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In this paper, we study the effects of the widths of unstable particles on the one-loop electroweak corrections for the pp⟶WW
process at the TeV scale within the framework of the complex mass scheme. We also investigate, for this same process, the
unitarity of the theory at high energies.

1. Introduction

After the discovery of the Higgs boson in 2012 at CERN,
the particle responsible, via the Brout-Englert-Higgs mech-
anism, for generating the masses of the particles of the
Standard Model (SM), we entered the era of the Higgs-
precision tests of SM. Since most known fundamental par-
ticles are unstable, it becomes important to consider the
width, Γ, of these particles when evaluating physical
observables [1–3]. Since the electroweak sector being the
most sensitive to unstable particles, such as the weak
gauge bosons, the Higgs boson, and the top quark, we
study, within the framework of the SM, the effects of the
widths of the latter on the pp⟶WW process.

Knowing that the inclusion of the finite width is not triv-
ial, since it can invoke, following a mixture of perturbative
orders, a break in the gauge invariance during calculations
of radiative corrections to one loop [4, 5], many approaches
have been proposed in the past to incorporate the said width
into perturbative computations, such as the fixed-width
scheme [5], the narrow-width approximation [6], the pole
scheme [7, 8], and the effective field theory [9, 10]. But the
complex mass scheme [11–14] is the only one, by construc-
tion, which preserves all of the algebraic relations which sat-

isfy gauge invariance in the resonant and nonresonant
regions, where the main idea is based on an analytic contin-
uation of the parameters of the SM Lagrangian, which are
related to the masses of unstable particles, in the complex
plane. Therefore, renormalizability and unitarity are also
preserved. This scheme has been implemented in various
high-energy software such as MadGraph5 aMC@NLO [14,
15], OpenLoops 2 [16], and Recola [17]. The aim of this
paper is to study the effect of the width of the weak gauge
bosons, the Higgs, and the top quark on the process
pp⟶WW at the one-loop level within the complex
mass scheme, with comparisons to the usual on-shell scheme.
It is worth noting that a similar process, but with final state
W bosons decaying to four leptons, has been studied in Refs.
[18, 19]. In the latter references, the NLO electroweak correc-
tions were first computed in the double-pole-approximation
(DPA) scheme in Ref. [18] and then later in the CMS in Ref.
[19] with comparisons to the DPA scheme. The findings in
the two schemes [19] showed that they agree at the level of frac-
tions of a percent for small and intermediate scales, but differ
largely in the TeV range.

The paper is organised as follows. In Section 2, we sum-
marise the main ideas of the CMS. Then, in Section 3, we
compute the cross-section of the process considered herein,
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i.e., pp⟶WW, up to one loop, within both the usual on-
shell scheme (which we shall be referring to as “real
scheme”) and the complex mass scheme. We analyse the
results obtained in the said two schemes and discuss the
effects of the width on the unitarity. Finally, we draw our
conclusions in Section 4.

2. Complex Mass Scheme in a Nutshell

The complex mass scheme is a renormalisation scheme
which deals properly with unstable particles in all phase
space. It was first used in tree-level calculations with W/Z
resonances, then generalised to OðαÞ [11, 12]. In this scheme
and at the tree level, the real masses of the weak gauge
bosons W/Z and the Higgs boson are changed to complex
quantities, defined as the position of the poles of the corre-
sponding propagators which have complex momenta k. To
preserve the gauge invariance, we have to introduce the
complex masses everywhere in the Feynman rules, in such
a way that the bare Lagrangian remains invariant, particu-
larly in the weak mixing angle.

bμ2
W =M2

W − iMWΓW , bμ2
Z =M2

Z − iMZΓZ , bμ2
H =M2

H − iMHΓH ,

cos2θW ≡ ĉ2W = 1 − ŝ2W = bμ2
Wbμ2
Z

≃
M2

W

M2
Z

1 − i
ΓW

MW
−

ΓZ

MZ

� �� �
:

ð1Þ

The hat over the masses and the mixing angles denotes the
fact that they are complex-valued. Since the gauge invariance is
not affected by this analytical continuation of the mass in the
complex k2 plane: m⟶ bμ =m − iΓ/2⟶ bμðkÞ =mðkÞ − iΓ
ðkÞ/2, thus the Ward identity and that of Slavnov-Taylor are
preserved. This signifies that the elements of the S-matrix are
independent of the gauge parameters.

