. 2016, no. 3,
p. 102, 2016.

[19] Y. Kinar, E. Schreiber, and J. Sonnenschein, “Q�Q potential
from strings in curved space-time - classical results,” Nuclear
Physics B, vol. 566, no. 1-2, pp. 103–125, 2000.

[20] I. K. Affleck, O. Alvarez, and N. S. Manton, “Pair production at
strong coupling in weak external fields,” Nuclear Physics B,
vol. 197, no. 3, pp. 509–519, 1982.

14 Advances in High Energy Physics

https://arxiv.org/abs/gr-qc/9707012
https://arxiv.org/abs/gr-qc/9707012
https://arxiv.org/abs/1809.00851
https://arxiv.org/abs/1809.00851


[21] C. Itzykson and J. Zuber,Quantum Field Theory, International
Series in Pure and Applied Physics, McGraw-Hill, New York,
1980.

[22] C. Schubert, “Perturbative quantum field theory in the string-
inspired formalism,” Physics Reports, vol. 355, no. 2-3, pp. 73–
234, 2001.

[23] G. V. Dunne, Q.-H. Wang, H. Gies, and C. Schubert, “World-
line instantons and the fluctuation prefactor,” Physical Review
D, vol. 73, no. 6, article 065028, 2006.

[24] U. N. Chowdhury, “Holographic description of noncommuta-
tive Schwinger effect,” Advances in High Energy Physics,
vol. 2022, Article ID 6648322, 16 pages, 2021.

[25] S. Bolognesi, F. Kiefer, and E. Rabinovici, “Comments on crit-
ical electric and magnetic fields from holography,” Journal of
High Energy Physics, vol. 2013, no. 1, p. 174, 2013.

[26] J. Maldacena, “Wilson loops in large N field theories,” Physical
Review Letters, vol. 80, no. 22, pp. 4859–4862, 1998.

[27] N. Drukker, D. J. Gross, and H. Ooguri, “Wilson loops and
minimal surfaces,” Physical Review D, vol. 60, no. 12, article
125006, 1999.

[28] S.-J. Rey and J.-T. Yee, “Macroscopic strings as heavy quarks:
large-N gauge theory and anti-de Sitter supergravity,” Euro-
pean Physical Journal C: Particles and Fields, vol. 22, no. 2,
pp. 379–394, 2001.

[29] Y. Sato and K. Yoshida, “Holographic description of the
Schwinger effect in electric and magnetic field,” Journal of
High Energy Physics, vol. 2013, no. 4, p. 111, 2013.

[30] M. Alishahiha, D. Allahbakhshi, and A. Naseh, “Entanglement
thermodynamics,” Journal of High Energy Physics, vol. 2013,
no. 8, p. 102, 2013.

[31] U. N. Chowdhury, “Pair production in non-SuSy AdS/CFT,”
https://arxiv.org/abs/2206.14021.

15Advances in High Energy Physics

https://arxiv.org/abs/2206.14021

	Schwinger-Type Pair Production in Non-SUSY AdS/CFT
	1. Introduction
	2. Non-SUSY Dp Branes and Their Decoupling Limit
	3. Pair Production in Presence of External Fields
	4. Pair Production in Non-Supersymmetric Theories via Holography
	5. DBI Analysis of Critical Electric Field
	6. Holographic Pair Production Rate for Non-Supersymmetric Theories
	7. Conclusion
	Data Availability
	Conflicts of Interest



