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In this study, we solved the Schrödinger wave equation by using effective potential in an artificial neural network (ANN) for the
mass spectrum of different charmonium states, including ηc, ψ2, χ2, and χ4. The ANN approach provides an efficient, more
general, and continuous solution-approximating strategy, thus eliminating the possibility of skipping any region of interest in
mass spectroscopy. The close consistency of ANN results with the already-reported results from numerical and theoretical
approaches and experimental ones shows the reliability and accuracy of the ANN approach.

1. Introduction

Researchers from the area of high-energy physics primarily
investigate the particles’ interactions (gravitational, strong,
electromagnetic, and weak) at the fundamental level of the
universe through experiments utilizing accelerator and
detector technology and an elegant theory known as the
Standard Model of Particle Physics [1, 2]. The Standard
Model was developed to effectively explain physical pro-
cesses concerning fundamental interactions (excluding grav-
ity) and becomes the well-tested theory of physics by
precisely predicting outcomes of different phenomena [1].

In quantum chromodynamics (QCD), because of color
charge, quarks interact through strong forces, whereas
spin-one particles, such as chargeless photons and gluons
with bicolor charge (conserved in strong interaction), are
the exchange particles of quantum electrodynamics (QED)
and QCD, respectively. Coupling constants α = e2/4πϵ0ℏc
and αs = g2/4π are dimensionless quantities and considered
to be the interaction strengths in QED and QCD, respec-

tively [3], where e is the electric charge, ϵ0 is the permittivity
of free space, ℏ is the reduced plank constant, c is the speed
of light, and g is the color charge.

With the increase in Q2 (momentum transfer squared),
QED α increases, while QCD αs decreases. In quantum elec-
trodynamics, because of the minimal values of the coupling
constant α, we can perform calculations perturbatively [4].
Hadron’s proper solution of the mass spectrum is not
achievable because in QCD, perturbative calculations are
only valid at high energies (small αs) and not valid at low
energies (large αs). For this, different models exist to investi-
gate the low-energy process of QCD [5].

Numerov’s matrix method [6], shooting method [7], and
Crank-Nicolson’s approach [8] are the numerical methods to
solve the Schrödinger wave equation. Artificial neural net-
works, which were introduced in the field of high-energy
physics in 1988 [9], can handle the increase in the complexity
of data in physics processes, as reviewed in [10]. In solving
ordinary and partial differential equations, ANNs have the fol-
lowing advantages over the existing numerical methods [11].
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(i) ANNs, being universal approximators, can solve
differential equations

(ii) The dimensionality and sampling point of the prob-
lems do not affect the trial solution or complexity of
ANNs

(iii) For all domain points, ANN gives us continuous
solutions as compared to the different numerical
techniques

2. Literature Review

Artificial neural networks are being used to solve different
problems relevant to the optimization of high-energy phys-
ics processes [12–17]. In theoretical HEP, artificial neural
networks are being used to calculate the mass spectra of par-
ticles by solving the Schrödinger wave equation [16–20],
while in experimental high-energy physics, artificial neural
networks are being used in event classification [21, 22],
object reconstruction [23, 24], triggering [25, 26], and track
fitting [27, 28]. Apart from these, artificial neural networks
are also being used to solve quantum many-body problems
[29] through ordinary and partial differential equations in
different domains [30–32]. Recent advancements in machine
learning and high-energy physics have also highlighted the
use of quantum neural networks [33–36].

In 1997, Lagaris et al. used ANNs to solve the Schrödin-
ger wave equation and Dirac equation for the ground state
energy of muonic atoms using Morse Hamiltonian by con-
sidering the finite protonic charge distribution as well as
the vacuum polarization effective potential. They also com-
pared the results with the finite element method and showed
that ANN is far more economical and efficient [37].

In 1998, Lagaris et al. described the advantages of neural
networks over numerical techniques. They used neural net-
works to solve those ordinary and partial differential equa-
tions that require function approximation for the solution
written in differentiable and closed analytical form. Their
proposed model consisted of the sum of two terms: the ini-
tial/boundary conditions term to satisfy with no adjustable
parameters. The second term contains the ANN term, which
is to be trained to satisfy the differential equation by adjust-
ing the parameters of the neural network (weights and
biases) to minimize the error function. Through this model
of ANN, they solved many examples of ordinary and partial
differential equations for different problems. They compared
their results with the finite element method and concluded
that ANN has excellent generalization performance over
the numerical technique [30].

In 2001, Sugawara solved the Schrodinger wave equation
for a one-dimensional harmonic oscillator using the Morse
potential [38], which showed how powerful artificial neural
networks and genetic algorithms can be. In 2004, Damazio
and de Seixas used neural networks to identify particles
using the topological properties of calorimeters [39].

