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The analytical exact iteration method (AEIM) has been widely used to calculate N-dimensional radial Schrodinger equation with
medium-modified form of Cornell potential and is generalized to the finite value of magnetic field (eB) with quasiparticle
approach in hot quantum chromodynamics (QCD) medium. In N-dimensional space, the energy eigenvalues have been
calculated for any states (n, l). These results have been used to study the properties of quarkonium states (i.e, the binding
energy and mass spectra, dissociation temperature, and thermodynamical properties in the N-dimensional space). We have
determined the binding energy of the ground states of quarkonium with magnetic field and dimensionality number. We have
also determined the effects of magnetic field and dimensionality number on mass spectra for ground states of quarkonia. But
the main result is quite noticeable for the values of dissociation temperature in terms of magnetic field and dimensionality
number for ground states of quarkonia after using the criteria of dissociation energy. At last, we have also calculated the
thermodynamical properties of QGP (i.e., pressure, energy density, and speed of sound) using the parameter eB with ideal
equation of states (EoS). A preprint has previously been published (Solanki et al., 2023).

1. Introduction

The system of heavy quarkonia (such as bottomonium and
charmonium) has played a key role for the comprehensive
and quantitative test of quantum chromodynamics (QCD)
and the standard model [1]. After the discovery of J/ψ in
1974, the study of heavy quarkonia becomes an interesting
topic for both the theoretical and experimental high energy
physics. The radial Schrodinger equation has been solved
with the real part of medium-modified form of Cornell
potential [2]. The Cornell potential, or Cornell potential
model, is used in the context of heavy quarkonia, specifically
to describe the interaction between a quark and an antiquark
within these masonic systems. Here, we refer to several phe-
nomena like the quark confinement, mathematical analysis
and interpretation of the bound state, spectroscopy and
properties of heavy quarkonia, phenomenological modeling
of QCD with aim to bridge the gap between theoretical
predictions and experimental observations, prediction of
various properties of quarkonia such as energy levels and

decay rates, and other spectroscopic features, and the solution,
thus, obtained can be used to understand many phenomena in
the study of atomic and molecular physics, spectroscopy
(hadronic as well as molecular), nuclear physics, and also high
energy physics which are not yet understood. Most of the
recent quarkonium studies are focused on N-dimensional
space problem [3] and lower spatial or dimensional space prob-
lem [4]. The consequences of N-dimensional space have been
considered for energy levels of the bound state system of
quarkonia [5]. In the N-dimensional space, the study of the
harmonic oscillator [6] and hydrogen atom [7] has also been
done. Additionally, in N-dimensional space, the Schrodinger
equation has also been solved for potentials such as Cornell
potential [8], fourth-order inverse power potential [9], Mie-
type potential [10], Kratzer potential [11], Coulomb potential
[12], energy-dependent potential [13, 14], global potential
[15], Hua potential [13, 14], and harmonic potential [3].

There were several methods used to solve the Schrodinger
equation such as power series method [1], Hill-determinant
method [16], numerical methods [17–19], quasilinearization
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method (QLM) [20], point canonical transformation (PCT)
[21], operator algebraic method [22], Nikiforov-Uvarov
(UV) method [5, 13, 14, 23], power series technique [24],
Laplace transformation methods [3, 12], asymptotic iteration
method (AIM) [2], SUSYQM method, AEIM [25], and
Pekeris-type approximation [13, 14, 26].

The quarkonium dissociation rates for the ground state
have been studied by direct continuum of thermal activa-
tion, tunneling, binding energy, and phase shift scattering
in the hot quark-gluon plasma (QGP) for the eigenstates of
the lowest values [18, 27]. Vija and Thoma [28] extended
perturbated gauge theory for the collisional energy loss in
QGP at finite chemical potential and temperature. The quar-
konium dissociation has been studied by correcting Cornell
potential via hard thermal loop-resumed propagator of the
gluon [29, 30]. The study of the heavy quarkonium binding
energy in details is found in [31, 32], and the chemical
potential effect has been also studied by the methods of
dissipative hydrodynamic on quark-gluon plasma, produc-
tion of photon in QGP, and quark-gluon plasma thermody-
namical properties [33–37]. Alberico et al. [38], Mocsy and
Petreczky [39], and Agotiya et al. [40] have solved the Schro-
dinger equation for the quarkonium states at finite tempera-
ture, using a temperature-dependent effective potential by
the linear combination of internal energy, and concluded the
spectral function of quarkonium in a quark-gluon plasma.

