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In this study, we investigated the impact of a topological defect (λ) on the properties of heavy quarkonia using the extended
Cornell potential. We solved the fractional radial Schrödinger equation (SE) using the extended Nikiforov-Uvarov (ENU)
method to obtain the eigenvalues of energy, which allowed us to calculate the masses of charmonium and bottomonium. One
significant observation was the splitting between nP and nD states, which attributed to the presence of the topological defect.
We discovered that the excited states were divided into components corresponding to 2l + 1, indicating that the gravity field
induced by the topological defect interacts with energy levels like the Zeeman effect caused by a magnetic field. Additionally,
we derived the wave function and calculated the root-mean radii for charmonium and bottomonium. A comparison with the
classical models was performed, resulting in better results being obtained. Furthermore, we investigated the thermodynamic
properties of charmonium and bottomonium, determining quantities such as energy, partition function, free energy, mean
energy, specific heat, and entropy for P-states. The obtained results were found to be consistent with experimental data and
previous works. In conclusion, the fractional model used in this work proved an essential role in understanding the various
properties and behaviors of heavy quarkonia in the presence of topological defects.

1. Introduction

The thorough description of hadron properties has become a
significant issue in particle and nuclear physics. There have
been many attempts to improve chiral quark models to cal-
culate hadron properties, such as [1–5]. Additionally, these
models have been extended to quark-gluon plasma in hot
or dense mediums, as discussed in [6–8].

By the end of the 1970s, in the existence of grand unifi-
cation theories (GUT), Kibble predicted that a sequence of
spontaneous symmetry breaks would occur in our universe
during the cooling phase after the Big Bang [9, 10]. Phase
transitions were present in conjunction with these symmetry
breaks. According to the Kibble-introduced mechanism,
these phase transitions would typically have produced some
topological flaws. These flaws are areas of space where
energy is concentrated at a very high density. Their spatial
dimensions define their natures. These flaws produce the

GUT’s structure of the collection of empty spaces that the
Higgs fields can access. Numerous topological defects,
including point defects known as monopoles [9, 11], linear
defects or cosmic strings [9, 10, 12], surface defects or
domain walls, and combinations of these defects have been
examined in the past. Since topological flaws are frequently
persistent, it is quite likely that some of them have persisted,
possibly even up to the present. Cosmology can detect topo-
logical flaws. The dynamics of our universe would be swiftly
dominated by monopoles and domain barriers since they are
so enormous, which is completely at odds with the observa-
tions. Cosmological consequences of cosmic strings could be
proven by present and future research, and they are consis-
tent with current observations. The geometry of cosmic
strings is flat everywhere except for the symmetry axis, mak-
ing them the most notable topological defects [9, 11, 13].
They were created early in the universe’s history. The variety
of theories produced from general relativity theory is a very
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strong incentive to investigate how particles behave on these
geometrical structures, despite the lack of any fundamental
evidence for their existence. The importance of quantum
systems in space-times with linear defect geometry should,
therefore, receive special attention, as they are thought to
constitute the most significant topological flaw in our
universe [12]. We can list, for instance, the compression of
matter during a moving string’s period and temperature
variations in the cosmic microwave background (CMB) as
key effects of the hypothetical presence of cosmic strings.
A cosmic string’s gravitational field has peculiar characteris-
tics. A quantum particle at rest near a static, straight line
with infinite dimensions would not be drawn to it and would
not experience any local gravitational fields as a result. This
indicates that close to a cosmic string, space is flat locally
[11]. It is not a worldwide flatness, though; it is local. A cos-
mic string can have a range of effects on quantum particle
dynamics because of its particular shape, including the gen-
eration or destruction of the (e+, e-) pair [14] and the
bremsstrahlung process [15] in the vicinity of a static
nucleus. We become interested in the characteristics of had-
rons in such spaces under the influence of a central field as a
result of these cosmic string-induced fluctuations of quan-
tum observables.

Theoretical high-energy physics (HEP) and related sci-
ences heavily rely on the study of the thermodynamic
features of quantum systems [16]. Quarks and gluons typi-
cally stay contained in hadrons, especially in the protons
and neutrons that make up the atomic nucleus. A plasma
of quarks and gluons with poorly understood thermody-
namic properties can be produced by compressing or heat-
ing nuclei. A theory that explains the strong interaction is
called quantum chromodynamics [17, 18]. Several experi-
mental studies have been conducted in recent years to dis-
cover the presence of deconfinement transitions [18]. A
bound state of charm and anticharm quarks called the cc,
which is suppressed, was then suggested as a potential indi-
cator of the QCD phase change [17, 18]. In-depth research
on the thermodynamic characteristics in the case of heavy
quarkonia would be intriguing, given that the suppression
of the cc meson has been identified as the signature of the
deconfinement transition. In [19], the authors employed
the quark-gluon plasma component quasiparticle model to
derive the thermodynamic parameters of the system. Then,
utilizing chiral quark models, thermodynamic properties
are examined in [20, 21].

With an appropriate transformation, the Schrödinger
equation could be transformed into a generalized hyper-
geometric equation. Consequently, the NU approach can
be applied to this type of second-order differential equa-
tion with effectiveness. In Ref. [22], a spherically harmonic
oscillatory ring-shaped potential is proposed, and its exact
complete solutions are presented by the Nikiforov-
Uvarov method. As in Ref. [23], the bound states of
the Schrödinger equation for a second Pöschl-Teller-like
potential are obtained exactly using the Nikiforov-
Uvarov method. It is found that the solutions can be
explicitly expressed in terms of the Jacobi functions or
hypergeometric functions.

