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The neutrino mass hierarchy determination (v MHD) is one of the main goals of the major current and future neutrino
experiments. The statistical analysis usually proceeds from a standard method, a single-dimensional estimator (1D — Ay?) that
shows some drawbacks and concerns, together with a debatable strategy. The drawbacks and considerations of the standard
method will be explained through the following three main issues. The first issue corresponds to the limited power of the
standard method. The Ay? estimator provides us with different results when different simulation procedures were used.
Regarding the second issue, when y% . (nmp) and Cin () are drawn in a 2D map, their strong positive correlation manifests ba
as a bidimensional variable, instead of a single-dimensional estimator. The overlapping between the y* distributions of the two
hypotheses leads to an experiment sensitivity reduction. The third issue corresponds to the robustness of the standard method.
When the JUNO sensitivity is obtained using different procedures, either with Ay*> as one-dimensional or y* as two-
dimensional estimator, the experimental sensitivity varies with the different values of the atmospheric mass, the input

parameter. We computed the oscillation of |A;(2| with the input parameter values, |Am?|
?|

The MH significance using the

input*

standard method, Ax?, strongly depends on the values of the parameter |Am Consequently, the experiment sensitivity

input*
depends on the precision of the atmospheric mass. This evaluation of the standard method confirms the drawbacks.

Currently, the determination of the neutrino mass order-
ing using reactor neutrino spectrum is pursued by several

Neutrino oscillation is a quantum mechanical phenomenon in
which neutrino flavor changes spontaneously to another fla-
vor. According to the standard 3 neutrino paradigm, neutrinos
come with three flavors, v, v, and v, and with three v, v,,

and v, mass eigenstates [1]. Although neutrinos were intro-
duced over 80 years ago, their properties remain to a large
extent unknown [2]. Some of the 3v-paradigm fundamental
parameters are still missing until now like the absolute masses
of neutrinos [3], the amount of the possible leptonic charge
parity violation (CPV) [4], the Dirac or Majorana neutrino
nature [5], and the neutrino mass ordering [6].

experiments and proposals. There are some challenges fac-
ing anyone that tries to solve this problem. First, its evalua-
tion from reactor experiments is based on the tiny
interference effect between the Am3, and Am3, oscillations
[7]. Second, current analyses require several years of data
taking and an extreme energy resolution to achieve anyhow
less than 5¢. Third, the sensitivity may depend on the input
values of the oscillation parameters used by the global fits on
the oscillation analysis. In particular, the neutrino atmo-
spheric mass may have different values for normal ordering
(NH) or inverted one (IH). The answer to the third point
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depends on the used analysis method. It is mandatory to
establish the robustness of all these analyses.

The Jiangmen Underground Neutrino Observatory
(JUNO) experiment [8] has been proposed and approved
for realization in the south of China, being the mass order-
ing (MO) evaluation one of its main goals. JUNO will allow
to single out one of the missing fundamental information,
the neutrino mass hierarchy, in an almost independent
way of the other neutrino parameters. In particular, there
will be no dependence on the phase of the leptonic CP vio-
lation, §p, no strong dependence on three vs four neutrino
pattern, no dependence on 0,5, and no dependence on mat-
ter effects [8]. The mass hierarchy study can be performed
by looking at the vacuum oscillation pattern in medium
baseline reactor antineutrino experiments [9]. The JUNO
strategy is based on the observation that the contribution
to the oscillation probability is represented by fast oscillating
terms superimposed to a general oscillation pattern. Their
relative size changes according to the two different possibil-
ities, NH or IH, leading to a contribution of opposite sign in
the two cases. Therefore, it is possible to discriminate
between the two possible mass hierarchies by studying the
interference between the two oscillation frequencies driven
by Am3, and Am3; in the reactor antineutrino spectrum
[10]. The discrimination power of the experiment is
maximized when the Am3, oscillation is maximal, and the
baseline at JUNO has been chosen in such a way to realize
this condition [11]. Since the difference of neutrino
oscillation in vacuum for different mass hierarchies is very
small, energy resolution is the crucial factor for the success
of JUNO. The goal is that the energy resolution reaches
3%/+/E at 1 MeV to detect electron neutrino coming from
reactor plants.