Although the introduction of the complex mass in the
resonant propagators is trivial,

1
k2 −M2

B

⟶
1

k2 − bμ2
B

≃
1

k2 −M2
B 1 − i ΓB/MBð Þð Þ ,

1

np −mF
⟶

1

np − bμ F

= 1

np −mF 1 − i ΓF/2mFð Þð Þ ,
ð2Þ

where the subscripts B and F stand for bosons and fermions,
respectively, it induces in other regions (such as the weak
mixing angle) when passing to the complex mass scheme
spurious terms of order OðαÞ in the tree-level amplitude,
thus only affecting loop-level calculations.

To generalise the CMS to the one-loop level while keep-
ing the bare Lagrangian invariant, we split the real masses in
the latter for the unstable particles into renormalised com-
plex masses and complex counter-terms. The resultant
Feynman rules enable to perform perturbative calculations
exactly as in the usual on-shell renormalisation scheme. To
this end, we add and subtract the same imaginary part of
each mass of the unstable particle. One of these imaginary
parts is incorporated into the free propagator to define the
complex mass of the corresponding unstable particle. The

other part is introduced into the vertex counter-term. The
first term is, thus, resumed, but the second one is not. This
prescription does not affect the gauge invariance but may
invoke a violation of unitarity of order Oðα2Þ in calculations
at order OðαÞ. This is due to the fact that the modified renor-
malised Lagrangian is not Hermitian [20]. Apart from this
problem, the complex mass scheme is coherent and gauge
invariant in the next-to-leading order (NLO) calculations.
Its implementation in a numerical code at one-loop is feasi-
ble, since it suffices to redefine the counter-terms by includ-
ing imaginary parts for two-point functions. The complex
masses are not only introduced for the gauge bosons but
for all unstable particles relevant to the electroweak sector
such as the top quark.

2.1. Complex Renormalisation. In this section, we summarise
the procedure of the generalised renormalisation which
takes into account the complex masses in the ‘t Hooft-
Feynman gauge in a straight-forward way [11].

Since the bare Lagrangian is unaffected, the complex
masses of the gauge bosons, W and Z, are introduced in
the latter after decomposing the bare real masses into renor-
malised complex masses and complex counter-terms.

M2
W,0 = bμ2

W + δbμ2
W ,M2

Z,0 = bμ2
Z + δbμ2

Z , ð3Þ

where we note that the following consistency condition
should be respected:

Im bμ2
V

� �
= − Im δbμ2

V

� �
: ð4Þ

In the above equation, the subscript 0 labels the bare
quantities, and V stands for W or Z bosons. In a similar
fashion, we observe that the renormalised gauge fields are
related to the bare ones via the following relations:

W±
0 = 1 + 1

2 δZW

� �
W±,

Z0

A0

 !
=

1 + 1
2 δƵZZ

1
2 δƵZA

1
2 δƵAZ 1 + 1

2 δƵAA

0BB@
1CCA Z

A

 !
:

ð5Þ

Since the renormalisation conditions are the same for sta-
ble and unstable particles, that is, the position of the poles of
the propagator equals the square of the physical mass and
the residue of the propagator equals 1, they assume similar
forms in CMS as those in the usual scheme but without taking
the real part of the renormalised transverse self-energy (T).