In this paper, we derive the SE solutions caused by the
gravitational field of a λ for all values of the orbital angular
momentum quantum number l1. The radial Schrödinger
equation in the cosmic string background is solved analyti-
cally using the generalized fractional extended NU method.
Then, we obtain the results to calculate the mass of charmo-
nium and bottomonium, the root-mean radii, and the ther-
modynamic properties of heavy quarkonia from cosmic
string geometry which are not considered in previous works
in the framework of fractional nonrelativistic quark models.

This paper is organized as follows: Section 2 reviews the
generalized fractional derivative of the ENU method. We
obtain the solution for the SE in the cosmic string back-
ground for the extended Cornel potential with the general-
ized fractional derivative of the extended NU method in
Section 3. The mass of quarkonia, root-mean radii, and ther-
modynamic properties of charmonium and bottomonium
inside linear defect geometry are described in Section 4.
Conclusions are provided in Section 5.

2. The Generalized Fractional Derivative of the
Extended Nikiforov-Uvarov (GFD-
ENU) Method

ENU method is a generalization of the Nikiforov-Uvarov
method. Both are frequently used in quantum physics to deter-
mine the eigenvalue and eigenfunctions of the Schrödinger or
Dirac equations, as well as any other equations that need to
be transformed into a hypergeometric form for a full analysis;
for further information, see Refs. [24, 25]. To demonstrate
the method viability, the NU was successfully applied in a few
practical examples in Ref. [26], where it was generalized to con-
formable fractional derivative. The goal of this section is to
expand the ENU within the confines of the GFD. Take into
account the generalized fractional differential equations shown
in the standard below [27]:

Dα Dα Ψ x + τ x
σ s

Dα Ψ x + σ x
σ2 x

Ψ x = 0, 1

where τ x , σ x , and σ x are polynomials with degrees of no
more than second, third, and fourth, respectively. Then, using
GFD [28], we can write

Dα Ψ x = Γ β

Γ β − α − 1 x1−α ´Ψ x , 2

Dα Dα Ψ x = Γ β

Γ β − α − 1
2

1 − α x1−2α ´Ψ x + x2−2αΨ′′ x ,
3

where 0 < α ≤ 1 and 0 < β ≤ 1. From Eqs. (2) and (3), we get
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Ψ′′ s + τ x + 1 − α x1−ασ x
x1−α σ x

´Ψ x

+ Γ β

Γ β − α − 1
−2 σ x
s2−2ασ2 x

Ψ x = 0
4

By comparing Eqs. (1) and (4), we get the fractional
parameters

τf x = τ x + 1 − α x1−ασ x ,

σf x = x1−α σ x ,

σf x = Γ β

Γ β − α − 1
−2
σ x

5

Then, we obtain the standard equation (GFD-ENU):

Ψ′′ x +
τf x

σf x
´Ψ x +

σf x

σf
2 x

Ψ x = 0 6

We assume that the following transforms Eq. (6):

Ψ x =Φ x Y x 7

Eq. (6) is reduced to a hypergeometric equation. Then,
we get

σf x Y ′′ x + τf x ´Y x + λf x Y x = 0, 8

where Φ s archive

´Φ x
Φ x

=
Πf x

σf x
, 9

λf x − ´Πf x =G x 10

Y x is the hypergeometric function that has a polyno-
mial that archives the Rodrigues relation:

Yn s = Bn

ρ x
dn

dsn
σn f x ρ x , 11

where Bn is the constant for normalization and ρ x is the
weight function and satisfies the relation

σf′ρ + ρ′σf = τf ρ 12

The function Πf s is defined as

Πf x =
σf′ x − τ x f

2 ±
σf
′ x − τ x f

2

2

− σ x +G x σf x

13

Πf x is a polynomial of at most 2 α degrees, and based
on this, the determination of G x is important in obtaining
Πf x . λn x is defined by relation

λn x = −n
2 τf′ x −

n n − 1
6 σf ′′ x , 14

where

τf x = τ x f + 2Πf x 15

We obtain the eigenvalues of energy from Eq. (10) and
Eq. (14).

3. Cosmic String Space-Time of
Heavy Quarkonia

In spherical coordinates, the line element that shows the
linear defect space-time [10] is obtained by (x0 = ct, x1 = r,
x2 = θ, and x3 = φ)

ds2 =Ωμνdx
μ⨂dxν = −c2 dt2 + dr2 + r2dθ2

+ χ dθ + λ r sin θ dφ 2,
16

where 0 < r <∞, 0 < θ < π, 0 < φ < 2π, 0 < λ = 1 − 4Τ is the
topological parameter of the cosmic string, χ = 4GΤ/c3 is
the torsion [29] parameter, and Τ represents the cosmic
string’s linear mass density. From general relativity (GR), we
note that the values of Τ vary in the interval Τ ∈ 0, 1 [29, 30].

For λ⟶ 1 and χ⟶ 0, the metric obtained by Eq. (16)
reduces to the usual Minkowski metric in spherical coordi-
nates [31, 32].

The metric tensor for the space-time given by Eq. (16) is

Ωμν x =

−1 0 0 0
0 1 0 0
0 0 χ2 + r2 χλr sin θ

0 0 χλr sin θ λ2r2 sin2θ

=
−1 0
0 Ωij

17

With the inverse metric,

Ωμν x =

−1 0 0 0
0 1 0 0

0 0 1
r2

−χ
λ r3 sin θ

0 0 −χ
λ r3 sin θ

χ2 + r2

λ2r4 sin2θ

18

We choose the signature −, + , + , + for the metric
tensor Ωμν, and its determinant is obtained by Ω = det
Ωμν = −λ2r4 sin2θ, with μ, ν = 0, 1, 2, 3. In the system
of curvilinear coordinates ds2 =∑3

i=1∑
3
j=1Ωij dx

i ⊗ dxj such
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that r⟶ x1, θ⟶ x2, and φ⟶ x3, the 3-dimensional
interior Euclidian space’s metric tensor is