In 2008, Teodorescu argued that during the last decade,
ANNs were commonly used in experiments [40], such as
CDF [41], BABAR [42], and DZero [43]. In 2006, Miranker
derived a complete wave formalism for information trans-

mission in the neural network by using a novel Lagrange
form of the canonical neural network equation. In this
study, the author also derived the neural network-based
Schrödinger wave equation for the time-dependent evolu-
tion of the quantum mechanical system [44]. In 2013, Ther-
haag highlighted the use of neural networks in the field of
high-energy physics to solve the classification task of sepa-
rating exciting data (signal) from unwanted noise (back-
ground) [45].

In 2013, Radi and Hindawi also reported the use of
machine learning techniques such as neural networks
(ANN), genetic algorithms (GA), genetic programming
(GP), and gene expression programming to understand the
interactions of the fundamental particles in the field of
high-energy physics [46]. In 2014, Sadowski et al. used a
data set of 82 million simulated collision events for the train-
ing of an artificial neural network to detect the decay of
Higgs bosons to tau leptons. He suggested that neural net-
works can automatically discover high-level features from
the data [47]. In 2018, Mutuk also used the trial function
method based on neural networks to solve the Blasius differ-
ential equation for fluid mechanics and compared the results
with the existing numerical techniques [16]. Baldi et al. [14]
used a parameterized neural network for the analysis and
prediction of new particles in the field of high-energy
physics.

In 2020, Hermann et al. solved many electrons in the
Schrödinger wave equation using a deep neural network.
They accurately represented the ground state energies of
He, H2, Be, B, LiH, and a chain of 10 hydrogen atoms [48].
In 2018, Mutuk used a neural network to figure out the
energy levels of a quartic anharmonic oscillator in one
dimension. He then showed that the proposed method
(ANN) was accurate by comparing the results to other
numerical methods [49].

In 2019, Mutuk solved the Schrödinger wave equation
for different cases of Cornell potential and compared the cal-
culated charmonium, bottomonium, and bottom-charmed
spin-averaged spectra with the already existing theoretical
and experimental results [17]. In 2019, Mutuk also used a
neural network to solve the 5-body Schrödinger equation
in the framework of the nonrelativistic quark model with
four different types of potential and predicted the parities
of the states that were not determined in the observation
of hidden-charm pentaquark states announced in the LHCb
experiment [20].

In 2019, Mutuk used a neural network to investigate the
mass spectra of the strange X (5568) state and its possible
charmed partner Xc. He then compared his predictions with
both theoretical and experimental data [19]. In 2020,
Sharma, as a prospect, also highlighted the supremacy of
quantum machine learning in high-energy physics [50]. In
2020, Manzhos provided a comprehensive review of the
use of neural networks for the solution of the vibrational
Schrödinger equation, the electronic Schrödinger equation,
and the related problems of density functional theory [51].
Lema and Choromanska [52] trained an artificial neural net-
work in an unsupervised learning framework by finding the
best expectation value for particles in a box with and without
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perturbation. This led to a very accurate prediction of
ground state energies and wave functions [52].

In this work, the Schrödinger wave equation is solved for
QCD’s complete potential for the charmonium system using
an artificial neural network. The computed results are com-
pared with the existing theoretical and experimental results
to verify the predictability, accuracy, and precision of neural
results. In Section 3, we provide the detailed implementation
of an artificial neural network for a charmonium system. In
Section 4, we have discussed our numerical results for the
eigenvalues for the QCD complete potential of the charmo-
nium system. In Section 5, we have concluded our findings
in view of future perspectives.

3. Methodology

A neural network is a massively parallel, distributed proces-
sor made up of simple processing units (artificial neurons).
It has many advantages over the semianalytic and numerical
methods for solving the ordinary and partial differential
equations discussed in the previous section. In the human
brain, an information processing unit is a neuron that is
used to construct the neural network. Figure 1 illustrates
the perceptron with multiple inputs summed up to z and
one output, which is calculated with the help of the nonlin-
ear function σ z , where σ z can be any function for which
it is possible to derive all the derivatives of σ z in terms of
itself.

Feed-forward neural networks, due to their structural
flexibility, good symbolic capabilities, and availability of
many training algorithms, are the most famous architecture.
A feed-forward neural network shown in Figure 2 consists of
input, hidden, and output layers of neurons that are fully
connected.