�Σ
W
T bμ2

W

� �
= 0, �ΣZZ

T bμ2
Z

� �
= 0,

�Σ
AZ
T 0ð Þ = 0, �ΣAZ

T bμ2
Z

� �
= 0,

�ΣT′W bμ2
W

� �
= 0, �ΣT′ZZ bμ2

Z

� �
= 0, �ΣT′AA 0ð Þ = 0,

ð6Þ
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where the prime means differentiation with respect to the
argument and the bar on the Σ’s indicates that they are renor-
malised. The first two terms in Equation (6) fix the counter-
terms of the masses of theW and Z bosons, while the last five
terms fix the counter-terms of their fields. Knowing that the
generalised renormalised transverse self-energies are the same
as the usual on-shell scheme with the replacement of the real
masses and counter-terms by their complex counterparts.
The solutions of Conditions (6) are as follows:

δbμ2
W = ΣW

T bμ2
W

� �
, δƵW = −ΣT′W bμ2

W

� �
,

δƵZA = 2bμ2
Z

ΣAZ
T 0ð Þ, δƵAZ = −

2bμ2
Z

ΣAZ
T bμ2

Z

� �
,

δƵW = −ΣT′W bμ2
W

� �
, δƵZZ = −ΣT′ZZ bμ2

Z

� �
, δƵAA = −ΣT′AA 0ð Þ:

ð7Þ

It requires analytical continuation to compute the
above two-point functions with complex arguments. To
avoid this complication, we expand the self-energies
around real arguments. To see how to transform the
renormalised self-energies and the solutions of the renor-
malisation conditions, we concentrate on the case of the
W gauge boson. We have

�Σ
W
T k2
À Á

= ΣW
T k2
À Á

− δbμ2
W + k2 − bμ2

W

� �
δƵW , ð8Þ

with

ΣW
T bμ2

W

� �
= ΣW

T M2
W

À Á
+ bμ2

W −M2
W

� �
ΣT′W M2

W

À Á
+ O α3
À Á

:

ð9Þ

Neglecting the terms at Oðα3Þ and beyond, we obtain
the modified solutions, which when inserted into (8) result
in a form of the renormalised transverse self-energy that
resembles that of the usual on-shell scheme but without
taking the real part of the solutions.

�Σ
W
T k2
À Á

= ΣW
T k2
À Á

− δM2
W + k2 −M2

W

À Á
δƵW ,

δM2
W = ΣW

T M2
W

À Á
, δZW = −ΣT′W M2

W

À Á
:

ð10Þ

While in the on-shell scheme, the self-energies are cal-
culated with real renormalised masses, in the CMS self-
energies, Equation (10), ought to be calculated with com-
plex masses, but with real squared momenta. This enables
us to avoid analytic continuation in the momentum space.

In order to correctly address resonances at order OðαÞ,
one ought to take into account the W boson width, ΓW ,
including OðαÞ corrections. This may be obtained in an iter-
ative way from the following equation:

MWΓW = Im ΣW
T M2

W

À ÁÈ É
−MWΓW Re ΣT′W M2

W

À Án o
+ O α3
À Á

:

ð11Þ

This latter equation can be easily deduced from the
imaginary part of (9). Furthermore, the complex weak mix-
ing angle is renormalised as follows:

δĉW
ĉW

= 1
2

δbμ2
Wbμ2
W

−
δbμ2

Zbμ2
Z

 !
= 1
2

ΣW
T bμ2

W

� �
bμ2
W

−
ΣZ
T bμ2

Z

� �
bμ2
Z

24 35:
ð12Þ

For the Higgs boson, the renormalisation constants can
be approached in the same manner as before.