Ωij x =
1 0 0
0 χ2 + r2 χλr sin θ

0 χλr sin θ λ2r2 sin2θ
19

The Laplace-Beltrami (LB) operator of the local coor-
dinate system may be described as

ΔLB =
1
Ω

∂
∂xi

Ωij Ω
∂
∂xi

 i, j = 1, 2, 3,Ω = det Ωij = λ2r4 sin2θ

20

Next, considering Equation (20) and for small values
of the torsion parameter χ≪ 1, the LB operator is

ΔLB =
1
r2

∂
∂r

r2
∂
∂r

+ cot θ ∂
∂θ

+ ∂2

∂θ2
+ 1
λ2 sin2θ

∂2

∂φ2

21

The Hamiltonian operator in natural can be written
from this. ℏ = c = 1 as:

H = −
1
2M

∂2

∂r2
+ 2
r
∂
∂r

+ 1
r2
cotθ

∂
∂θ

+ 1
r2

∂2

∂θ2
+ 1
r2

1
λ2 sin2θ

∂2

∂φ2

+V r, θ, φ
22

M =mq mq/ mq +mq is the reduced mass, where
mq,mq are the mass of quark and antiquark [26, 33].

Now, in curved cosmic string space-time, the nonrelativ-
istic radial SE is presented in detail [12, 29].

d2ψnl r

dr2
+ −

2M
ℏ2

V r + 2M
ℏ2

Enl −
δ

r2
ψnl r = 0, 23

where δ = l λ l λ + 1 with l λ =m λ + n and the quantum
number for generalized angular orbits is l λ It is not neces-
sarily the case that the generalized quantum numbers l λ
and m λ are integers: l λ = m λ + n = m/λ + n = l1 −
1 − 1/λ m, where l1 = 0, 1, 2,⋯.

Suppose two heavy quarks in a bound state like the cc
and bb with the potential consisting of the Cornell potential
plus harmonic potential. The linear part is responsible for
quark confinement at large distances, while the Coulomb
part dominates at short distances. This potential has been
extensively studied in both relativistic and nonrelativistic
quantum mechanics and has attracted a great deal of atten-
tion in particle physics in which the additional part was
added to improve confinement force, and we found that it
gave a good result compared with other works and experi-
mental results [34].

V r = ar2 + br −
c
r
+ d 24

To put Eq. (23) in the dimensional fractional form, we
let r = y/A, M ′ =M/A, and E′ = E/A, where A = 1GeV. δ is
separation constant δ = l λ l λ + 1 . Then we get

Dα Dαψnl y + 2μ′ E′ − V y
A

−
δ

z2α
ψnl y = 0, 25

where a′ = a/A3, b′ = b/A2, c′ = c, d′ = d/A, and ζ = Γ β /
Γ β − α − 1 .

By using Eq. (3), we get

ψ′′nl y + 1 − α

z
ψnl
′ y + 1

z2
ε − d1 y2α − a1y4α − b1y3α

+ c1yα − δ1 ψnl y = 0,
26

where ε = 2M ′E′/ζ2, a1 = 2M ′a′/ζ2, b1 = 2M ′b′/ζ2, c1 = 2
M ′c′/ζ2, d1 = 2M ′d′/ζ2, and δ1 = δ/ζ2.

ψ′′nl y + 1 − α

z
ψnl
′ y + 1

z2
−ς1 y

4α − ς2y
3α − ς3y

2α

− ς4y
α − ς5 ψnl y = 0,

27

where ς1 = a1, ς2 = b1, ς3 = −ε + d1, ς4 = −c1, and ς5 = δ1.
By comparing Eq. (6) and Eq. (27), we get

τ = 1 − α, σf = y, σf = −ς1 y
4α − ς2y

3α − ς3y
2α − ς4y

α − ς5

28

Then, we get

Πf y = α

2 ± ς1 y4α + ς2y3α + ς3y2α + ς4yα + ς5 + y G y ,

29

where ς5 = ς5 + α2/4. We choose a linear function G y =
A∗y2α−1 + B yα−1 that produces the functions under the root
in the above equation to be quadratic A1y

2α + A2y
α + A3

2.
Then,

Πf y = α

2 ± A1y
2α + A2y

α + A3 30
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Comparing Eq. (29) and Eq. (30), we obtain

A1 = ± ς1,

A2 = ± ς2
2 ς1

,

A3 = ± ς5,

A∗ = ς2
2

4ς1
± 2 ς1ς5 − ς3,

B = ± ς2
ς1ς5

− ς4,

31

τf y = 1 ± 2 A1y
2α + A2y

α + A3 32

From Eq. (10), we obtain

λ y = A∗y2α−1 + Byα−1 ± 2A1y
2α−1 + αA2y

α−1 33

From Eq. (14), we obtain

λn y = −n ±2A1y
2α−1 + αA2y

α−1 34

We have four different combinations of sign choices ++,
+−, −+, and −−. We chose ++ to obtain the eigenvalue of
energy and the eigenfunction as in Ref. [26]. We obtain the
energy eigenvalue from Eq. (33) and Eq. (34):

Enlm = d −
b2

4 a + ζ2
2a
M

n + 1 α

+ α2

4 + 1
ζ2

l1 − 1 − 1
λ

m l1 − 1 − 1
λ

m + 1

35

From Eq. (9), we obtain the function Φ y :

Φ y = ky α/2 +A3e 1/2 A1/α y2α+ 2A2/α yα−1 , 36

where A1, A2, and A3 are obtained from Eq. (31). From Eq.
(12), we obtain the function ρ z :

ρ y = y2A3e A1/α y2α+ 2A2/α yα−1 37

Then, we obtain the function Yn s :

Yn s = Bny
−2A3 e− A1/α y2α+ 2A2/α yα dn

dzn

y2A3+n e A1/α y2α+ 2A2/α yα−1
38

Table 1: Mass spectra of charmonium (in GeV) for two models (the classical model α = β = 1 and the fractional model (α = 0 84, β = 1) at
λ = 0 8).