From previously published articles, we study about the
effect of baryonic chemical potential incorporated by the
quasiparticle Debye mass [41] for finding the properties of
quarkonium. In this work, we follow the recently published
preprint work [42] to investigate quarkonium dissociation
using dissociation energy criteria with the effect of magnetic
field that has been introduced through quasiparticle Debye
mass. We have used the medium-modified form of potential,
so formed, obtaining the binding energies and mass spectra
in N-dimensional space of charmonium and bottomonium
at different values of magnetic field and dimensionality
number. The dissociation energy of QGP has been intro-
duced for the calculation of dissociation temperature of the
ground states of quarkonia by the intersection point of dis-
sociation energy and binding energy in N-dimensional
space. In other studies, authors have also calculated the
dissociation temperature by using the criteria that at dissoci-
ation point thermal width is equal to twice of binding
energy. The effect of magnetic field and dimensionality
number significantly revise values of dissociation points. At
last, we have also calculated the thermodynamical properties
of QGP (i.e., pressure, energy density, and speed of sound)
using the eB and dimensionality number (N) and compared
with the previous published data.

The paper is organized as follows: in Section 2, the exact
solution of N-dimensional radial Schrodinger equation with
the medium-modified form of Cornell potential has been
calculated. In Section 3, quasiparticle model and Debye mass
have been discussed. In Section 4, the binding energy of
quarkonium state in N-dimensional space has been investi-
gated. In Section 5, a brief description about the mass spec-
tra of quarkonium state in N-dimensional space has been
provided. In Section 6, the study about the QCD EoS in

the presence of eB has been discussed. In Section 7, the
dissociation energy (D.E.) of quarkonium state in N-dimen-
sional space has been investigated. Results have been discussed
in Section 8, and this work has been concluded in Section 9.

2. The Solution of N-Dimensional Radial
Schrodinger Equation with the Medium-
Modified Form of Cornell Potential

The N-dimensional radial Schrodinger equation for two
interacting particles has been solved for the medium-
modified form of the Cornell potential using AEIM [43, 44].

d2
dr2 + N − 1

r
d
dr −

l l +N − 2
r2

+ 2μQQ Enl −V r ψ r = 0,

1

where N , l, and μQQ are the dimensional number, angular
quantum number, and reduced mass of bound state, respec-
tively. Now, the wave function [ψ r ] chosen here is

ψ r = R r

r N−1 /2 2

Putting Eq. (2) in Eq. (1), we get

d2
dr2 −

λ2 − 1/4
r2

+ 2μQQ Enl −V r R r = 0 3

where

λ = l + N − 2
2 4

We have taken the spatially isotropic form of heavy
quark Cornell potential to obtain the in-medium modifica-
tion, i.e.,

V r = −
α

r
+ σr 5

In general, the spatial form of the potential may have
anisotropic structure due to the breaking of spherical sym-
metry in the presence of magnetic field [45, 46]. In our work,
the in-medium modification of the above equation (Eq. (5))
has been obtained in the momentum space by dividing the
vacuum heavy quark potential with the medium dielectric
permittivity [46], which carries the information of tempera-
ture and magnetic field (eB). In that case, we have found that
the in-medium-modified form of Cornell potential [47] for
the study of quarkonia in the presence of eB is as follows:

V r = σ

mD
1 − exp −mDr −

α

r
exp −mDr 6

Using exponential formula e−mDr =∑∞
k=0 −mDr

k/k for
solving Eq. (5) and neglecting the higher orders at mDr≪ 1,
thus Eq. (6) takes the following form:
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V r = −ar2 + br + c −
d
r
, 7

where the values of a, b, c, and d are given as a = 1/2 σmD ,
b = 1/2 2σ − αm2

D , c = αmD, and d = α; substituting these
values in Eq. (3), we get the radial wave function:

R″ r = −εnl − a1r
2 + b1r + c1 −

d1
r

+ λ2 − 1/4
r2

R r ,

8

where εnl = 2μQQEnl, a1 = −2μQQa , b1 = 2μQQb, c1 = 2μQQc,
and d1 = 2μQQd. AEIM requires making the following ansatz
for the wave function as in [11, 48, 49].

