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In this paper, we solve the bound state problem for the Varshni-Hellmann potential via a useful technique. In our technique, we
obtain the bound state solution of the Schrödinger equation for the Varshni-Hellmann potential via ansatz method. We obtain the
energy eigenvalues and the corresponding eigenfunctions. Also, the behavior of the energy spectra for both the ground and the
excited state of the two body systems is illustrated graphically. The similarity of our results to the accurate numerical values is
indicative of the efficiency of our technique.

1. Introduction

Exact solution of the Schrödinger equation in theD-dimensional
coordinate system has been a focus of study in miscellaneous
works of quantum physics and quantum chemistry. The
energy eigenvalues and wave function, which are capable of
showing the behavior of a quantum mechanical system, can
be obtained from the Schrödinger equation. The Schrödinger
equation is a second-order differential equation used to solve
quantum mechanics problems. The exact and approximate
solutions of the Schrödinger wave equation in nonrelativistic
quantum mechanics have many features because the wave
functions and their equivalent eigenvalues provide a lot of
information for the description of various quantum systems,
including atomic structure theory, quantum chemistry, and
quantum electrodynamics. Using the experimental proof of
the Schrödinger wave equation, researchers are motivated to
solve the radial Schrödinger equation via different analytical
methods. Attempts have been made to solve the Schrödinger
and Klein-Gordon equations through different potentials.
For example, William et al. studied the Hulthen potential
together with the Hellmann potential [1], and Hellmann
investigated the Schrödinger equation with a linear combi-
nation of Coulomb and Yukawa potentials, which is known

as the Hellmann potential [2]. The Hellman potential has
been applied to several branches of physics such as atomic
physics, plasma physics, and solid state physics [3, 4], and
it has been used in the study of electron nucleus [5] and
electron ion [6].

This study seeks to obtain the eigenvalues and wave
function of the 3D Schrödinger equation through the sum
of Varshni and Hellmann potentials. The paper is organized
as follows: in Section 2, the exact solution of the Schrödinger
equation for the Varshni-Hellmann potential is derived, and
we obtain the analytical expressions for energy levels and the
corresponding wave functions for n and l quantum num-
bers. In Section 3, the results are discussed. In Section 4,
summary and conclusion are presented.

2. Formulation of the Approach

The Schrödinger equation has been solved exactly by using
various potentials, and it has been employed in different
atomic, molecular, and nuclear fields. The Schrödinger
equation is a second-order differential equation which serves
to solve quantum mechanics problems. We have attempted
to solve the Schrödinger and Klein-Gordon equations by
using different potentials for few-quark systems [7–11]. In
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this section, we solve the Schrödinger equation by using the
Hellmann potential. The Hellmann potential is of the fol-
lowing form [12, 13]:

V r = −
c
r
+ d

r
e−αr , 1

where r is the internuclear interval and c and d stand for the
strong points of Coulomb and Yukawa potentials. The
Varshni potential is of the following form [14]:

V r = a −
ab
r
e−αr , 2

where a and b denote the strong points of the Varshni
potential. The Varshni potential is a function of repulsive
short-range potential energy, which has been studied in the
formalism of the Schrödinger equation and contributed
greatly to chemical and nuclear physics [15, 16]. In this
article, we study the Schrödinger radial equation with a
new proposed potential obtained from the sum of the
Varshni and Hellmann potential (VHP). The potential is

V r = a + d − ab
r

e−αr −
c
r

3

In Figure 1, we show the VHP variations in terms of dif-
ferent values of α. We expand the exponential part of the
potential as follows:

V r = a + d − ab
r

1 − αr + α2r2

2 −
α3r3

6 −
c
r

4

And we write the potential in a simpler form as follows:

V r = a + d − ab
r

+ ab − d α −
ab − d α2r

2

+ ab − d α3r2

6 −
c
r

5
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Figure 1: VHP variations in terms of different values of α.

Table 1: Energy eigenvalue for VHP in terms of different values of
α (a = 1, b = −1, c = 4, d = −4, and ℏ = 2μ = 1).

State α E (ev)

1s

0.025 19.175401

0.050 -19.101607

0.075 -19.028616

2s

0.025 -4.058816

0.050 -4.041517

0.075 -4.034352

2p

0.025 -4.028798

0.050 -4.021861

0.075 -3.952986

3s

0.025 -1.247048

0.050 -1.234861

0.075 -1.221445

3p

0.025 -1.232069

0.050 -1.227473

0.075 -1.143767

3d

0.025 -1.215805

0.050 -1.172321

0.075 -1.139522
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The system Schrödinger equation is

−
ℏ2

2μ
1
r2

∂
∂r

r2
∂ψν,l r

∂r
+ V r − Ev,l +

l l + 1 ℏ2

2μr2 ψν,l r = 0,

6

where μ is the reduced mass and ν and l are group number
and the orbital quantum number of one particle relative to
another, respectively. By choosing ψ r = 1/r ϕ r , eq. (5)
appears as

