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In this paper, using the Hamilton-Jacobi method, we discuss the tunnelling of fermions when the dual influence of quantum
gravity and the deformation of a parameterized black hole are taken into account. With the influence of the generalized
uncertainty principle, there exists an offset around the standard Hawking temperature. We investigate a parametric
deformed black hole and find that the corrected temperature is lower than the standard one, so there exists a remnant of
the black hole, and the correction is not only determined by the mass and the energy of the emitted fermion but also
determined by the mass of the black hole and the deformation parameter. Under the dual influence of quantum gravity
and deformation, the correction effect of quantum gravity is the main influencing factor, while the correction effect of the
deformation parameter is secondary. For both the massive and massless cases, the quantum gravity correction factor is
only determined by the energy of the emitted fermion, while the deformation correction factor is only determined by the
mass of the black hole.

1. Introduction

The Hawking radiation near the event horizon of the
black holes was found in the last century. To analyze this
phenomenon, researchers have made extensive studies.
The usual method is by adopting the WKB approximation
to calculate the imaginary part of the emitted particle’s
action and the tunnelling rate [1–6]. The Hamilton-
Jacobi method was first proposed in [7, 8]. In this method,
the action of the emitted particles satisfies the Hamilton-
Jacobi equation. Taking into account the properties of
the spacetime, one can carry out a separation of variables
with the action I = −εt +W r +Φ θ, φ . Then, inserting
the separated variables into the Hamilton-Jacobi equation
and solving it, one can obtain the imaginary part. Extend-
ing this work to the tunnelling radiation of fermions, the
standard Hawking temperatures of spherically symmetric
and charged black holes were discussed in [9]. Other work
about fermions’ tunnelling radiation is referred to [10–15].

According to the theory of quantum gravity, there is a
minimal observable length [16–19]. This length can be used
in the model of the generalized uncertainty principle (GUP):

ΔxΔp ≥
ℏ
2 1 + βΔp2 , 1

where β = β0 l2p/ℏ2 , β0 is a dimensionless parameter, and
lp is the Planck length. The derivation of the GUP is based
on the modified fundamental commutation relations.
Kempf et al. first modified commutation relations [20]
and got xi, pj = iℏδij 1 + βp2 , where xi and pi are opera-
tors of position and momentum defined by

xi = x0i,
pi = p0i 1 + βp2
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And here, x0i and p0i satisfy the basic quantum
mechanics commutation relations x0i, p0j = iℏδij.

This generalization of the uncertainty principle based
on the modified commutation relations plays an important
role in quantum gravity. With consideration of the modi-
fications, the cosmological constant problem was dis-
cussed, and the finiteness of the constant was derived in
[21]. Using a new form of GUP, the Unruh effect has been
analyzed in [22]. The quantum dynamics of the
Friedmann-Robertson-Walker universe was gotten in
[23]. The related predictions on postinflation preheating
in cosmology were derived in [24]. Based on the modifica-
tions, the thermodynamics of the black holes were dis-
cussed again in [25–32], and the tunnelling radiation of
scalar particles was studied in [33, 34].

Alternative theories of gravity and the parameterized
deviation approach allow black hole solutions to have
additional parameters beyond mass, charge, and angular
momentum [35]. Some extensions of general relativity
have been proposed as alternative theories of gravity, with
their corresponding black hole solutions. Recently, Johann-
sen and Psaltis introduced a parametric deviation
approach [36]. This method can avoid some limitations
of the original bumpy black hole approach [37–39].
Among the parametric deformed solutions that emerged,
Konoplya and Zhidenko proposed a Kerr-like solution,
introducing a parametric deformation in the mass term,
keeping the asymptotic behavior of the Kerr spacetime,
but changing how the mass of the black hole influences
the event horizon vicinity [40].

In this paper, we focus on the tunnelling radiation of
fermions from a parametric deformed black hole, where
the effects of quantum gravity are taken into account. That
is, we investigate the correction effect of the Hawking tem-
perature when the dual influence of quantum gravity and
deformation of a parameterized black hole is taken into
account. To incorporate the effects of quantum gravity,
we first modify the Dirac equation in curved spacetime
by the operators of position and momentum defined in
[20] and then adopt the Hamilton-Jacobi method to get
the imaginary parts of the action. By calculating, we want
to know the double effects of quantum gravity and defor-
mation for a parameterized black hole and which one is
the main influencing factor.