R r = f n r exp g1 r , 9

where

f n r = 1, 10

if n = 0, and

f n r =
n

i=1
r − α

n
i , 11

if n = 1, 2, 3,⋯.

g1 r = −
1
2 αr

2 − βr + δlnr, α > 0, β > 0 12

From Eq. (8), we get

R″n,l r = g″l r + gl′2 r + f ′′n r + 2gl
′ r f n′ r

f n r
Rnl r

13

After comparing Eq. (13) and Eq. (9), we have

−εn,l + a1r
2 + b1r + C1 −

d1
r

+ λ2 − 1/4
r2

= g″l r + gl
′2 r + f n″ r + 2gl′ r f n′ r

f n r

14

At n = 0, substituting Eqs. (10)–(13) into Eq. (14), we get

a1r
2 + b1r + C1 −

d1
r

+ λ2 − 1/4
r2

− ε0l

= α2r2 + 2αβr − α 1 + 2 δ + 0

+ β2 −
2βδ
r

+ δ δ − 1
r2

15

Now, comparing the coefficient of r on both side of
Eq. (15), we obtain

α = a1,

β = b1
2 a1

,

d1 = 2β δ + 0 ,

δ = 1
2 1 ± 2λ ,

ε0l = α 1 + 2 δ + 0 + C1 − β2

16

Now, the energy eigenvalue for the ground state is as
follows:

E0l =
a

2μQQ
N + 2l + C −

b2

4 a 2 17

Now, for the first node (n = 1), we used the functions

f1 r = r − α 1
1 and g1 r ; then,

a1r
2 + b1r + C1 −

d1
r

+ λ2 − 1/4
r2

− ε1l

= α2r2 + 2αβr − α 1 + 2 δ + 1 + β2

−
2 β δ + 1 + αα

1
1

r
+ δ δ − 1

r2

18

By comparing the coefficients of r, the relation between
the potential parameters is as follows:

α = a1,

β = b1
2 a1

,

d1 = 2β δ + 1 ,

δ = 1
2 1 ± 2λ ,

ε1l = α 1 + 2 δ + 1 + C1 − β2,

d1 − 2β δ + 1 = 2αα 1
1 ,

d1 − 2βδ α
1
1 = 2δ

19

Now, the energy eigenvalue formula for first excited
state E1l is as follows:

E1l =
a

2μQQ
N + 2l + 2 + C −

b2

4 a 2 20

Similarly, for the second node n = 2 , we use f2 r =
r − α 2

1 r − α 2
2 and g1 r and we get
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a1r
2 + b1r + C1 −

d1
r

+ λ2 − 1/4
r2

− ε2l

= α2r2 + 2αβr − α 1 + 2 δ + 2 + β2

−
2 β δ + 2 + α α

2
1 + α

2
2

r
+ δ δ − 1

r2

21

By comparing the coefficients of r, we get

α = a1,

β = b1
2 a1

,

δ = 1
2 1 ± 2λ ,

ε2l = α 1 + 2 δ + 2 + C1 − β2,

d1 − 2β δ + 2 = 2α α
2
1 + α

2
2 ,

d1 − 2βδ α
2
1 α

2
2 = 2δ α

2
1 + α

2
2 ,

d1 − 2β δ + 1 α
2
1 + α

2
2 = 4α α

2
1 α

2
2 + 2 2δ + 1

22

The energy eigenvalue for E2l is as follows:

E2l =
a

2μQQ
N + 2l + 4 + C −

b2

4 a 2 23

Hence, with the repetition of the iteration method, the
approximate energy eigenvalue for the quarkonium states
depending upon the temperature and magnetic field in
the N-dimensional space becomes

En
nl =

a
2μQQ

N + 2l + 2n + C −
b2

4 a 2 , n = 0, 1, 2, 3⋯

24

3. Quasiparticle Model and Debye Mass

In the quasiparticle description, the system of the interacting
particles is supposed to be noninteracting or in other words
weakly interacting by means of the effective fugacity [53] or
with the effective mass [54, 55]. Nambu-Jona-Laisino (NJL)
and Ploylov Nambu-Jona-Laisino (PNJL) quasiparticle
models [56], self-consistent quasiparticle model [57, 58],
etc., include the effective masses. Here, we considered the
effective fugacity quasiparticle model (EQPM), in the pres-
ence of eB, which interprets the QCD EoS as noninteracting
quasipartons with effective fugacity parameter zg for gluons
and zq for quarks encoding all the interacting effects taking
place in the medium. The distribution function for the
quasigluons and the quasiquarks/quasi-anti-quarks [59] is
given in the presence of magnetic field as below:

f g/q =
f g/qe

−βEp

1 ∓ f g/qe
−βEp

25

To measure the effect of electric potential applied on the
QGP, Debye mass played a major role and is gauge invariant
and nonperturbative in nature. In this work, we have consid-
ered the EQPM which is extended in the presence of mag-
netic field and interprets the QCD EoS as noninteracting
quasipartons with zq and zg as the fugacity parameter. So,
the distribution function for quark/antiquark is given below:

f oq =
zqe

−β p2z+m2+2l qf eB

1 + zge
−β p2z+m2+2l qf eB

, 26

where l is the Landau quantum number and eB is the mag-
netic field. The effect of the magnetic field B = Bẑ is taken
along the z-axis. Since the plasma contains both the charged
and the quasineutral particles, hence it shows collective
behavior. Debye mass is an important quantity to describe
the screening of the color forces in the hot QCD medium.
Debye screening mass can be defined as the ability of the
plasma to shield out the electric potential applied to it. In
the studies [60–63], detailed definition of the Debye mass
can be seen. To determine the Debye mass in terms of the
eB, we start from the gluon self-energy as below:

m2
D =Π00 ω = p, p ⟶ 0 27
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Figure 1: The variation of V r, T , eB with distance (r) at different
values of magnetic field and fixed value of T = 250MeV.
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According to [52], gluon self-energy was modified as
follows:

Π00 ω = p, p ⟶ 0 = g2 eB
2π2T

∞

0
dpz f

0
q 1 − f 0q 28

Thus, Debye mass for quarks using the distribution
function defined by Eq. (26) is given below:

m2
D = 4α

πT
eB

∞

0
dpz f

0
q 1 − f 0q 29

Since, the magnetic field has no effect on the gluon and
gluonic contribution to the Debye mass, it will remain
intact/unchanged. The other approach to obtain the Debye
mass is the kinetic theory approach. Both these approaches
provide similar results for the Debye mass in the presence
of eB. So, the Debye mass for Nf = 3 and Nc = 3 will be

m2
D = 4α 6T2

π
PolyLog 2, zg + 3eB

π

zq
1 + zq

30

The Debye mass for the ideal EoS zq,g = 1 representing
noninteracting quarks and gluons becomes

m2
D = 4πα T2 + 3eB

2π2 31

4. Binding Energy (B.E.) of Quarkonium
State in N-Dimensional Space

The binding energy of quarkonium state such as bottomo-
nium and charmonium has been studied in this section.

By using AEIM, the approximate energy eigenvalues in
N-dimensional space becomes

B E = En
nl =

a
2μQQ

N + 2l + 2n + C −
b2

4 a 2 32

In this equation, n = 0, 1, 2, 3,⋯ correspond to the
state of quarkonia.

5. Mass Spectra of Quarkonium State in N-
Dimensional Space

The mass spectra of heavy quarkonia can be calculated by
using the relation given below:

M = 2mQ + B E 33

Here, mass spectra are equal to the sum of the energy
eigenvalues and twice of the quark-anti-quark mass.
Substituting the values of En

nl in the Eq. (33), we get

M = 2mQ + a
2μQQ

N + 2l + 2n + C −
b2

4 a 2 , 34

where mQ is the mass of quarkonium state, l is the angular
momentum quantum number, and μQQ is the reduced mass.

6. QCD EoS in the Presence of Magnetic Field

The EoS for the quark matter is an important finding in
relativistic nucleus-nucleus collisions, and the thermody-
namical properties of matter are sensitive to EoS. The
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Figure 2: Dependence of (a) J/ψ and (b) Y binding energies with temperature for different values of magnetic field at fixed value of N = 3.
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EoS which is defined as a function of plasma parameter
Γ [40] is

εQED = 3
2 + μex Γ nT 35

The ratio of average potential energy to average kinetic
energy is known as plasma parameter. Now, let us assume
that Γ≪ 1 and is given by

Γ ≡
<PE >
<KE > = Re V r, T

T
36

But after inclusion of relativistic and quantum effects,
the EoS which has been already obtained in the Γ can
be written as follows:

ε = 3 + μex Γ nT 37
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Figure 3: Dependence of (a) J/ψ and (b) Y binding energies with temperature for different values of dimensionality number at fixed value of
eB = 0 3GeV2.
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Figure 4: Dependence of (a) J/ψ and (b) Y mass spectra with temperature for different values of magnetic field at fixed value of N = 1.
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The scaled energy density is written as in terms of
ideal contribution [50, 52] given below as follows:

e Γ ≡
ε

εSB
= 1 + 1

3 μex Γ , 38

where εSB is

εSB ≡
16 + 21Nf

2
π2T4

30 39

Here, Nf is the number of flavor of quarks and gluons,
and we also consider two-loop level QCD running cou-
pling constant (α) in MS scheme [50, 52],

g2 T ≈ 2b0 ln
μ

ΛMS
1 + b1

2b20
ln 2 ln μ/ΛMS

ln μ/ΛMS

−1

,

40

where b0 = 33 − 2Nf /48π2 and b1 = 153 − 19Nf /384π4.
In MS scheme, ΛMS and μ are the renormalization scale
and the scale parameter, respectively. The dependency of
ΛMS is

μ exp γE + c =ΛMS T ,
ΛMS T exp γE + c = 4πΛT

41

where γE = 0 5772156 and c = Nc − 4Nf ln 4 / 22Nc −Nf

[50, 52]. After using the above relation, first we calculated
the energy density εT from Eq. (38) and used the thermo-
dynamical relation:

ε = T
dp
dT

− P 42

We calculated the pressure [64] as follows:

P

T4 =
P0/T0 + 3af T

T0
dττ2ε Γ τ

T3 , 43

where P0 is the pressure at some reference temperature T0.
Now, the speed of sound is calculated by using the rela-
tion as follows:

c2s =
dP
dε

44

In this work, we use magnetic field-dependent Debye
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Figure 5: Dependence of (a) J/ψ and (b) Y mass spectra with temperature for different values of dimensionality number at fixed value of
eB = 0 7GeV2.

Table 1: Comparison of the mass spectra for J/ψ and Y obtained in the present work at N = 1 with the theoretical and experimental data.

State ⇓ eB = 0 3GeV2 eB = 0 5GeV2 eB = 0 7GeV2 Solanki et al. [50] Exp. mass [51]

J/ψ 3.1191 3.0590 3.0161 3.060 3.096

Y 10.4314 10.3824 10.3211 9.200 9.460
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mass to address the thermodynamics of the QGPmatter in the
presence of magnetic field. This is because of the fact that all
the thermodynamical properties of the quarkonia are potential
dependent which in turn depends on the magnetic field.

7. Dissociation Energy (D.E.) of Quarkonium
State in N-Dimensional Space

The most precious quantity to notice the vanishing of bound
state is the dissociation energy. The D.E. of heavy quarkonia
can be calculated by using the relation given below:

D E = EN ,l
dissociation ≡ 2mQ + σ

mD
− B E 45

After introducing the value of binding energy in the
above expression, we get the final expression of D.E. in N
-dimensional space as follows:

D E = EN ,l
dissociation ≡ 2mQ + σ

mD
−

a
2μQQ

N + 2l + 2n + C −
b2

4 a 2

46

8. Results and Discussion

In this analysis, we have taken fixed value of critical temper-
ature (Tc = 197MeV) throughout the manuscript and
various quantities such as binding energy (B.E.) and dissoci-
ation temperature, and the mass spectra of the quarkonia
have been studied with finite values of magnetic field. The
variation of the potential with distance (in fm) at fixed value
of temperature (T = 250MeV) for different values of
magnetic field (eB = 0 3, 0.5, and 0.7GeV2) is shown in
Figure 1. We clearly noticed that in Figure 1, if we increase
the values of magnetic field, then the variation of potential
also increases.

Figures 2 and 3 shows the variation of binding energy of
J/ψ and Y with temperature. From Figure 1, we can deduce
that the values of the binding energy of J/ψ (a) and Y (b)
decrease with temperature for different values of the mag-
netic field (eB = 0 3, 0.5, and 0.7GeV2) at fixed value of
dimensionality number (N = 3). The effect of dimensionality
number on the binding energy for the quarkonium state J/ψ
(a) and Y (b) with temperature has been shown in Figure 1.
If the value of dimensionality number increases, the binding
energy of quarkonium states becomes higher at the fixed
value of magnetic field (eB = 0 3GeV2).