ϕ′′ r + 2μ
ℏ2

E − V r −
l l + 1 ℏ2

2μr2 ϕ r = 0 7

ϕ r can be derived from eq. (6). Assuming ℏ = c = 1 and
ϕ r = f r exp g r , we can pursue the calculations related
to ϕ r function, and f r and g r functions are presented as

f j r =
j

c=1
r − αj

i  j = 1, 2,⋯ 8

where n = 1, 2, 3,⋯ and f0 r = 1 and the polynomial
g r is defined based on the type of potential. In this case,
it is defined based on potential 3.

g r = −1
2 Ar2 + Br + δ ln r 9

From the above equations, we have

ϕ′′ r = g′′ r + g′2 r + f ′′ r + 2g′ r f ′ r
f r

ϕ r

10

And by introducing into eq. (4),

−2μ
ℏ2

E − V r −
l l + 1 ℏ2

2Mr2
= g′′ r + g′2 r + f ′′ r + 2g′ r f ′ r

f r

11

We expand the exponential part of the potential and
rewrite the potential as

V r = a + d − ab
r

1 − α

r
−
α2r2

2 −
α3r3

6 −
c
r

12

By introducing the potential quantity and the deriva-
tives into eq. (10), we solve the equation for n = 0 and
angular momentum L, and the following equation is
obtained:

−2μ E − a + ab − d
r

− ab − d α + abα2r
2

+ d − ab α3r2

6 + c
r
−
l l + 1
2μr2 = −A + B2

− 2Aδ + 2Bδ
r

− 2ABr + A2r2 + δ2

r2
−

δ

r2

13

With a simple calculation and considering that the
exponents of r are linearly independent, it is possible to
set the coefficients of different powers of r equal to each
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Figure 2: E in terms of α for different l.
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other. In this case, the following relations are obtained between
the potential coefficients and the energy can be obtained:

−2μ E − a + d − ab α = −A + B2 − 2Aδ,

−2M ab − d
r

+ c
r

= 2Bδ
r

,

−2μ ab − d α2r
2 = −2ABr,

−2μ −
ab − d α3r2

6 = −A2r2,

l l + 1 = δ2

r2
−

δ

r2

14

By solving the above equations, the special relation of the
energy values for the state n = 0 is obtained as follows.

E0L = a + ab − d α −
l + 1 ab − d α2 /2

2μ ab + c − d
2l + 3

−
2μ ab + c − d 2

4 l + 1 2 ,

15

ψ0L =N1r
L+1 exp −1

2 Ar2 + Br 16

The energy for the first excited state n = 1 and the angular
momentum L is equal to

E1L = a + ab − d α −
l + 1 abα2/2 − dα2/2

2μ ab + c − d
2l + 5

−
2μ ab + c − d 2

4 l + 2 2

17

Table 2: Energy eigenvalue for the Hellman potential a = b = 0,
c = 2, d = −1, ℏ = 2μ = 1 .

State α E (ev) Ref. [17] Ref. [12]

1s

0.001 -2.238 00 -2.24900 -2.24898

0.005 -2.244 01 -2.24501 -2.24499

0.01 -2.2413 -2.24005 -2.24003

2s

0.001 -0.5606 -0.56150 -0.56150

0.005 -0.5569 -0.55755 -0.55754

0.01 -0.55198 -0.55269 -0.55269

2p

0.001 -0.5601 -0.56150 -0.56150

0.005 -0.5562 -0.55754 -0.55754

0.01 -0.5516 -0.55266 -0.55266

3s

0.001 -0.2381 -0.24900 -0.24900

0.005 -0.24378 -0.24511 -0.245 11

0.01 -0.2399 -0.24043 -0.24043

3p

0.001 -0.2478 -0.24900 -0.24900

0.005 -0.2436 -0.24510 -0.24510

0.01 -0.2390 -0.24040 -0.24040

3d

0.001 -0.2468 -0.24900 -0.24900

0.005 -0.2446 -0.24508 -0.24508

0.01 -0.2389 -0.24034 -0.24034
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Figure 3: E in terms of μ for different l.
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3. Numerical Results

The detailed analysis of the results in terms of various
domains of parameters a, b, c, and α of the VHP reveals a
few important facts concerning the application of the per-
turbed formalism. In the present study, the discrete energy
eigenvalues for the VHP have been calculated as functions
of the strength a, b, c, and the screening parameter α of
the VHP.