M2
H,0 = bμ2

H + δbμ2
H , ð13Þ

with

δbμ2
H = ΣH bμ2

H

� �
,

= ΣH M2
H

À Á
+ bμ2

H −M2
H

� �
Σ′H M2

H

À Á
+ O α3
À Á

:

δƵH = −Σ′H bμ2
H

� �
,

= −Σ′H M2
H

À Á
+ O α2
À Á

:

ð14Þ

Hence, the renormalised self-energy for the Higgs boson
up to the Oðα2Þ can be written as follows:

�Σ
H k2
À Á

= ΣH k2
À Á

− δM2
H + k2 −M2

H

À Á
δƵH , ð15Þ

where

δM2
H = ΣH M2

H

À Á
, δZH = −Σ′H M2

H

À Á
: ð16Þ

In the CMS, the complex masses are not introduced
solely for gauge bosons and the Higgs boson but for all
unstable particles such as the top quark. The renormalisa-
tion of this latter may be treated in a similar manner as
before with the introduction of its complex mass and coun-
ter-term.

bμ2
t =m2

t − imtΓt ,
mt,0 = bμ t + δbμ t:

ð17Þ

The generalised renormalisation constants are deter-
mined by the following:

δbμ t =
bμ t

2 Σt,R bμ2
t

� �
+ Σt,L bμ2

t

� �
+ 2Σt,s bμ2

t

� �h i
,

δƵt,σ = −Σt,σ bμ2
t

� �
− bμ2

t Σ′t,R bμ2
t

� �
+ Σ′t,L bμ2

t

� �
+ 2Σ′t,s bμ2

t

� �h i
,

ð18Þ

where σ = R, L indicates the left- and right-handed compo-
nents of the top self-energy, ΣtðpÞ, following the convention
of Ref. [21]. The generalised renormalised self-energy of the
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top quark is determined by the following:

�Σ
t pð Þ = Σt,R p2

À Á
+ δƵ t,R

À Á npPR + Σt,L p2
À Á

+ δƵt,L
À Á

Á npPL++bμ t Σt,s −
1
2 δƵ t,R + δƵt,Lð Þ − δbμ tbμ t

� �
,

ð19Þ

where the factors PR,L are defined below. This becomes the
following, after the expansion of the self-energies of (18)
around the real mass m2

t and negligence of higher-order
terms:

�Σ
t pð Þ = Σt,R p2

À Á
+ δZ t,R

À Á npPR + Σt,L p2
À Á

+ δZ t,L
À Á

Á npPL++bμ t Σt,s −
1
2 δƵt,R + δƵ t,Lð Þ − δmt

mt

� �
,

ð20Þ

with

δmt =
mt

2 Σt,R m2
t

À Á
+ Σt,L m2

t

À Á
+ 2Σt,s m2

t

À ÁÂ Ã
,

δƵt,σ = −Σt,σ m2
t

À Á
−m2

t Σ′t,R m2
t

À Á
+ Σ′t,L m2

t

À Á
+ 2Σ′t,s m2

t

À Áh i
:

ð21Þ

Before ending this section, it is important to recall that
the masses of the external particles for a given process must
be real, i.e., they are considered as stable particles as had
been shown by Veltman [22]. Moreover, the same particles
should not be taken in the same process as internally unsta-
ble (resonances) and externally stable, because they cannot
be treated simultaneously by two different schemes (usual
on-shell and CMS) [23].

3. Width Effects on pp⟶WW at One Loop

3.1. Cross-Section at Lowest Order. We shall be investigating
the process.

P p1ð Þ + P p2ð Þ⟶W+ k1, λ1ð Þ +W− k2, λ2ð Þ, ð22Þ

where Pi, ki are the momenta of the protons and the W
bosons, respectively, and λi are the polarisations (λi = 0 for
longitudinal polarisations, referred to as L, λi = ±1 for trans-
verse polarisations, referred to as T , and nonpolarised
referred to by U). The tree-level Born-Feynman diagrams
corresponding to our process are shown in Figure 1.