In the next section, the usual y* method is recollected
and evaluated. In the following sections, the three issues of
the standard algorithm are explained. Section 3 includes
the first issue, Section 4 explains the second issue, and the
third issue is accounted for in Section 5. Further, results
are described in Section 6. After that, conclusions are drawn
in Section 7. Finally, in the appendix, a technical description
of the implementation of the simulations is reported.

2. The Standard Method

For JUNO, x? can be divided into three parts as indicated:

2_ .2 2 2

X = Xpara + Xsys + Xstat* (1)

Xﬁara summarizes the prior knowledge on oscillation
parameters. In JUNO, these parameters are sin’20,,,

.2 2 2 2
sin“20,3, 0m, and Am". Then, x,, becomes

, ((sinZZGIZ)ﬁt - (sinzzeu)i“P“t>2

Xpara -
Osin?26,,
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TaBLE 1: The recent best-fit values for the oscillation parameters, as
indicated in [12].

Best-fit 30 region
Sin}, 0.2970 0.2500-0.3540
Sin},(NH) 0.02140 0.0185-0.0246
Sin?, (TH) 0.02180 0.0186-0.0248
Sm? 7.37 x 107 6.93x 107 - 7.97 x 107
Am?*(NH) 2.500 % 107 237107 -2.63x 107
Am? (TH) 2.460 x 107 -2.60x 107 to —2.33x 107

O'sin? 20,5

. ((sin22913)ﬁt - (sin22913)inpm> ’

; ((\Amzbﬁf - (’AWIZ‘)input>2

Olam|

fit input\ 2
+ ((6 sol) (6 sol) ) ) (2)

Tom,

While the total normalization of reactor antineutrino flux
is in principle degenerate with the inverted beta decay cross
section, the fiducial volume, and the weight fraction of free
proton, such that they might be combined into a single
overall factor, large uncertainties on the shape of the reactor
antineutrino flux may be expected. On purpose, that is the
reason why the near detector JUNO-TAO is going to be built.
However, for the scope of the present study, those uncer-
tainties are not expected to have a large impact. Within this
assumption, the contributions to the y* function can be
represented by a single term as

FR — finec ®
Xogs = ( = (3)

O

where fis’;sut =lando; =0.03.
sys

The last term of Equation (1), x2_,, represents the statis-
tical fluctuation. When we introduce binning with respect to
E°, it looks like

V1S

2
NH(TH)

Nit-N;
that = Z > (4)

; N VHOH)

1

with the summation running over all the energy bins. Here,

N?HUH) is the event number for the iy, bin when the hierar-

chy is NH(IH). N iﬁt is the fitted number of events, calculated
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Am?, = 2500x10 eV and [Am? | = 2500 x 10-%eV?

120 — Entries 1000 Entries 1000
: Mean 807.6 + 1.455 Mean 870.6 + 1.527
L |RMS 46.02 £ 1.029 RMS 48.29 + 1.08
100 ¢
80 ¢
> -
=S
2 L
< 60 ¢
Z
40 —
20 —
Y] S R IR [ NP B
200 400 600 800 1000 1200 1400
Xuin(NH)
(a)

Am? = 2460x10eV2 and [Am? | = 2460x10-°eV?

120 —Entries 1000 Entries 1000
[~ |Mean 889.6 + 1.614 Mean 800.2 + 1.498
: RMS 51.05 + 1.142 RMS 47.37 + 1.059
100
80 |-
_OF
-
E
2 60
Z L
40
20—
0 PE BT | PR | | 1 I PRI T
200 400 600 800 1000 1200 1400
Xoin(NH)

(b)

FiGURE 1: Two y? distributions for 1000 (NH) + 1000 (IH) toy JUNO-like simulations generated at Am? =2.500 x 10~%eV? for (a) NH

2
input

hypothesis and Am

=-2.460 x 103eV? for (b) TH hypothesis, with six years of exposure and the ten near reactor cores with infinite

energy resolution. The intrinsic strong positive correlation between the two components x2. (i) and oin () leads to the overlapping

between the two x? distributions.
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Ficure 2: Two y? distributions for 1000 (NH) + 1000 (IH) toy JUNO-like simulations generated at Am?

hypothesis and Am?
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=2.500 x 10%eV? for (a) NH

input

—2.460 x 1073eV? for (b) IH hypothesis, with six years of exposure and the ten near reactor cores, with 3%

relative energy resolution. The intrinsic strong positive correlation between the two components y . (nmp) and i () leads to a very

large overlapping between the two y* distributions.

as a function of the four model parameters and the
normalization factor f, . All parameters are varied under
the NH(IH) constraints of Equation (2) and Equation
(3). A different definition of the y*> function based on
the Poisson distribution yields a consistent MH sensitiv-
ity [8].