Figure 4 shows the variation of mass spectra of heavy
quarkonia with temperature for 1S state of charmonium J/ψ
(a) and 1S state of bottomonium Y (b) for different values of
magnetic field (eB = 0 3, 0.5, and 0.7GeV2) at fixed value of
dimensionality number (N = 1). We observed that if we
increase the value of magnetic field (at fixed value of mass of
ground state of quarkonium, i.e., mJ/ψ = 1 5GeV and mY =
4 5GeV), the variation of mass spectra decreases. Figure 5 also
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Figure 6: The variation of dissociation energy (D.E.) of J/ψ with
temperature at different values of magnetic field (eB) and
dimensionality number (N).

Table 2: Dissociation of lower bound for eB =0.3GeV2;
temperatures are in the unit of Tc by using thermal energy effect
criteria.

State ⇓ N = 3 N = 4 N = 5
J/ψ 1.3921 1.5109 1.7709

Y 2.0509 2.2509 2.4110

Table 3: Dissociation of lower bound for N = 5; temperatures are
in the unit of Tc by using thermal energy effect criteria.

State ⇓ eB = 0 3GeV2 eB = 0 5GeV2 eB = 0 7GeV2

J/ψ 1.7709 1.7591 1.7465

Y 2.4110 2.4009 2.3899

Table 4: Dissociation of upper bound for eB = 0 3GeV2;
temperatures are in the unit of Tc by using thermal energy effect
criteria.

State ⇓ N = 3 N = 4 N = 5
J/ψ 2.2109 2.3309 2.4310

Y 2.4710 2.5909 2.7010

Table 5: Dissociation of upper bound for N = 5; temperatures are
in the unit of Tc by using thermal energy effect criteria.

State ⇓ eB = 0 3GeV2 eB = 0 5GeV2 eB = 0 7GeV2

J/ψ 2.4310 2.4209 2.4107

Y 2.7010 2.6909 2.6799
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shows the variation of mass spectra of heavy quarkonia with
temperature for 1S state of charmonium J/ψ (a) and 1S state
of bottomonium Y (b) for different values of dimensionality

number (N = 0, 1, and 2) at fixed value of magnetic field
(eB = 0 7GeV2). We observed that if we increase the values
of dimensionality number, the variation of mass spectra also
increases. We also compared the value of mass spectra for
J/ψ and Y obtained in the present work at different values
of magnetic field with the other calculated theoretical and
experimental values of mass spectra as shown in Table 1.

The dissociation temperature for real binding energies
can be obtained by using thermal energy. According to refer-
ences [27, 39], it is not necessary to have zero binding energy
for dissolution of the quarkonium states. When binding
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Figure 7: The variation of dissociation energy (D.E.) and binding energy (B.E.) of (a) J/ψ and (b) Y with temperature at different values of
dimensionality number (N) and fixed value of magnetic field (eB).
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Figure 8: The variation of dissociation energy (D.E.) and binding energy (B.E.) of (a) J/ψ and (b) Y with temperature at different values of
magnetic field (eB) and fixed value of dimensionality number (N).

Table 6: Dissociation temperature for eB =0.3GeV2; temperatures
are in the unit of Tc by using dissociation energy criteria.

State ⇓ N = 3 N = 4 N = 5
J/ψ 2.1959 2.3090 2.4055

Y 2.2965 2.4711 2.6079
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energy Ebin ≤ T of quarkonium state is weakly bonded, it
dissociates by means of thermal fluctuations. The quarko-
nium state is also said to be dissociated; when 2B E ≤Γ T ,
Γ T is thermal width of respective quarkonium states.
Hence, there are two ways to calculate dissociation point of
quarkonia. The lower bound of dissociation using mean
thermal energy can be written as follows:

a
2μQQ

N + 2l + 2n + C −
b2

4 a 2 = 3 TD , 47

and for upper bound, the expression is as follows:

a
2μQQ

N + 2l + 2n + C −
b2

4 a 2 = TD , 48

where μQQ =mc/2 and mb/2. The dissociation temperatures
for the J/ψ and Y have been given in Tables 2–5. Lower
bound of dissociation temperature has been shown in
Table 2 (at different values of N) and Table 3 (at different
values of magnetic field), whereas Table 4 (at different values
of N) and Table 5 (at different values of magnetic field) show
the different values of dissociation temperatures for upper
bound. In general, the dissociation temperature decreases

with the magnetic field and increases with dimensionality
number.