The rest is organized as follows. In the next section, to facil-
itate further discussion, we will review the generalized Dirac
equation in curved spacetime. In Section 3, we investigate the
tunnelling radiation of a parametric deformed black hole. Sec-
tion 4 is devoted to the conclusion and outlook.We use the nat-
ural units G = c = ℏ = 1 and signature −, + , + , + .

2. Generalized Dirac Equation in
Curved Spacetime

Based on the modified fundamental commutation relation in
[20], one can modify the Dirac equation in curved space-
time. According to Equation (2), the square of the momen-
tum operator is gotten as

p2 = pip
i = −ℏ2 1 − βℏ2 ∂j∂

j ∂i

⋅ 1 − βℏ2 ∂j∂j ∂i ≈ −ℏ2 ∂i∂
i − 2βℏ2 ∂j∂j ∂i∂i

3

Because of the small value of β, the higher order terms of
β can be neglected. According to the theory of quantum
gravity, the generalized frequency is ω = E 1 − βE2 , where
E is the energy operator and denoted as E = iℏ∂t . With con-
sideration of the energy mass shell condition p2 +m2 = E2,
the generalized expression of the energy was gotten as [33]

E = E 1 − β p2 +m2 4

In curved spacetime, the Dirac equation is

iγμ ∂μ +Ωμ Ψ + m
ℏ
Ψ = 0, 5

where Ωμ = i/2 ωμ
abΣab, ωμ

ab is the spin connection

defined by the tetrad eλb and the ordinary connection:

ωμ
a
b
= eν

aeλbΓ
ν
μλ − eλb∂μeλ

a 6

The Latin indices live in the flat metric ηab while Greek
indices are raised and lowered by the curved metric gμν.
The tetrad can be constructed from

gμν = eμ
aeν

bηab,

ηab = gμνe
μ
ae

ν
b,

eμaeν
a = δμν,

eμaeμ
b = δba

7

In Equation (5), Σab is the Lorentz spinor generator
defined by

Σab =
i
4 γa, γb ,

γa, γb = 2ηab
8

Then, one can construct γμs in the curved spacetime as

γμ = eμaγ
a,

γμ, γν = 2gμν
9

To get the generalized Dirac equation in the curved
spacetime, one can rewrite Equation (5) as

−iγ0∂0Ψ = iγi∂i + iγμΩμ +
m
ℏ

Ψ 10

Using Equations (3), (4), and (10) and neglecting the
higher order terms of β, one can get
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−iγ0∂0Ψ = iγi∂i + iγμΩμ +
m
ℏ

⋅ 1 + βℏ2∂j∂
j − βm2 Ψ,

11

which is rewritten as

iγ0∂0 + iγi∂i 1 − βm2 + iγiβℏ2 ∂j∂
j ∂i +

m
ℏ

1 + βℏ2∂j∂
j − βm2 + iγμΩμ 1 + βℏ2∂j∂

j − βm2 Ψ = 0

12

Thus, the generalized Dirac equation is derived. In the
following sections, we adopt Equation (12) to describe the
fermion tunnelling of a parametric deformed black hole.

3. Fermions’ Tunnelling of a Parametric
Deformed Black Hole

In this section, we investigate fermions’ tunnelling from the
event horizon of a parametric deformed black hole. To do so,
we choose a static spherically symmetric black hole metric [11].

ds2 = −F r dt2 + 1
G r

dr2 + r2dθ2 + r2 sin2θdφ2, 13

where

F r = G r = 1 − 2M
r

−
η

r3
, 14

0 ≤ φ ≤ 2π, 0 ≤ θ ≤ π, 0 ≤ r <∞, η is the deformation parame-
ter of the black hole, and M is the mass of the black hole. For
the sake of simplicity in the discussion, we take 0 ≤ η ≤ 1 and
choose the real root of the event horizon located at [35].