In the minimization procedure, all the parameters were
initially set to their global best values that are indicated in
Table 1. The fitting procedures and the minimization of x*

are done with the TMinuit algorithm (ROOT libraries).
The x* distributions are obtained for four parameters
(sin®6,,, sin®6,;, m2,, and Am?), based on a total of
108357 signal events (Figures 1 and 2). B

As reported in [8], the sensitivity can reach [Ay*| > 16 in
the ideal case of a single reactor and single detector, and
|Ax*| > 9 considering the spread of reactor cores and uncer-
tainties of the detector response. All these results have been
reached using semianalytical simulations, i.e., simulations



as used in [8, 13]. Semianalytical simulations are generated
by fluctuating the bin content according to Poisson or Gauss-
ian distributions that represent the number of events. In
addition, a second fluctuation is added by applying 3%/+/E
energy smearing in each single energy bin and not in each
single event. If the energy resolution smearing per each single
event is replaced by smearing for the whole bin, an event bal-
ance migration occurs, and the number of events per each
single bin becomes uncorrelated with side bins leading to
the results reported in [8]. We provided the simulation
performed on an event-by-event basis and computed the
experimental sensitivity for the JUNO by changing the atmo-
spheric neutrino mass. The y? distributions are obtained for
Amg = —2.460 X 10%eV? and Amg, = 2.500 x 107%eV?,
for TH hypothesis and NH hypothesis, respectively
(Figures 1 and 2), with infinite and 3% relative energy resolu-
tion, respectively.

3. Issue One: The Limited Power of Ay* as a
Single-Dimensional Estimator

The two discrete hypotheses are not nested; thus, the Wilks
theorem is not applicable in this problem when it is based
on the Ax? defined in Equation (5). As a consequence, Ax?
does not follow a x? distribution [14]. The MO significance
is usually obtained in terms of the single-dimensional esti-
mator Ay?, and its evaluation is based on two distinct
hypotheses, NH and IH. For each MO, the best solution is
found: the y2. comes from two different best-fit values for
the NH model, x7 ;. (> and the TH model, x7,, -

AX* = Xonin (NH) ~ Xonin (1H) ()

where the two minima are evaluated spanning the uncer-
tainties on the three-neutrino oscillation parameters. The
experimental sensitivity to the neutrino mass hierarchy
arises from the small phase shift in the oscillation terms
depending on the two large mass-squared differences A
m3, and AmZ,. JUNO sensitivity can be calculated using
the single-dimensional test statistics Ay The median

sensitivity can be obtained using the Z-test, where 20
is the number of oy assuming that NH is the true model

and zﬁiffﬁe is the number of oy assuming that TH is the
true model,

- 2(IH)

TH) A ,(NH) ~ N Ay

Ay —ax any _ Ax
score O score Oy

(6)

~,(NH) —,(IH)

The Ay , onm> Ay~ > and oy are the mean value
and standard deviation of the Ay* distribution assuming
that NH and IH are the true models, respectively. There,
an approximation is usually used [8, 15-17]:
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TaBLE 2: The comparison of the MH sensitivity at energy
resolution 3%/+/E for NH sample and TH sample at |Am?| = 2.460
x 107eV? in two cases. The first case makes use of Equation (6),
and the second one makes use of Equation (8). The p, is the
mean value for NH distribution, oy is the standard deviation of
the NH distribution, p,; is the mean value for IH distribution,
and oy is the standard deviation of the IH distribution.

Energy resolution 3%/+v/E

HUNu —15.68 +0.85
o 26.83 £ 0.60
Hiu 14.75+0.84
o 26.55 +0.60
2o 1.134 3.960 (app.)
Z{core 1.146 3.841 (app.)

TaBLE 3: The comparison of the MH sensitivity at infinite energy
resolution use for NH sample and IH sample at |Am?| =2.460 x
1073eV? in two cases. The first case makes use of Equation (6),
and the second one makes use of Equation (8). The p, is the
mean value for NH distribution, oy is the standard deviation of
the NH distribution, gy, is the mean value for IH distribution,
and oy is the standard deviation of the IH distribution.