State The classical model The fractional model [36] [37] [38] [39] Exp. [42]
Error of the

classical model
Error of the

fractional model

1S 3.096 3.074 3.078 3.096 3.078 3.239 3.096 0 0.007

2S 3.619 3.582 4.187 3.686 3.581 3.646 3.649 0.008 0.018

3S 4.142 4.090 5.297 3.984 4.085 4.052 4.040 0.025 0.012

4S 4.665 4.598 6.407 4.150 4.589 4.459 4.415 0.056 0.041

1P

3.488 3.513

3.619 3.654 3.415 3.433 3.415 3.372 3.525 0.010 0.003

3.75 3.796

2P

4.011 4.020

4.142 4.163 4.143 3.910 3.917 3.779 3.900 0.005 0.007

4.273 4.305

1D

3.358 5.067

3.75 4.644

3.142 4.221 3.752 3.767 3.749 3.604 3.769 0.028 0.030

4.534 3.796

4.927 3.369

Total error 0.018 0.016 0.9513 0.11065 0.11152 0.05788 —
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From Eq. (7), we obtain the fractional radial wave
function:

ψnl y =Nnly
α/2 −A3 e− A1/2α y2α+ A2/α yα−1 dn

dyn

y2A3+ne A1/α y2α+ 2A2/α yα−1 ,
39

where Nnl is the normalization constant.

4. Results and Discussions

4.1. Special Cases. The classical case is obtained α = β = 1 ;
then, ζ = 1. The eigenvalues of energy and wave function in
the classical model are

Enlm = d −
b2

4 a + 2a
M

n + 1 + 1
4 + l1 − 1 − 1

λ
m l1 − 1 − 1

λ
m + 1 ,

ψnl y =Nnly
1/2 −A3e− A1/2 y2+A2

dn

dyn
y2A3+ne A1y

2+2A2

40
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Figure 1: (a) Mass spectrum (in GeV) of charmonium, at various values of α, β, is plotted as a function of quantum number (n) at a
topological defect (λ = 0 4) at m = +1. (b) Mass spectrum (in GeV) of charmonium, at various values of α, β, is plotted as a function of n
at a topological defect (λ = 0 8) at m = +1.

Table 2: Mass spectra of bottomonium (in GeV) for two models (the classical model (α = β = 1) at λ = 0 7 and the fractional model (α = 0 8,
β = 0 9) at λ = 0 8).

State The classical model The fractional model [36] [38] [40] Exp. [43]
Error of the

classical model
Error of the

fractional model

1S 9.460 9.465 9.510 9.510 9.460 9.460 0 0.0005

2S 9.844 9.853 10.627 10.038 10.023 10.023 0.018 0.016

3S 10.288 10.241 11.726 10.566 10.585 10.355 0.006 0.011

4S 10.611 10.628 12.834 11.094 11.148 10.580 0.003 0.004

1P

9.679 9.802

9.843 9.911 9.862 9.862 9.492 9.900 0.006 0.001

10.008 10.020

2P

10.063 10.19

10.228 10.299 10.944 10.390 10.038 10.260 0.003 0.003

10.392 10.408

1D

9.898 10.129

10.063 10.237

10.227 10.345 10.214 10.214 9.551 10.161 0.006 0.003

10.392 110.733

10.557 11.120

Total error 0.006 0.0055 0.484 0.0137 0.028 —
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4.2. Mass of Heavy Quarkonia. We obtain the mass of both
charmonium and bottomonium from the relation

Μ =m1 +m2 + Enlm =m1 +m2 + d −
b2

4 a + ζ2
2a
M

n + 1 α

+ α2

4 + 1
ζ2

l − 1 − 1
λ

m l − 1 − 1
λ

m + 1

41

In Table 1, the mass of cc has been calculated for 1S, 2S,
3S, 4S, 1P, 2P, and 1D for different values of topological

defect λ. We have calculated the Schrödinger equation by
using the generalized fraction (ENU) method, and we
obtained the mass of cc under the effect λ. The potential
parameters a, b, and d are fitted using Eq. (41) where a =
0 0826GeV3, b = 0 41849GeV2, and d = 0 427269GeV, and
the quark mass mc = 1 207GeV is obtained from Refs.
[26, 35]. We obtained the mass of cc in two models. The clas-
sical model at α = β = 1 with topological defect (λ = 0 8). We
obtained a good result compared with previous works. In
addition, some of the states of charmonium are close with
experimental data. We calculated the total error which
equals to 0.018% in the classical model. In the fractional
model, the total error is smaller than the classical model
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Figure 3: (a) Mass spectrum (in GeV) of charmonium is plotted as a function of the quantum number (n) at different values of topological
defect λ at α = β = 0 9 at m = −1. (b) Mass spectrum (in GeV) of charmonium of the quantum number n at different values of topological
defect λ at α = β = 0 4 at m = −1.
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Figure 2: (a) Mass spectrum (in GeV) of charmonium is plotted as a function of n at various values of topological defect λ at α = β = 0 9 at
m = 0. (b) Mass spectrum (in GeV) of charmonium is plotted as a function of n at various values of topological defect λ with α = β = 0 4 at
m = 0.
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which equals to 0.016%. In the present work, the topological
defect parameter takes values between 0 < λ < 1. The topo-
logical defect produces a splitting in the mass spectrum of
the cc meson to break the degeneracy in the nP and nD
states, which was absent in earlier studies. In Ref. [36], the
authors studied the N-radial Schrödinger equation by using
the asymptotic iteration method for the quark-antiquark
interaction potential, and they calculated the mass spectra
of heavy quarkonia, so we calculated the total error of this
work which equals to 0.9513%. In Ref. [37], the authors
solved the Schrödinger equation by using the Nikiforov-
Uvarov method for the sum of a harmonic, a linear, and a
Coulomb interaction potential, and they calculated the mass
spectra of heavy quarkonia, so we calculated the total error of
this work which equals to 0.11065%. In Ref. [38], the authors
calculated the N-radial Schrödinger equation by using the
power series iteration method for the quark-antiquark