r+ =
2M
3 + 27η + 16M3

54 + A η
1/3

+ 27η + 16M3

54 − A η
1/3
,

15

where

A η = 27η + 16M3

54

2
−
64M6

729

1/2

16

If the deformation parameter η = 0, the event horizon
r+ = 2M, it reduces to the event horizon of the Schwarzchild
black hole. Neglecting the higher order terms of η, we get

r+ = 2M + 3
4M2 η 17

Here, we only investigate the spin-up state. Assume that
the wave function of the fermion in the spin-up state is

Ψ =

A

0
B

0

exp i
ℏ
I t, r, θ, φ 18

The tetrad is easily constructed as

eμ
a = diag F, 1/ G, gθθ, gφφ 19

The gamma matrices take on the form as

γt = 1
F r

i 0
0 −i

,

γθ = gθθ
0 σ1

σ1 0
,

γr = G r
0 σ3

σ3 0
,

γφ = gφφ
0 σ2

σ2 0

20

In the above equations, gθθ = 1/r2, gφφ = 1/r2 sin2θ.
Inserting the wave function and the gamma matrices into
the generalized Dirac equation, we get

−iA
1
F
∂tI − B 1 − βm2 G∂rI

− Amβ grr ∂rI
2 + gθθ ∂θI

2 + gφφ ∂φI
2

+ Bβ G∂rI grr ∂rI
2 + gθθ ∂θI

2 + gφφ ∂φI
2

+ Am 1 − βm2 = 0,
21

iB
1
F
∂tI − A 1 − βm2 G∂rI

− Bmβ grr ∂rI
2 + gθθ ∂θI

2 + gφφ ∂φI
2

+ Aβ G∂rI grr ∂rI
2 + gθθ ∂θI

2 + gφφ ∂φI
2

+ Bm 1 − βm2 = 0,
22

A − 1 − βm2 gθθ∂θI + β gθθ∂θI grr ∂rI
2 + gθθ ∂θI

2

+ gφφ ∂φI
2 − i 1 − βm2 gφφ∂φI + iβ gφφ∂φI

grr ∂rI
2 + gθθ ∂θI

2 + gφφ ∂φI
2 = 0,

23
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B − 1 − βm2 gθθ∂θI + β gθθ∂θI

grr ∂rI
2 + gθθ ∂θI

2 + gφφ ∂φI
2

− i 1 − βm2 gφφ∂φI + iβ gφφ∂φI

grr ∂rI
2 + gθθ ∂θI

2 + gφφ ∂φI
2 = 0

24

It is difficult to solve the action I from the above equa-
tions. Considering the properties of the metric (13), we carry
out the separation of variables as

I = −εt +W r +Φ θ, φ , 25

where ε is the energy of the radiation particle. We first
observe Equations (23) and (24) and find that they are irrel-
evant to A and B and can be reduced to the same equation.
Inserting Equation (25) into Equations (23) and (24) yields

gθθ∂θΦ + i gφφ∂φΦ

1 − βm2 − βgrr ∂rW
2 − βgθθ ∂θΦ

2 − βgφφ ∂φΦ
2 = 0

26

In the above equation, the summation of factors in the
square brackets can not be zero. Therefore, it should be

gθθ∂θΦ + i gφφ∂φΦ = 0 27

This implies

gθθ ∂θΦ
2 + gφφ ∂φΦ

2 = 0, 28

which yields a complex function solution (other than the
trivial constant solution) of Φ. However, this solution has
no contribution to the tunnelling rate. Therefore, we will
not consider its contribution in the calculation. Now, our
interest is the first two equations which determine the Haw-
king temperature of the black hole. Inserting Equation (25)
into Equations (21) and (22) and canceling A and B yield

A6 ∂rW
6 + A4 ∂rW

4 + A2 ∂rW
2 + A0 = 0, 29

where

A6 = β2G3F,
A4 = βG2F m2β − 2 ,

A2 =GF 1 − βm2 2 + 2βm2 1 −m2β ,

A0 = −m2 1 − βm2 2
F − ε2

30

Solving Equation (29) at the event horizon, we get the
solution of W. Thus, the imaginary part of W is