The variation of dissociation energy (D.E.) of J/ψ has
been shown in Figure 6 with the temperature for different
values of magnetic field and dimensionality number. It has
been deduced that the D.E. of the quarkonium states with
the magnetic field increases, but with the dimensionality
number, it decreases. In this manuscript, we have applied
one more way to calculate the dissociation temperature with
the help of dissociation energy (D.E.) and binding energy.
The variation of B.E. and D.E. of the J/ψ in Figures 7(a)
and 8(a) and Y in Figures 7(b) and 8(b) with temperature
for different values of dimensionality number (Figure 7)
and for different values of magnetic field (Figures 8) has
been shown, respectively. From Figures 7 and 8, we have
examined the dissociation temperature (by intersection
point of the D.E. and B.E. of the quarkonia) of the J/ψ and
Y for different values of eB and N , and the values of dissoci-
ation temperature are given in Tables 6 and 7, respectively.
Figure 9 shows the variation of dissociation energy (D.E.)
and binding energy (B.E.) of J/ψ (a) and Y (b) with temper-
ature at fixed value of eB = 0 and N = 5. From Figure 9, we
have examined the values of dissociation temperature at zero
magnetic field using dissociation energy criteria, and the
values has been shown in Table 7 for showing the difference
between with or without eB.
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Figure 9: The variation of dissociation energy (D.E.) and binding energy (B.E.) of (a) J/ψ and (b) Y with temperature at eB = 0 and fixed
value of dimensionality number (N).

Table 7: Dissociation temperature for N = 5; temperatures are in the unit of Tc by using dissociation energy effect criteria.

State ⇓ eB = 0 eB = 0 3GeV2 eB = 0 5GeV2 eB = 0 7GeV2

J/ψ 2.4185 2.4055 2.3949 2.3874

Y 2.6162 2.6079 2.5984 2.5913
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The thermodynamical properties of quark matter play a
significant role in the study of QGP and also provide useful
information about the strange quark matter. In Figures 10–
12, we have plotted the variation of pressure P/T4 , energy
density ε, and speed of sound C2

s with temperature (T/Tc)
at eB = 0 3GeV2 for ideal EoS with 3 flavor QGP. The
obtained results are also compared with the results of Nilima
EoS1 [52] and Solanki EoS1 [50].

9. Conclusion

We have considered the medium-modified form of Cornell
potential at finite values of magnetic field and dimensional-
ity number. To reach end, we considered magnetic field-
dependent quasiparticle Debye mass for the study of
dissociation pattern of quarkonia. Real part of medium-
modified form of Cornell potential has been used for solving
Schrodinger equation to obtain binding energy of quarkonia
in N-dimensional space. We observed that binding energy
and mass spectra decrease with increasing the values of eB.
However, binding energy and mass spectra tend to get
higher with increasing value of N . The variation of dissocia-
tion energy with the temperature for different values of eB
and N has been shown in Figure 6. It has been seen that
the dissociation energy of the quarkonium states with the
magnetic field increases, but with the dimensionality num-
ber, it decreases.

We applied another way to calculate the dissociation tem-
perature with the help of dissociation energy and binding
energy. The variation of B.E. and D.E. of the states of quarko-
nia with temperature for different values of dimensionality
number and for different values of magnetic field has been
shown, respectively. From these, we have examined the disso-
ciation temperature at the intersection point of the D.E. and
B.E. of the quarkonia for different values of eB and N.

In conclusion, the dissociation temperature of heavy
quarkonia decreases with magnetic field and increases with
dimensionality number. We have also extended this work,
after calculating the thermodynamical properties of QGP
(i.e., pressure, energy density, and speed of sound) using
the parameters eB and N . In the future, we may extend this
work to calculate the nucleus-nucleus suppression with the
latest determined value of sNN . Also, we can study about
the survival probability or nuclear modification factor of
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Figure 11: Variation of ε/T4 as a function of T/Tc for our ideal EoS
at eB =0.3GeV2 and also compared with the published results of
Nilima EoS1 [52] and Solanki EoS1 [50].
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different quarkonium states w.r.t eB, dimensionality num-
ber, transverse momentum, centrality, and rapidity which
is the key point to quantify various properties of the medium
produced during heavy-ion collisions (HICs) at LHC and
RHIC.
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