interaction potential, and they calculated the mass spectra of
heavy quarkonia, so we calculated the total error of this work
that equals to 0.11152%. In Ref. [39], the authors studied
the N-radial Schrödinger equation by using an exact analyt-
ical iteration method for the trigonometric Rosen-Morse of
the quark-antiquark interaction potential, and they calcu-
lated the mass spectra of heavy quarkonia in which we
found the total error that equals to 0.05788%. Therefore,
we obtained improved results in comparison with [36–39].

In Table 2, the mass of bb has been calculated for 1S, 2S,
3S, 4S, 1P, 2P, and 1D for different values of topological
defect λ. We have calculated the Schrödinger equation by
using the generalized fraction ENU method, and we get the
mass of bb under effect λ. The potential parameters a, b,
and d are fitted using Eq. (41), where a = 0 17776GeV3,
b = 0 6898GeV2, and d = −0 0927487GeV, and the quark
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Figure 5: (a) Mass spectrum (in GeV) of bottomonium is plotted as a function of n at various values of topological defect λ at α = β = 0 9 at
m = 0. (b) Mass spectrum (in GeV) of bottomonium is plotted as a function of n at various values of topological defect λ at α = β = 0 4 at
m = 0.
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Figure 4: (a) Mass spectrum (in GeV) of bottomonium is plotted as a function of n at various values of α, β at a topological defect (λ = 0 4)
at m = +1. (b) Mass spectrum (in GeV) of bottomonium is plotted as a function of n at various values of α, β at a topological defect (λ = 0 8)
at m = +1.
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mass mb = 4 823GeV is obtained from Refs. [26, 35]. We
obtained the mass of bb in two models. The classical
model at α = β = 1 with topological defect (λ = 0 7). We
obtained a good result compared with previous works
and some of the states of bottomonium that are close to
experimental data. We calculated the total error that
equals to 0.006% in the classical model which is smaller
than previous works. In the fractional model (α = 0 8,
β = 0 9) at λ = 0 8, the total error is smaller than the classical
model. The topological defect produces a splitting in the
mass spectrum of the bb meson to break the degeneracy in
the nP and nD states, which was not considered in earlier

studies. In Ref. [36], they studied the N-radial Schrödinger
equation by using the asymptotic iteration method for the
quark-antiquark interaction potential, and they calculated
the mass spectra of heavy quarkonia. We found the total
error of this research which equals to 0.484%. In Ref. [38],
the authors calculated the N-radial Schrödinger equation by
using the power series iteration method for the quark-
antiquark interaction potential, and they calculated the mass
spectra of heavy quarkonia. We calculated the total error of
this work that equals to 0.0137%. In Ref. [40], the authors
studied the N-radial Schrödinger equation by using the
asymptotic iteration method with the Cornell potential, and

Table 3: The expectation value of charmonium of y ((GeV)-1) for two models (the classical model (α = β = 1, λ = 0 1), the fractional model
(α = 0 6, β = 0 27, λ = 0 9)).

State The classical model y ((GeV)-1) The fractional model y ((GeV)-1) [44] [44] [45] [46] [47]

1S 1.184 3.030 3.073 3.086 2.619 2.790 1.002

2S 1.601 4.732 5.770 5.777 4.761 4.612 1.551

1P

4.170 3.554

4.331 4.325 — 4.266 —1.545 3.664

4.722 3.779

2P

4.347 5.231

7.511 7.488 3.725 5.588 —1.894 5.337

4.883 5.447

1D

6.137 4.529

6.410 6.380 —

3.873 4.660

2.025 4.792

4.980 4.925

6.945 5.059
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Figure 6: (a) Mass spectrum (in GeV) of bottomonium is plotted as a function of n at various values of topological defect λ at α = β = 0 9 at
m = −1. (b) Mass spectra (in GeV) of bottomonium is plotted as a function of n at various values of topological defect λ at α = β = 0 4 at
m = −1.
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we found the total error in the results which equals to
0.028%. Therefore, we obtained improved results in com-
parison with [36, 38, 40].

In Figure 1, the levels are different from the Minkowski
levels, at m = 1 of P-states of charmonium. In Figure 1(a),
we note that the splitting increases as λ decreases compared
to Figure 1(b). This finding is in agreement with Ref. [41]. In
addition, we note that the effect of different values of α, β < 1
also appeared on the splitting. Since λ < 1, the degenerated
levels appear.

In Figure 2, we note the P-states of charmonium when
m = 0. The topological defect does not affect the system and
no splitting appears. This is in agreement with Ref. [41], but
the generalized fractional parameter plays a role where in
Figure 2(a), we take α = β = 0 9 and in Figure 2(b) α = β =

0 4. We note that in Figure 2(b), the curve is higher than the
curve in Figure 2(a).

In Figure 3, we observe the P-states of charmonium
when m = −1. Since complex eigenenergy appears by the
negative sign ofml, some states do not see it. This is in agree-
ment with Ref. [41]. Also, the generalized fractional param-
eter plays a role where in Figure 3(a), we take α = β = 0 9 and
in Figure 3(b) α = β = 0 4. We note that in Figure 3(b), the
curve is higher than the curve in Figure 3(a).