(1) For VHP, the energy eigenvalues are given by Eqs.
(15) and (17). In Table 1, we show the energy eigen-
values for VHP (with a = 1, b = −1, c = 4, d = −4, and
ℏ = 2μ = 1) in terms of different values of α. As alpha
increases, the magnitude of the binding energy
decreases. The energy values corresponding to the

states n = 2, 3,⋯ are also obtained by the same
method. In this way, the Schrödinger equation was
solved analytically and the eigenvalues of EnL were
obtained. In Figures 2 and 3, we show the variation
of energy as a function of α and M for different l
by using results of Table 1. As we can see, for l > 0,
the energy increases with the increase of α, and for
μ > 0 1, the energy decreases with the increase of μ

(2) We have shown the energy eigenvalue for the
Hellman potential for a = b = 0 in Table 2 and com-
pared our results with [12, 17]. Hamzavi et al. in
[12] have obtained the approximate analytical solu-
tions of the radial Schrödinger equation for the
Hellmann potential. By using the generalized para-
metric Nikiforov-Uvarov (NU) method [17], they
analyze a perturbative treatment for the bound
states of the Hellman potential. As we have shown
in Table 2, as the value of α increases, the correla-
tion energy decreases

(3) We have shown energy eigenvalue for the Varshni
potential a = b = −1, ℏ = 2μ = 1 in Table 3 and
compared our results with Ref. [18]. Ebomwonyi
et al. have studied the Schrödinger equation for the
Varshni potential function with two eigensolution
techniques such as the NU and the semiclassical
WKB approximation methods in Ref. [18]. Our
results are in good agreement with Ref. [18]

Table 4: Energy eigenvalue for the Yukawa potential d = 2,
α = gd ℏ = μ = 1 .

State g E (ev) Ref. [20] Ref. [19]

1s

0.002 -1.00133 -0.99600 -0.99600

0.005 -1.00518 -0.99004 -0.99003

0.010 -0.9901 -0.98015 -0.98014

0.020 -0.9519 -0.96059 -0.96059

2s

0.002 -0.2378 -0.24602 -0.24602

0.005 -0.2396 -0.24015 -0.24014

0.010 -0.2276 -0.23059 -0.23058

0.020 -0.2105 -0.21230 -0.21229

2p

0.002 -0.2455 -0.24602 -0.24601

0.005 -0.2391 -0.24012 -0.24012

0.010 -0.22860 -0.23049 -0.23049

0.020 -0.21101 -0.21192 -0.21192

3p

0.002 -0.1067 -0.10716 -0.10716

0.005 -0.1009 -0.10142 -0.10141

0.010 -0.09076 -0.09231 -0.09230

0.020 -0.07489 -0.07570 -0.07570

3d

0.002 -0.1067 -0.10715 -0.10715

0.005 -0.1001 -0.10140 -0.10136

0.010 -0.0916 -0.09212 -0.09212

0.020 -0.0747 -0.07502 -0.07503

Table 3: Energy eigenvalue for the Varshni potential a = b = −1,
ℏ = 2μ = 1 .

State α E (ev) [18]

1s

0.001 -1.249001 —

0.050 -1.203750 —

0.100 -1.165000 —

2s

0.001 -1.0615025 —

0.050 -1.0187500 —

0.100 -0.9875000 —

2p

0.001 -1.026784 -1.061750

0.050 -0.995277 -1.0256250

0.100 -0.997777 -0.990000

3s

0.001 -1.026781 —

0.05 -0.9865277 —

0.1 -0.9627777 —

3p

0.001 -1.014634 —

0.050 -0.988125 —

0.100 -1.005625 —

3d

0.001 -1.0090165 -1.026944

0.05 -1.001250 -0.986736

0.1 -1.075000 -0.946944

4s

0.001 -1.014629 —

0.050 -0.976875 —

0.100 -0.960625 —

4p

0.001 -1.009011 -1.01506

0.05 -0.987500 -0.99515

0.1 -1.020000 -0.990000

4d

0.01 -0.992075 -1.01493

0.050 -0.991805 -0.98515

0.100 -1.088055 -0.96250

4f

0.01 -1.004132 -1.01475

0.050 -1.030102 -0.97250

0.100 -1.205102 -0.97250
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(4) Table 4 shows numerical values of the binding ener-
gies of the Yukawa potential (a = b = c = 0) in terms
of the values of M and α. The results obtained are
compared with those of [19, 20]. Karakoc and Bozto-
sun [19] apply the asymptotic iteration method to
solve the radial Schrödinger equation for the Yukawa
type potentials. Accurate numerical solutions have
been obtained for the Schrödinger equation through
a Yukawa potential in Ref. [20]

4. Conclusions

In this research, we analyzed the Schrödinger equation with
the Varshni-Hellman potential using the Ansatz method.
We study that the discrete energy eigenvalues for the
Varshni-Hellmann potential have been calculated as func-
tions of the screening parameter α of the Yukawa potential.
We compared our findings with other theoretical formal-
isms. We found that the energy eigenvalues obtained using
this method are in good agreement with other works in the
literature. Therefore, analytical solutions while opening a
new window can be used to provide valuable information
about the dynamics of quantum mechanics in molecular
and atomic physics.
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included within the article.
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