The four momenta of the protons and bosons are given
by the following:

p1 =
ffiffi
s

p
2 1, 0, 0, βq

� �
, k1 =

ffiffi
s

p
2 1, β sin θ, 0, β cos θð Þ,

p2 =
ffiffi
s

p
2 1, 0, 0,−βq

� �
, k2 =

ffiffi
s

p
2 1,−β sin θ, 0,−β cos θð Þ,

ð23Þ

where β =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4M2

W /s
p

, βq =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2

q/s
q

, MW is the W

boson’s mass, mq is the quark’s mass and θ is the scattering
angle in the centre-of-mass of the system, with p21 = p22 =m2

q

and k21 = k22 =M2
W . The longitudinal and transverse polarisa-

tion vectors of the final bosons read as follows:

ε1L 0ð Þ =
ffiffi
s

p
2MW

β, sin θ, 0, cos θð Þ, ε1T ±ð Þ = 0, cos θ,∓i,− sin θffiffiffi
2

p ,

ε2L 0ð Þ =
ffiffi
s

p
2MW

β,− sin θ, 0,− cos θð Þ:ε2T ±ð Þ = 0,− cos θ,∓i, sin θffiffiffi
2

p :

ð24Þ

It is worth mentioning that only the longitudinal polari-
sation vector depends on theW mass. In CMS, the widths of
the unstable particles are introduced, at the tree level,
through propagators of Z,W,H, and t and the weak mixing
angle. We shall only be considering, in this section, the mode
pp⟶W+

LW
−
L to analytically study the effect of the widths

on the tree-level amplitude in the CMS framework, since this
mode is affected by the width ΓW unlike the transverse
mode. We then compute, using MadGraph5 aMC@NLO,

𝛾

q W+

W– Z

q W+

W–
h

q W+

W–

q'

q

W+

W–

–q –q –q

–q

Figure 1: The Feynman diagrams for the Born process q�q⟶W+W−.
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the Born cross-sections for different polarisations of the W
gauge boson.

To see that the unitarity is preserved in the case where
the masses of the unstable particles are taken real at high
energies, that is, in the usual on-shell (OS) scheme, we intro-
duce in the calculations of the amplitudes of the Feynman
diagrams (Figure 1) the variable x = s/4M2

W with x≫ 1. We
find, with the aid of the code of Ref. [24] written using Feyn-
Calc [25–27], the following expression for the total ampli-
tude at high energy:

MOS
tot =Ms

γ +Ms
Z +Ms

H +Mt
q

=
e2 1 + 2T f

3

� �
M2

Z

4 M2
Z −M2

W

À Á
M2

W

�v p2ð Þ mq PR − PLð Þ − 2q1PL

Â Ã
Á u p1ð Þ + O 1/xð Þ,

ð25Þ

where MW = sW MZ , PR,L = ð1 ± γ5Þ/2 and T f
3 = +1/2ð−1/2Þ

for u, c, tðd, s, bÞ quarks.
To study the effect of the decay width of the unstable

massive particles (W, Z,H, and t) of Figure 1 on the unitar-
ity of the amplitudes at tree-level and analyse the obtained
results at high energies with respect to real mass scheme
(OS), we implement the CMS in the process of longitudinal
W boson pair production pp⟶WLWL (since its polarisa-
tion vectors depend on the mass). The expressions of the
various amplitudes of the Feynman diagram 1 following
the prescriptions of Denner and Dittmaier [23] are reported
in the appendix (Equations (A.1)–(A.4)). The resultant total
amplitude is as follows:

MCMS
tot = Re MCMS

tot
È É

+ iIm MCMS
tot

È É
, ð26aÞ

where

Re MCMS
tot

È É
=

e2 1 + 2T f
3

� �
M2

Z

4 M2
Z −M2

W

À Á
M2

W

�v p2ð Þ mq PR − PLð Þ − 2 nq1PL

Â Ã
u p1ð Þ + O

1
x

� �
,

Im MCMS
tot

È É
=
e2 1 + 2T f

3

� �
ΓZMZ

4 M2
Z −M2

W

À Á2 �v p2ð Þ mq PR − PLð Þ − 2 nq1PL

Â Ã
u p1ð Þ + O

1
x

� �
:

ð26bÞ

The following points are to be noticed:

(a) If we set all widths of all internal particles introduced
in our process, ΓW = ΓZ = ΓH = Γt = 0, then the real
parts of the amplitudes (A.1)–(A.4) reduce to those
of the real scheme (OS), while the imaginary parts
vanish