In Figure 4, the levels are different from the Minkowski
levels, as we can see with m = 1 of P-states of bottomonium.
In Figure 4(a), we note that the splitting increases as λ
decreases compared to Figure 4(b) since we took λ = 0 4
in Figure 4(a) and λ = 0 8 in Figure 4(b). This is in agree-
ment with Ref. [41]. We note that fractional parameters

Table 5: Expectation value of bottomonium of y ((GeV)-1) for two models (the classical model (α = β = 1, λ = 0 13), the fractional model
(α = 0 7, β = 0 1, λ = 0 6)).

State The classical model y ((GeV)-1) The fractional model y ((GeV)-1) [44] [44] [45] [46]

1S 0.600 1.874 1.615 1.556 1.823 1.574

2S 0.819 2.785 2.887 2.736 3.100 2.523

1P

1.861 1.888

2.105 1.981 — 2.3060.794 1.983

2.218 2.140

2P

1.974 2.796

3.551 3.309 2.446 3.0170.980 2.880

2.318 3.019

1D

2.790 1.925

2.956 2.732 — —

1.666 2.056

1.058 2.231

2.382 2.428

3.226 2.634

Table 4: Expectation value of charmonium of y−1 (GeV) for two models (the classical model (α = β = 1, λ = 0 15), the fractional model
(α = 0 59, β = 0 2, λ = 0 6)).

State The classical model y−1 (GeV) The fractional model y−1 (GeV) [44] [44] [45] [46]

1S 1.173 0.502 0.456 0.454 0.492 0.507

2S 0.805 0.268 0.251 0.250 0.325 0.396

1P

0.342 0.308

0.312 0.312 — 0.3160.795 0.393

0.276 0.485

2P

0.319 0.197

0.188 0.188 0.307 0.2390.628 0.231

0.263 0.262

1D

0.226 0.442

0.202 0.203 —

0.396 0.347

0.562 0.275

0.254 0.224

0.184 0.189
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act on the splitting mass where the degenerated levels
appear.

In Figure 5, we note the P-states of bottomonium when
m = 0. The topological defect does not affect the system
and no splitting appears. This is in agreement with Ref.
[41], but the generalized fractional parameter plays a role
where in Figure 5(a), we take α = β = 0 9 and in
Figure 5(b) α = β = 0 4. We note that in Figure 5(b), the
splitting mass is higher than its values in Figure 5(a). In
Figure 6, atm = −1, the P-states of bottomonium were noted.
Some states do not see this since complex eigenvalues of
energy appear by the negative sign of ml. This is in agree-
ment with Ref. [41]. Also, the generalized fractional param-
eter plays a role where in Figure 6(a), we take α = β = 0 9 and
in Figure 6(b) α = β = 0 4. We note that in Figure 6(b), the
splitting mass is higher than its values in Figure 6(a).

4.3. The Radial Expectation Values. The radial expectation
values were given by the relation

yg =
∞

0
yg ψnl y

2dy 42

In Table 3, the radial mean value y ((GeV)-1) for vari-
ous levels of charmonium and topological defect causes to
split nP and nD states. The mean values were calculated with
the normalized wave function in two cases (first case
(α = β = 1, λ = 0 1)). The result in this case is acceptable with
other works. In the second case (α = 0 6, β = 0 27, λ = 0 9),
the generalized fractional parameter plays an important role
where the results are in agreement with other works [44–47].
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Figure 7: (a) The partition function (Z) for the second excited states of cc is shown as a function of βs, for different values of α and β with
l = 1 andml = +1 at topological defect (λ = 0 2). (b) The partition function (Z) for the second excited states of cc is shown as a function of βs,
for different values of α and β with l = 1 and ml = +1 at topological defect (λ = 0 8).

Table 6: Expectation value of bottomonium of y−1 (GeV) for two models (the classical model (α = β = 1, λ = 0 2), the fractional model
(α = 0 56, β = 0 1, λ = 0 5)).

State The classical model y−1 (GeV) The fractional model y−1 (GeV) [44] [44] [45] [46]

1S 2.352 0.847 0.848 0.874 0.686 0.8706

2S 1.593 0.478 0.493 0.518 0.486 0.6946

1P

0.847 0.844

0.632 0.668 — 0.4671.565 0.770

0.614 0.658

2P

0.759 0.447

0.393 0.420 0.467 0.44211.226 0.452

0.573 0.410

1D

0.548 0.835

0.435 0.469

1.083 0.745

1.083 0.634

0.548 0.538

0.398 0.464
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In Table 4, the radial mean value y−1 (GeV) for various
levels of charmonium and topological defect causes to split
nP and nD states. The mean value was calculated with the
normalized wave function in two models: the classical model
(α = β = 1, λ = 0 15) and the fractional model (α = 0 59,
β = 0 2, λ = 0 6). The present results are in agreement with
other works [44–47]. In Table 5, the radial mean value y
((GeV)-1) for various levels of bottomonium and topological
defect causes to split nP and nD states. The mean value was
calculated using the normalized wave function in two
models (α = β = 1, λ = 0 13); we note that the effect of the
topological defect on S-states does not appear like P-states
and D-states. In the fractional model (α = 0 7, β = 0 1,
λ = 0 6), the generalized fractional parameter plays an impor-
tant role especially in S-states and P-states and D-states where
the results are in agreement with other works [44–46]. Also,
we can see that the average value y ((GeV)-1) decreases for

bottomonium with an increase in the reduced mass compared
with charmonium. In Table 6, the radial mean value y−1

(GeV) for various levels of bottomonium and topological
defect causes to split nP and nD states. The mean values were
calculated with the normalized wave function in the classical
and fractional models. In the classical model (α = β = 1, λ =
0 13), we note that the effect of topological defect on S-states
does not appear like P-states and D-states; the results in this
model are in good agreement with other works [4, 44, 45].
In the fractional model (α = 0 7, β = 0 1, λ = 0 6), the general-
ized fractional parameter plays an important role especially in
S-states and P-states and D-states. In addition, the results
increase for bottomonium compared with charmonium.