Infinite energy resolution

P ~59.20+0.79

o 24.91+0.56

. 89.41+0.72

o 22.86+0.51

Zlcore 5.966 7.694 (app.)

Z{core 6.501 9.456 (app.)
Tpp =21/ A1 (7)

where A}(z is the mean value of the Ay? distribution.
Therefore, Equation (6) becomes

B =yJa™ ()

Zgg)l:le) _ ’ A;CZ(NH) ‘

When the analysis is performed on an event-by-event
basis and not semianalytical simulations as in [8], the
dispersions of the distributions cannot be described by Equa-
tion (7) anymore. That strongly affects the statistical signifi-
cance that drops to less than 2¢ as indicated in Table 2 for
relatively energy resolution and in Table 3 for infinite energy
resolution. The reason stays in the convolution of the energy
resolution. To check it, the analysis has been also done at an
infinite energy resolution to find out whether it is consistent
with the latter conclusion (Figure 3).

The investigation of the origin of the approximation has
been pursued by looking whether it is still valid in event-by-
event simulations as it is in semianalytical simulations. In
fact, we found that the dispersion of the two distributions
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FIGURE 3: Ax? estimator for 1000 (NH) + 1000 (IH) toy JUNO-like simulations generated at |Am?| =2.460 x 10~3eV? for NH and IH
hypotheses with six years of exposure and the ten near reactor cores. An infinite energy resolution is assumed for (a) and a 3% relative
energy resolution for (b). The experimental sensitivities under these terms are reported in Tables 2 and 3.
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FIGURE 4: Ax? estimator for 1000 (NH) + 1000 (IH) toy JUNO-like simulations generated at [Am?| =2.500 x 10~>eV? for (a) NH hypothesis
and (b) IH hypothesis with six years of exposure and the ten near reactor cores. An infinite energy resolution is assumed for the left plot and
a 3% relative energy resolution for the right plot. The experimental sensitivities under these terms are reported in Tables 4 and 5,

respectively.

becomes wider than in semianalytical simulations when a
finite energy resolution is taken into account. The energy
error introduces strong correlations between bins, and it
corresponds to an extended systematic error.

The limited power of the Ay? manifests itself being con-
trolled by the statistical assumption, i.e., Equation (7). The
experimental sensitivity is reduced when the energy system-
atic error is taken into account, and Equation (7) is no more
valid. Specific cases are reported in the following figures and
tables, and other details are reported in subsection 6.1.

In other words, it is worth to stress the loss of the
Gaussianity of the full process. When the energy uncertainty
is considered in an event-by-event simulation, a net migra-

tion of events occurs from the upper bin to the lower one
when the expected number of events is increasing with the
energy. The opposite occurs when the event expectation is
decreasing with the energy. That corresponds to a loss of
independency of the random variables of the energy bin,
and a consequent loss of the Gaussianity. Instead, the simple
addition of the energy uncertainty in each bin will keep that
independence, mystifying the final results.

Figure 4 is a comparison of the Ax? estimator distri-
butions at |Am?|=2.500x 10eV? for NH sample and
IH sample. An infinite energy resolution is assumed for
the left plot and a 3% relative energy resolution for the
right plot.
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Am?, =2500x10eV? and [Am? | = 2460x10-°eV?
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FIGURE 5: Ax? estimator for 1000 (NH) + 1000 (IH) toy JUNO-like simulations generated at Am? =2.500 x 10~>eV? for NH hypothesis
(blue) and Am? = -2.460 x 10~3eV? for IH hypothesis (red) with six years of exposure and the ten near reactor cores. The left plot is for
infinite energy resolution, and and the right plot is for 3% relative energy resolution. The experimental sensitivities under these terms are

reported in Tables 6 and 7.

Figure 5 for NH sample at Am?* = 2.500 x 10~%eV? and IH
sample for Am? = —2.460 x 10~2eV? shows the Ay? distribu-
tions for a relative 3% and an infinite energy resolution. The
JUNO sensitivity is clearly different from that reported in [8].