(b) The real part of the total amplitude MCMS
tot is not

affected by the widths of the internal particles, Z,H,
and t, which cancel out in the final expression. The
said real part equals the total amplitude in the real
scheme; Re fMCMS

tot g =MOS
tot , while the imaginary part

of MCMS
tot is affected by the width ΓZ of the internal

boson Z. It is proportional to MOS
tot :

Im MCMS
tot

È É
= M2

W ΓZ MZ

M2
Z −M2

W

MOS
tot : ð27Þ

(c) The total amplitude depends on themass and width of
the internal boson Z and the masses of the external
particles MW and mq. The other masses, MH and mt ,
and their respective widths, ΓH and Γt , cancel out

(d) The effect of the width ΓZ of the internal gauge
boson Z on the amplitude at tree-level at high energy
is around 2%. In effect, the ratio of the amplitudes is
defined by

δMtot
MOS

tot
= MOS

tot −MCMS
tot

MOS
tot

= −i
M2

W

M2
Z −M2

W

ΓZ

MZ
: ð28Þ

(e) Following the instructions of Denner and Dittmaier
[23], we have taken, in all amplitudes of the Feyn-
man diagrams, the width of the external gauge boson
ΓW = 0. We may, however, see the effect of ΓW on
the tree-level amplitude at high energy by introduc-
ing it at the level of longitudinal polarisation vectors
and the weak mixing angle. We find, as before, that
only the imaginary part of MCMS

tot is affected by the
widths ΓZ and ΓW (Equations (A.5)–(A.8)). It is
not affected, however, by the widths of the Higgs
boson and the top quark

Re MCMS
tot

È É
=MOS

tot ,

Im MCMS
tot

È É
=
e2 1 + 2T f

3

� �
MZ

2 M2
Z −M2

W

À Á2
Á �v p2ð Þ ΓZ

MZ
mq 1 − 2PLð Þ − 2q1PL

Â Ã
++ ΓW

MW

1
MZ

�
Á mq

T f
3

1 + 2T f
3
− PL

 !
− q1 2

Qf

MZ
M2

Z −M2
W

À Á
++PL

� �" #)

× u p1ð Þ + O
1
x

� �
:

ð29Þ

Equation (29) reduces to those in Equations (26a) and
(26b) if ΓW = 0.

(f) The total tree-level amplitude at high energy is finite
in the case where the external bosons are considered
either as stable or unstable, thus respecting the uni-
tarity condition
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3.2. Numerical Results. To perform the numerical calcula-
tions of the cross-sections at the tree level both in CMS
and OS schemes, we use the fixed-order Monte Carlo pro-
gram MadGraph5_aMC@NLO. The following input param-
eters have been implemented:

MH = 125GeV,MZ = 91:188GeV,MW = 80:401GeV,
ΓH = 0:008GeV, ΓZ = 2:4952GeV, ΓW = 2:092698GeV,
α−1 = 137:0359895,mt = 173:2GeV, Γt = 1:3GeV:

ð30Þ

In Figure 2, we present, for different polarisations of the
external gauge bosons, the effect of the widths ΓZ , ΓW , ΓH ,

and Γt on the Born cross-sections in the CMS framework
in comparison with OS.

We have added here the effect of the width of the W
boson since it does not appear at the internal of Feynman
diagrams at the tree level (Figure 1). Hence, it does not pose
the problem highlighted by Denner and Dittmaier [23] at
one-loop, which states that a given particle cannot be treated
by two different schemes when it is taken to be stable exter-
nally and unstable internally.

For different combinations of polarisations of external
bosons, LL, TT, and LT+TL, the cross-sections behave as
1/s at high energy in the real scheme and preserve such
behaviour in CMS. These results confirm that the instabil-
ity of internal and external particles does not affect unitar-
ity at the tree level. We note the following points for the
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cross-sections in both schemes: they are of the same order
for all energies used; the maximum is around 1000GeV; in
the range 4000-6000GeV, the contributions of the LL and
LT+TL modes are almost null, while the TT and UU
modes have nonvanishing values. The TT mode is domi-
nant and makes the principal contribution for the UU
mode.