Im W± = ± dr
m2F + ε2

GF
1 + βm2 + β

ε2

F

= ±πεB0 1 + β ⋅ B1 1 + η ⋅ B2 ,
31

where

B0 = 3r+ − 4M,

B1 =
m2 + 12ε2
2 1 +m2 ,

B2 =
7m2 − 72ε2

8M3 m2 + 12ε2

32

In the above equation, the +/- sign corresponds to the
outgoing/ingoing wave, F =G = 1 − 2M/r − η/r3 . In the
derivation of the above equation, one can find that there is
a second-order pole at r = r+ in the integrand function. So,
one can use the residue method to calculate the integrals.
At the same time, in order to reduce the complexity, the
higher order terms of β and η are neglected in the Taylor
series expansion, and the value of r+ can be found in Equa-
tion (17). Thus, the tunnelling rate of the fermion crossing
the horizon is

Γ = P emission
P absorption = exp −2 Im I+

exp −2 Im I−

= exp −2 ImW+ − 2 Im Φ

exp −2 ImW− − 2 Im Φ

= exp −4πεB0 1 + β · B1 1 + η · B2

33

Then, the Boltzmann factor with the Hawking tempera-
ture

T = 1
4πB0 1 + β ⋅ B1 1 + η ⋅ B2

= T0 1 − β ⋅ B1 1 + η ⋅ B2 ,

34

where T0 = 1/4πB0 is the standard Hawking temperature of
the black hole. It is shown that the corrected temperature
is lower than the standard one. This result is similar to the
result in [28]. That is, there is a balance point. At this point,
the evaporation stops, and the remnant is left.

The correction is not only determined by the mass and
the energy of the emitted fermion (m and ε) but also deter-
mined by the mass of the black hole M and the deformation
parameter η.

When η = 0, T = T0 1 − β ⋅ B1 , the case of the tunnelling
of fermions only in the presence of quantum gravity is
recovered [28, 41].

For the massless case m = 0, B1 = 6ε2, and B2 = −3/4M3.
For the massive case m ≠ 0, with the Einstein mass-energy
relation ε =m, B1 = 13ε2/2 1 + ε2 , and B2 = −65/104M3.
That is, for both the massive and massless cases, the quan-
tum gravity correction factor B1 is only determined by the
energy of the emitted fermion ε, while the deformation
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correction factor B2 is only determined by the mass of the
black hole M.

Moreover, from Equation (34), we can find that under
the dual influence of quantum effects and deformation, the
correction effect of quantum gravity is the main influencing
factor, while the correction effect of deformation parameter
is secondary.

4. Conclusion and Outlook

In this paper, using the Hamilton-Jacobi method, we dis-
cussed the tunnelling of fermions when the dual influence
of quantum gravity and the deformation of a parameterized
black hole are taken into account. Taking into account the
influence of quantum gravity, one can modify the Dirac
equation in curved spacetime by the modified fundamental
commutation relations. Then, the tunnelling radiation of
fermions from the event horizon of a parametric deformed
black hole was investigated. The corrected Hawking temper-
atures were gotten. From Equation (34), we found the
following:

(i) The corrected temperature is lower than the stan-
dard one, and this result is similar to the findings
in previous studies

(ii) The correction is not only determined by the mass
and the energy of the emitted fermion (m, ε) but
also determined by the mass of the black hole M
and the deformation parameter η

(iii) Under the dual influence of quantum effects and
deformation, the correction effect of quantum grav-
ity is the main influencing factor, while the correc-
tion effect of the deformation parameter is
secondary

(iv) For both the massive and massless cases, the quan-
tum gravity correction factor B1 is only determined
by the energy of the emitted fermion ε, while the
deformation correction factor B2 is only determined
by the mass of the black hole M

The corrected temperature is lower than the standard
one, and that is, with the evaporation proceeds, the Hawking
temperature decreases, and the black hole finally reaches an
equilibrium state. At this state, the evaporation stops, and
the remnant is produced. This is a qualitative conclusion
in this paper. There were some discussions about the rem-
nants in the final state in [42–48]. A review of this topic
can be found in [49]. It is of interest to discuss quantitatively
the size of the black hole remnant in the present parametric
deformed mode. This issue is a bit complex, and we look for-
ward to discussing it in another article.
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