4.4. Thermodynamic Properties of Heavy Quarkonia. The
partition function serves as the foundation for thinking
about the thermodynamic properties of heavy quarkonia
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Figure 9: (a) The free energy plotted for the second excited states of cc is shown as a function of βs, for different values of α and β with l = 1
and ml = +1 at topological defect (λ = 0 2). (b) The free energy for the second excited states of cc is shown as a function of βs, for different
values of α and β with l = 1 and ml = +1 at topological defect (λ = 0 8).
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Figure 8: (a) The partition function (Z) for the second excited states of bb is shown as a function of βs, for different values of α and β with
l = 1 andml = +1 at topological defect (λ = 0 2). (b) The partition function (Z) for the second excited states of cc is shown as a function of βs,
for different values of α and β with l = 1 and ml = +1 at topological defect (λ = 0 8).
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inside the cosmic string framework [48, 49]. According to
statistical mechanics, the partition function can be built as
follows.

4.4.1. Partition Function.
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Figure 11: (a) The mean energy plotted for the second excited states of cc is shown as a function of βs, for different values of α and β with
l = 1 and ml = +1 at topological defect (λ = 0 2). (b) The mean energy for the second excited states of cc is shown as a function of βs, for
different values of α and β with l = 1 and ml = +1 at topological defect (λ = 0 8).
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Figure 10: (a) The free energy plotted for the second excited states of bb is shown as a function of βs, for different values of α and β with
l = 1 and ml = +1 at topological defect (λ = 0 2). (b) The free energy for the second excited states of cc is shown as a function of βs, for
different values of α and β with l = 1 and ml = +1 at topological defect (λ = 0 8).
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where βs = 1/K T , the Boltzmann constant is K , and the sys-
tem’s absolute temperature is T .

In Figures 7 and 8, we plot the partition function of P-
states of charmonium and bottomonium as a function of
βs at different values from α, β under the effect of topological
defect. We note that by increasing the values of α, β, the
curve becomes higher. In Figures 7(a) and 8(a), we take
the topological defect λ = 0 2. We note that the curves are
not connected to the standard Minkowski curve, and we also
note that the splitting increases as λ decreases which is in
agreement with [50–52] and Z βs decreases with increasing
βs which is in agreement with [50]. The authors of [51]
within the framework of the NU approach have used
DFDEP to solve the Klein-Gordon equation, and they

obtained the energy eigenvalues and associated wave func-
tion in D dimensions in great detail and noticed that the Z
β for the Minkowskian case monotonically lowers with
increasing β. In Ref. [52], the partition function Z decreases
monotonically with increasing λ for the two diatomic mole-
cules considered and reaches a constant value for some typ-
ical values of λ. In Ref. [53], the author plotted the partition
function of P-states of charmonium and bottomonium as a
function of βs at different values of topological defect, and
they show that by increasing the topological defect, Z β
decreases with increasing β. In Ref. [50], based on the gener-
alized Dunkl derivative in quantum mechanics, we study the
one-dimensional Schrödinger equation with a harmonic
oscillator potential and obtain the energy eigenvalues. For
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Figure 12: (a) The mean energy plotted for the second excited states of bb is shown as a function of βs, for different values of α and β with
l = 1 and ml = +1 at topological defect (λ = 0 2). (b) The mean energy for the second excited states of bb is shown as a function of βs, for
different values of α and β with l = 1 and ml = +1 at topological defect (λ = 0 8).
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Figure 13: (a) The specific heat plotted for the second excited states of cc is shown as a function of βs, for different values of topological
defect at α = β = 0 8 with l = 1 and ml = +1. (b) The specific heat plotted for the second excited states of cc is shown as a function of βs,
for different values of topological defect at α = β = 0 1 with l = 1 and ml = +1.
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the principal thermodynamic properties, they obtain that the
Z β decreases with βs. In Figures 9 and 10, we plot the free
energy of P-states of charmonium and bottomonium as a
function of βs at different values from α, β under the effect
of topological defect. We note that with increasing the values
of α, β, the curve becomes higher. In Figures 9(a) and 10(a),
we took the topological defect λ = 0 2, and we note that the
curves are not connected to the standard Minkowski curve.
We note also that the splitting increases as λ decreases and
free energy increases with increasing βs, and we note that
free energy F decreases by increasing the temperature. In

Ref. [54], they show that F decreases by increasing the
temperature of neutral particles. This is in agreement with
[48, 49, 53, 54]. In Figures 11 and 12, we plot the mean
energy of P-states of charmonium and bottomonium as a
function of βs at different values of α, β under the effect of
topological defect. We note that by increasing the values of
α, β, the curve becomes lower values. In Figures 11(a) and
12(a), we took the topological defect λ = 0 2 and note that
the curves are separated from the classical Minkowski curve.
We note also that the splitting increases as λ decreases and
mean energy (U) decreases with increasing βs, and with

1.0

1.1

1.2

1.3

1.4

1.5

1.6

0.2 0.4 0.6 0.8 1.0

� = 0.6
� = 0.8
� = 1

C 
(�

s) 
(G

eV
 K

−
1 )

�s

(a)

0.2 0.4 0.6 0.8 1.0
0

5

10

15

20

� = 0.6
� = 0.8
� = 1

C 
(�

s) 
(G

eV
 K

−
1 )

�s

(b)