In Figures 3 and 4, we see that relative to Figure 2, the
widths ΓH and Γt have almost no effect. This is due to the
weak ratio ΓH/MH ~ 6 × 10−3% and Γt/mt ~ 0:7%, although
the latter is relatively higher. Figure 5 shows that the intro-
duction of ΓZ affects, both at low and high energies, the Born
cross-section at around 2%. This effect has its origin in the
relatively high value of the ratio ΓZ/MZ ~ 2:7%. Moreover,
if we take into consideration the gauge bosonW as an unsta-
ble particle with a ratio ΓW/MW ~ 2:6%, Figure 6 shows that
ΓW has a comparable effect to that of ΓZ if taken separately

but opposite if combined together (see Figure 2). In the next
section, we consider the CMS effect on the one-loop correc-
tion of the pp⟶W+W− process.

3.3. One-Loop Corrections (NLO). In Figure 7, we show a
selected sample of self-energy, vertex, and box diagrams,
which are most sensitive to the widths of the unstable
particles, among about 1000 diagrams contributing to the
pp⟶WW process that we have generated using the
fixed-order Monte Carlo program MadGraph5_aMC@NLO.
In the following, we present the results of NLO cross-
sections (Born + corrections) in both CMS and OS schemes
for different widths of unstable particles. We consider in
what follows below only the effect of the internal particle
widths ΓH , ΓZ , and Γt on the one-loop corrections in the
case where the external bosons are unpolarized and stable.
This is for two reasons; one is linked to the fact that the
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Monte Carlo program MadGraph5_aMC@NLO has not yet
implemented one-loop polarizations for this type of process;
the other reason is linked to Denner’s remark that the exter-
nal particles must be considered as stable in accordance with
the work of Veltman and Bouamrane [22, 28]. We, there-
fore, take the width of the W boson, ΓW , to be zero every-
where in the one-loop Feynman diagrams, since the same
particle cannot be treated by two different renormalisation
schemes simultaneously for the same process.

It is worthwhile mentioning that our study does not
involve the one-loop non-abelian QCD corrections. We only
deal with the one-loop renormalisation of the electroweak
contributions in both CMS and the usual OS schemes. The
reason is because we are interested in this article in investi-
gating the effects of the widths of unstable particles on the
EW radiative corrections at one-loop. Additionally, the EW
section is most sensitive to the unstable particles (W, Z,
and H) as mentioned in the introduction. It can also be seen,
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Figure 6: Cross-sections in OS and CMS at the tree level for pp⟶WUWU as a function of
ffiffi
s
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for the case ΓZ = 0 (a) and their ratio (b).
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Equation (30), that the ratio Γ/M is much higher for W and
Z, compared to the top quark.

3.3.1. Input Parameters. For the purpose of our numerical
investigations, we have used the following input values, in
addition to those used for the tree-level case (30):

me = 0:51099906MeV,mu = 47:0MeV,md = 47:0MeV,
mμ = 105:658389MeV,mc = 1:55GeV,ms = 150MeV,
mτ = 177:1MeV,mb = 4:5GeV:

ð31Þ

For the sake of deriving our results, we have replaced the
one-loop squared amplitude by the following formula [29]:

Mj j2 ⟶ MBornj j2 1 + δsof t
À Á

+ 2Re M∗
BornδMð Þ, ð32Þ

where δsoft takes into consideration soft bremsstrahlung and is

required in dealing with infrared divergences. Moreover, δM
contains all one-loop Feynman diagrams as well as their corre-
sponding counter-terms.