The input-output properties can be written as follows:

Oi = σ ni ,

Oj = σ nj ,

Ok = σ nk ,

1

where i, j, and k are the indices for input, hidden, and output
layers, respectively, and n is the number of neurons. Input to
the neural network is given as follows:

ni = input signal to theNN ,

nj = 〠
Ni

i=1
wijOi + θj,

nk = 〠
N j

j=1
wjkOj + θk,

2

where wij is the weight signal connecting the ith neuron of
the input layer to the jth neuron of the hidden layer, wjk

is the weight signal connecting the jth neuron of the hid-
den layer to the kth neuron of the output layer, and θj
and θk are the threshold-biased parameters for the hidden
and output layers. The overall output can be calculated as
follows:

Ok = σ 〠
N j

j=1
wjkσ 〠

Ni

i=1
wijni + θj + θk 3
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Table 1: Comparison of our calculated masses of ground and radially excited states of charmonium mesons using an artificial neural
network with other predicted theoretical and experimental results.

n Meson L S J
Our calculated mass using an
artificial neural network (GeV)

Theoretical mass [53] using
the shooting method (GeV)

Theoretical mass [54] with
NR potential model (GeV)

Exp. mass (GeV) [55]

1S
ηc 11S0 0 0 0 2.98101 2.9816 2.982 2 9810 ± 0 0011
J/ψ 13S1 0 1 1 3.0953 3.08999 3.090 3 096916 ± 0 0001

2S
ηc 21S0 0 0 0 3.63890 3.6303 3.630 3 6389 ± 0 0013
J/ψ 23S1 0 1 1 3.68611 3.6718 3.672 3 6861+0 000012−0 000014

3S
ηc 31S0 0 0 0 4.0430 4.0432 4.043 —

J/ψ 33S1 0 1 1 4.04000 4.0716 4.072 4 040 ± 10 [54]

4S
ηc 41S0 0 0 0 4.38400 4.3837 4.384 —

J/ψ 43S1 0 1 1 4.41500 4.4061 4.406 4 415 ± 6 [54]

1P

hc 11P1 1 0 1 3.5255 3.5156 3.516 3 52541 ± 0 00016
χ0 13P0 1 1 0 3.4149 3.4233 3.424 3 41475 ± 0 00031
χ1 13P1 1 1 1 3.51070 3.5005 3.505 3 51066 ± 0 00007
χ2 13P2 1 1 2 3.5583 3.5490 3.556 3 55620 ± 0 00009

2P

hc 21P1 1 0 1 3.9344 3.9336 3.934 —

χ0 23P0 1 1 0 3.8519 3.8715 3.852 —

χ1 23P1 1 1 1 3.9256 3.9203 3.925 —

χ2 23P2 1 1 2 3.9272 3.9648 3.972 3 9272 ± 0 0026

3P

hc 31P1 1 0 1 4.279 4.2793 4.279 —

χ0 33P0 1 1 0 4.202 4.2295 4.202 —

χ1 33P1 1 1 1 4.26695 4.2663 4.271 —

χ2 33P2 1 1 2 4.3171 4.3093 4.317 —

4P

hc 11P1 1 0 1 4.58500 4.5851 — —

χ0 43P0 1 1 0 4.5425 4.5424 — —

χ1 43P1 1 1 1 4.57201 4.5720 — —

χ2 43P2 1 1 2 4.6141 4.6141 — —

1D

ηc2 11D2 2 0 2 3.799001 3.7994 3.799 —

ψ 13D1 2 1 1 3.7699 3.7805 3.785 3 7699 ± 0 0025 [54]

ψ2 13D2 2 1 2 3.8000 3.8002 3.800 —

ψ3 13D3 2 1 3 3.8060 3.8053 3.806 —

2D

ηc2 21D2 2 0 2 4.1580 4.1576 4.158 —

ψ 23D1 2 1 1 4.1590 4.1363 4.142 4 159 ± 0 020 [54]

ψ2 23D2 2 1 2 4.158 4.1580 4.158 —

ψ3 23D3 2 1 3 4.167 4.1655 4.167 —

3D

ηc2 31D2 2 0 2 4.4718 4.4718 — —

ψ 33D1 2 1 1 4.4492 4.4492 — —

ψ2 33D2 2 1 2 4.4704 4.4719 — —

ψ3 33D3 2 1 3 4.4816 4.4810 — —
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The derivatives of θk concerning network parameters,
weights, and thresholds can be calculated as follows:

∂Ok

∂wij
=wjkσ

1 nj ni,

∂Ok

∂wjk
= σ nj δkk′ ,

∂Ok

∂wij
=wjkσ

1 nj ,

∂Ok

∂wjk
= δkk′

4

We followed the formalism used by Lagaris et al. [30]
and Mutuk [16–20] for the implementation of ANN to
solve the Schrodinger wave equation for the charmonium
system. First, we provide the steps for solving any differen-
tial equation by employing ANNs under this technique
[16–20, 30]. Consider the following differential equation
involving a linear operator H, a known function f r ,
and Ψ r being 0 at boundaries:

HΨ r = f r 5

Take a trial wave functionΨt r to representΨ r such
that

Ψt r = A r + B r, λ N r, p , 6

where the functions A r and B r, λ are defined in such a
way that Ψt r satisfies the boundary conditions regardless
of p (weights and biases of neural networks) and λ values,
with N r, p being the ANN output function. The colloca-
tion method [16–20, 30] is used to convert the above dif-
ferential equation into a minimization problem.

min
p,λ

〠
i

HΨt ri − f ri
2 7

For the Schrödinger wave equation, the above differen-
tial equation takes the following form:

HΨ r = εΨ r 8

Table 1: Continued.

n Meson L S J
Our calculated mass using an
artificial neural network (GeV)

Theoretical mass [53] using
the shooting method (GeV)

Theoretical mass [54] with
NR potential model (GeV)

Exp. mass (GeV) [55]

4D

ηc2 41D2 2 0 2 4.7562 4.7574 — —

ψ 43D1 2 1 1 4.73388 4.7339 — —

ψ2 43D2 2 1 2 4.7573 4.7573 — —

ψ3 43D3 2 1 3 4.7675 4.7675 — —

1F

hc3 11F3 3 0 3 4.0252 4.0256 4.026 —

χ2 13F2 3 1 2 4.283 4.0283 4.029 —

χ3 13F3 3 1 3 4.02871 4.0287 4.029 —

χ4 13F4 3 1 4 4.0216 4.0212 4.021 —

2F

hc3 21F3 3 0 3 4.34993 4.3499 4.350 —

χ2 23F2 3 1 2 4.34631 4.3494 4.351 —

χ3 23F3 3 1 3 4.3522 4.3522 4.352 —

χ4 23F4 3 1 4 4.3449 4.3476 4.348 —

3F

hc3 31F3 3 0 3 4.64292 4.6429 — —

χ2 33F2 3 1 2 4.64031 4.6403 — —

χ3 33F3 3 1 3 4.64493 4.6448 — —

χ4 33F4 3 1 4 4.6422 4.6422 — —

4F

hc3 41F3 3 0 3 4.91371 4.9137 — —

χ2 43F2 3 1 2 4.90957 4.9095 — —

χ3 43F3 3 1 3 4.91535 4.9153 — —

χ4 43F4 3 1 4 4.91409 4.9141 — —

5Advances in High Energy Physics



0.7
1S

0 2 4 6 8 10

0.6
0.5
0.4
0.3
0.2
0.1
0.0

U

r

0.4
2S

L = 0, Meson �c

0 2 4 6 8 10 12 14

0.2

0.0

–0.2

–0.4

–0.6

3S

0 2 4 6 8 10 12 14 16

0.4

0.2

0.0

–0.2

–0.4

Shooting method
NN

0.4
4S

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5

0.2

0.0

–0.2

–0.4

Figure 3: Comparison of the wave functions for ground and excited states of ηc are reported using neural networks and shooting methods.
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The trial solution can be written as

Ψt r = B r, λ N r, p , 9

where B r, λ = 0 at boundaries for a range of λ. This
problem can be transformed into a discretization problem
by discretizing the domain concerning p and λ. The corre-
sponding error function E is defined as

E p, λ = ∑i HΨt ri, p, λ − εΨt ri, p, λ 2

Ψt
2dr

, 10

where ε can be computed as

ε = Ψt
∗HΨtdr

Ψt
2dr

11

Let us consider the neural network with n input neu-
rons, m neurons in the hidden layer, and one neuron in
the output layer. The output of the network with the input
vector r = r1, r2,⋯⋯ ⋯ , rn is computed as

N = 〠
m

i=1
viσ zi , 12

where σ z is the sigmoid function and z is defined as

zi = 〠
n

j=1
wijr j + bi 13

The derivatives of the network output can be defined
as

∂kN
∂rkj

= 〠
m

i=1
viw

k
ijσ

k
i , 14

where σi = σ zi and σ k is the kth-order derivative of the
sigmoid. Once the derivatives of the error concerning net-
work parameters have been defined, any minimization
technique can be carried out. By employing this approach,
we obtained the neural network output function N r, p
used for getting the eigen solutions of the Schrodinger
equation under the conditions described above and thus
obtained the associated energy eigenvalues ε as well. The
obtained results are provided in the following section.