Figure 14: (a) The specific heat plotted for the second excited states of bb is shown as a function of βs, for different values of topological
defect at α = β = 0 8 with l = 1 and ml = +1. (b) The specific heat plotted for the second excited states of bb is shown as a function of βs,
for different values of topological defect at α = β = 0 1 with l = 1 and ml = +1.
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Figure 15: (a) The entropy plotted for the second excited states of cc is shown as a function of βs, for different values of topological defect at
α = β = 0 9 with l = 1 andml = +1. (b) The entropy plotted for the second excited states of cc is shown as a function of βs, for different values
of topological defect at α = β = 0 4 with l = 1 and ml = +1.
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increasing the parameter of the topological defect, its values
shift to lower values. In Ref. [54], they calculated the ther-
modynamic properties of neutral particles under the effect
of topological defect from the nonrelativistic Schrödinger-
Pauli equation. The authors noted that by increasing the
temperature, U increases. In Ref. [55], the authors applied
their proposed proper quantization rule to obtain the energy
spectrum of the modified Rosen-Morse potential. The
beauty and symmetry of this proper rule come from its
meaning whenever the number of the nodes of φ x or the
number of the nodes of the wave function ψ x increases
by one; the momentum integral x Bx A k x d x will
increase by π. Based on this new approach, they present a
vibrational high-temperature partition function to study
thermodynamic functions and they found that mean energy
(U) decreases with increasing βs. In Ref. [50], the authors
found that the mean energy (U) decreases with increasing
βs. This is in agreement with [50–55]. In Figures 13 and
14, we plot the specific heat (C) of P-states of charmonium
and bottomonium as a function of βs at different values from
topological defect under effect α, β. We note that with
increasing the topological defect, the specific heat decreases.
This is in agreement with [56]. In Figures 13(b) and 14(b),
we take α = β = 0 1. We note that by increasing α, β, the
curves became lower as in Figures 13(a) and 14(a), and we
note that the specific heat increases with temperature such
that in Ref. [55]. In Figures 15 and 16, we plot the entropy
(S) of P-states of charmonium and bottomonium as a func-
tion of βs at different values from topological defect under
effect α, β. We note that there is no influence by topological
defect parameters like the solution of Minkowski space-time.
This is in agreement with [53, 54]. In Figures 15(b) and
16(b), we take α = β = 0 4. We note that by increasing α, β,
the curves became lower as in Figures 15(a) and 16(a). We
note that the entropy decreases with βs. This is in agreement
with [50, 55].

4.4.2. Free Energy F.

F βs = −
1
βs

ln Z βs 44

4.4.3. Mean Energy U .

U βs = −
∂

∂ βs
ln Z βs 45

4.4.4. Specific Heat C.

C βs = ∂ U
∂T

= −Kβs
2 ∂ U
∂ βs

46

4.4.5. The Entropy.

S βs = K ln Z βs − Kβs
∂ ln Z βs

∂βs
47

5. Conclusion

In this paper, we solved the radial Schrödinger equation in
the cosmic string with the extended Cornell potential by
using a generalized fractional derivative of the extended
Nikiforov-Uvarov (GFD-ENU) method under the effect of
topological defect. We obtained eigenvalues of energy and
wave functions of heavy quarkonia in the fractional model.
Firstly, we obtained the special cases from the general model,
and then, we calculated the mass of charmonium and botto-
monium in the two models (the first case is the classical
model and the second is the fractional model) under the
effect of topological defect; it has been noted that the split-
ting between nP and nD states is caused by the presence of
the topological defect. The excited states are split into 2l + 1
components, suggesting that a topological defect’s gravity field
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Figure 16: (a) The entropy plotted for the second excited states of bb is shown as a function of βs, for different values of topological defect at
α = β = 0 9 with l = 1 andml = +1. (b) The entropy plotted for the second excited states of bb is shown as a function of βs, for different values
of topological defect at α = β = 0 4 with l = 1 and ml = +1.
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interacts with energy levels in a way that is comparable to the
Zeeman effect brought on by the magnetic field where the
results are close with experimental data and in good agree-
ment with other works such as Refs. [36–40]. We note that
generalized fractional derivative plays an important role in this
work since we obtain lower total error in calculating the mass
of heavy quarkonia. As we noted from Tables 1 and 2, the
states of S are in very good agreement with experimental data;
in particular, 1S state is close with the data. Also, the states 1P,
2P, and 1D are in very good agreement with the data. We also
obtained the wave function; then, we calculated the root mean
of charmonium and bottomonium in two models under the
effect of topological defect, and the results are in agreement
with Refs. [44–47]. The mass and thermodynamic properties
were analyzed graphically. Concerning the classical limit, the
thermodynamic quantities exhibit a shift. When the cosmic
string parameter is low, this fluctuation becomes more impor-
tant. Free energy increases with increasing βs and we note that
free energy decreases by increasing temperature; we note also
that the splitting increases as λ decreases, and this is in agree-
ment with Refs. [48, 49, 53, 54]. By increasing the values of α,
β, the curve becomes higher. The Z βs shifts to lower values
as λ decreases; this is in agreement with Refs. [51–53], and by
increasing the values of α, β, the curve becomes higher values.
The Minkowski curve is separated from the curves with λ ≠ 1;
then, by raising the λ, the mean energy values are changed to
lower values. This is in agreement with Refs. [50–55]. By
increasing α, β, the curves became lower. We note that by
increasing the topological defect, the specific heat decreases; this
is in agreement with [56]. Also, by increasing α, β, the curves
became lower. We note that there is no influence by topological
parameters on the entropy, and this is in agreement with [53,
54]. By increasing α, β, the curves became higher values. We
hope to extend this work to include spin-spin, spin-orbital,
and tensor interactions in future work.
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