4. Results and Discussion

In Figures 8 and 9, we present, for stable and unpolarized
external bosons, the full cross-sections at one loop in OS
and CMS schemes, respectively. At high energies, they
behave like 1/s, which confirms that the two schemes do
not break the unitarity of the one-loop results. At low ener-
gies, the corrections are positive and of the order of 5-10% in
both schemes. Once the full NLO cross-sections reach their
maxima, around 1000GeV, the corrections become negative
and large. They maintain this behaviour throughout the
remaining energy range. In the range 2000-6000GeV the
corrections are around 10-30% in OS and 10-40% in CMS.
Furthermore, they reach about 55% in OS and 65% in
CMS around 14TeV. Thus, at high energies, we notice that
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the corrections are of the order of the Born cross-section in
both schemes. Hence, the Oðα2Þ corrections should be taken
into consideration in the calculation of the corrected cross-
section, in order to obtain more reliable and precise results.

Figures 10 and 11 show that only ΓZ significantly affects
the corrections at one-loop, whereas ΓH and Γt present
insignificant effects, even if the former preserves its ability
to restore unitarity as in the case of the actual OS scheme.

Figure 12 shows a comparison between the full cross-
sections in the two aforementioned schemes. At low energy,
the effect of the width ΓZ on the full cross-section is around
2.5%, which vanishes around 1000GeV and then increases
with energy until it reaches around 15% at 14TeV. This
behaviour is expected to hold for further high energies. That
is, the effect of ΓZ increases with energy. This, however,
remains to be verified, especially if this process is considered
as an internal part of another process with stable external par-
ticles. This is to be investigated in our future work. We note,
however, that the findings of Refs. [18, 19] point at this behav-
iour, where it was shown that the inclusion of the widths of
unstable particles, via CMS, results in about 10% difference
in the TeV range compared to double-pole approximation.

5. Conclusion

In the present work, we extended the calculations of the
one-loop electroweak radiative corrections to the process
pp⟶WW to the complex mass scheme where the
widths of unstable particles are introduced, respecting the
Ward and Slavnov-Taylor identities.

At the tree level, we obtained for the longitudinal mode
of the external gauge bosons a total amplitude proportional
to the width ΓZ of the internal gauge boson Z. We have
shown that upon the inclusion of the width ΓW of the exter-
nalW gauge boson, the total amplitude depends on both ΓW
and ΓZ . The other widths ΓH and Γt of the Higgs boson and
the top quark have practically no effect on neither the ampli-
tude nor the Born cross-section. The effect of ΓZ on the Born
cross-section is about 2% for unpolarized and stable W
bosons. When the width ΓW of the W external gauge boson
is included, it produces an effect on the Born cross-section
comparable to that of ΓZ if they are introduced separately
and an opposite effect to ΓZ if they are introduced together.

The Born and full one-loop cross-sections behave as 1/s
at high energies in both CMS and OS schemes, thus preserv-
ing the unitarity bound of the theory. The one-loop correc-
tions are affected by ΓZ up to 65% in the CMS scheme at
the energy of about 14TeV. They reach for the same case
about 55% in the real OS scheme. They are, therefore, of
the order of the Born cross-section (at high energy), and
hence higher orders, Oðα2Þ and above, have to be included
for any meaningful predictions.

Finally, comparisons of the full cross-sections in OS and
CMS schemes revealed that the width ΓZ affects the NLO
cross-section by about 5% around 2TeV and 15% around
14TeV. This effect, therefore, increases with increasing
energy and its behaviour after 14TeV remains to be verified.
For a full study of this type of problems where the effect of
the width ΓW is not neglected, as well as the widths of the

other unstable particles, ΓZ , ΓH , and Γt , on the one-loop cor-
rections, it suffices to relate this process, i.e., pp⟶WW, to
another one where the external particles are stable. Another
important point to consider for future work is the effect of
various widths in the case where polarisation is not
neglected in tree and one-loop calculations.

Appendix

Amplitudes in CMS

The different high-energy amplitudes at the tree level in CMS
in the case where the longitudinal external gauge bosons are
stable and unstable are given by the following expressions:
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