4. Results and Discussion

In the field of Hadron physics, the study of radial excitations
of mesons is of great interest. Specific potential models serve
as a description of the physical environment of mesons and
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Figure 5: Comparison of the wave functions for ground and excited states of χ2 are reported using neural networks and shooting methods.
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serve as a basis for theoretical predictions regarding the
characteristics of the charmonium spectrum. The main
objective of our study is to investigate the spectrum of char-
monia by using the ANN approach. For this purpose, we
have computed solutions of the Schrödinger wave equation
with the following quark-antiquark effective potential [50,
51] using an artificial neural network.

Vqq r = −4αs
3r + br + 32παs

9m2
c

σ

π

3
e−σ

2r2 Sc · Sc

+ 1
m2

c

2αs
r3

−
b
2r L · S + 4αs

r3
T ,

15

where mc is the mass of the charm quark, the first term
−4αs/3r represents strong potential due to gluon exchange
with the quark-gluon coupling constant αs, the second term
br is the linear confining potential with string tension b,

the third term 32παs/9m2
c σ/ π

3e−σ
2r2 Sc · Sc is the

Gaussian-smeared hyperfine spin-spin interaction potential,

and the last term 1/m2
c 2αs/r3 − b/2r L · S + 4αs/r3

T is the spin-orbit potential. Different parts of the above
potential are described below:

Sc · Sc =
S S + 1

2 −
3
4 ,

L S = J J + 1 − L L + 1 − S S + 1
2 ,

<3LJ T
3LJ > =

−
1

6 2L + 3 , J = L + 1,

+ 16 , J = L,

−
L + 1

6 2L − 1 , J = L − 1,

16

where L is the relative orbital angular momentum of the
quark-antiquark pair and S is the total spin angular momen-
tum of the meson.

In this potential model, the used parameters (αs = 0 5461,
b = 0 1425GeV2, σ = 1 0946GeV, and mc = 1 4796GeV) of
charm and anticharm quarks were obtained through fitting
the experimentally available masses of charmonia [53, 54].
The following radial Schrödinger equation was used to calcu-
late U r = r R r :

U″ r + 2μ E −V r −
L L + 1
2μr2 U r = 0, 17

r
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Figure 6: Comparison of the wave functions for ground and excited states of χ4 are reported using neural networks and shooting methods.
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where r is the interquark distance, μ is the reduced mass of
quark and antiquark, and R r is the radial wave function.
The masses of cc states are obtained by adding the energy E
to the constituent quarkmasses. For mesons with L > 0, results
using artificial neural networks are obtained by adding a small
enough value in the denominator of the term 1/r3 such that it
does not affect the results when r approaches zero. In Table 1,
we have shown the results of the charmonium mass spectrum
obtained through the implementation of our neural network
approach. The neural network results are also compared with
the already-reported theoretical and experimental results
about the charmonium mass spectrum.

Among all the states reported in Table 1, we have plot-
ted the wave functions of ground and radially excited
states of ηc, ψ2, χ2, and χ4 for different values of n, S,
and L. Each of Figures 3–7 consists of four panels corre-
sponding to n = 1, 2, 3, and 4, respectively, and is compared
with the corresponding wave functions produced with the
shooting method. The neural results are excellently consis-

tent with the well-established approach of the shooting
method, which indicates that the neural network approach
works very well. Thus, the graphs express the significance
of the method used in providing solutions to the Schrö-
dinger wave equation for the mass spectrum. In all graphs,
r is taken along the horizontal axis, and the wave function
U r is along the vertical axis.

The computed wave functions through the neural net-
work approach can be further used for extracting important
information about properties of charmonia, such as the root
mean square radii of charmonia, which can be approximated
by using the following formula, which employs normalized
wave function [53].

r2 = U∗r2 U dr,

R 0 =U ′ 0 for l = 0

18
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shooting methods.
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The radial wave function at origin is used for many pur-
poses in high-energy physics; for details, see ref [53].

5. Conclusion

We solved the Schrodinger wave equation for the complete
nonrelativistic QCD potential by using the ANN approach.
The solutions of the Schrodinger equation were used to pre-
dict masses of the ground and radially excited states of char-
monia. The ANN results were compared with the numerical
and experimental results already reported. The ANN mass
spectrum predictions and their associated wave functions
are found to be in excellent agreement with their competitive
results. This indicates the excellence of the ANN approach in
predicting the charmonium mass spectrum. As discussed in
the literature survey section, the ANN approach is a more
efficient, more general, and continuous solution provider
as compared to numerical approaches, which might skip
some regions of mass spectroscopy.

Data Availability

Data and code will be made available on a reasonable
request.
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