When only statistical fluctuations are included, the MH
sensitivities using Z-test (zﬁﬁ)i‘e) and zﬁif}r)e) do not exactly
equal to the MH sensitivities obtained in the approximated
Equation (7) (N (app.) and zggf)e(app.)) as reported in
Tables 4 and 5. This observation is consistent with what is
obtained at the atmospheric mass, |Am?| = 2.460 x 10eV?
for TH sample and Am? =2.500 x 103V for NH sample
for infine energy resolution in Table 6 and for 3%/ VE in
Table 7. This conclusion will be confirmed for other 18 dif-
ferent values for the atmospheric mass at infinite energy res-
olution in subsection 6.1.

4. Issue Two: Nonbright Results Using y” as
a Bidimensional Estimator

When x7 . i) and xo, () are drawn in a 2D map, their

strong positive correlation manifests y* as a bidimensional
estimator. This strong positive correlation leads to overlap
between the x* distributions of the two hypotheses, thus
reducing the experiment sensitivity. When we look at x* as
a bidimensional estimator, the experiment sensitivity can
be calculated with a Z-test for two-dimensional test statistic
providing the results indicated in Tables 8, 9, and 10.

Using Z-test for 2D, the MH sensitivity can be calcu-
lated as

—(NH) = (IH)\ 2 - (NH) - (IH)\ 2
) \/(XZIH X ) + (XZNH _XZNH>

- \/(G%H)NH + (O_Iz\IH)NH

score >

SH) S(NHN2 7 S(H)  (NH) 2
) \/(XZIH e ) + (XZNH ~ X’Nu )

score \/ (U%H) o N (O-ZNH) H

z

©)

A
Xz; ), where A, B=NH,IH, indicates the mean of the
x* distribution of the A sample, assuming the B hypothe-

sis to be true. (O‘%;)A expresses the standard derivation of
x* distribution of the A sample assuming that B hypothe-
sis is the true hypothesis. Figures 6-8 are shown the 2D
maps.

5. Issue Three: The Robustness

Robust statistics are the statistics that yield good perfor-
mance when data is drawn from a wide range of probability
distributions that are largely unaffected by outliers or small
departures from model assumptions in a given data set
[18]. In other words, a robust statistic is resistant to initial
deviations with respect to the final results [19].

The main focus of the statistical analysis using the Ax?
standard method is to calculate neutrino mass hierarchy deter-
mination sensitivity, and less attention or none is put about its
robustness. Subsection 5.1 will discuss how the standard
method using Ax? is not able to maintain the robustness while
subsection 5.2 will discuss the inability of the x? to establish
the robustness as a bidimensional estimator. This study is
done for 20 different data values of the input atmospheric
neutrino mass in the range, 2.450 x 1073eV? < |Am?|

2.580 x 1073eV2.

input S

5.1. The |A}(2| Oscillations with Am?, . There are trends in

input*®

our data to confirm that the |Ay?| varies with the input

atmospheric neutrino mass [Am*[; . We studied the
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TaBLe 4: The comparison of the MH sensitivity for ideal
distributions for NH sample and IH sample at |Am?| =2.500 x
102eV? in two cases. The first case makes use of Equation (6),
and the second one makes use of Equation (8). The p,, is the
mean value for NH distribution, oy is the standard deviation of
the NH distribution, gy, is the mean value for IH distribution,
and oy is the standard deviation of the IH distribution.

Infinite energy resolution

HNu -63.02+0.74
Oni 23.51+0.53
U 59.13+0.73
O 22.95+0.51
Z0r) 5.203 7.950 (app.)
Zicoe 5.330 7.690 (app.)

TaBLe 5: The comparison of the MH sensitivity for actual
distributions for NH sample and IH sample at |Am?| = 2.500 x
102eV? in two cases. The first case makes use of Equation (6),
and the second one makes use of Equation (8).The py,, is the
mean value for NH distribution, oy is the standard deviation of
the NH distribution, gy, is the mean value for IH distribution,
and oy is the standard deviation of the IH distribution.

3%/+/E energy resolution

HUnu -15.25+0.87
. 27.54%0.62
. 12.83+0.87
o 27.45+0.61
Zone 1.020 3.901 (app.)
Zicore 1.023 3.582 (app.)

TaBLE 6: The comparison of the MH sensitivity for ideal
distributions for NH sample at Am? =2.500 x 103eV? and IH
sample for Am?=-2.460x 10eV? in two cases. The first case
makes use of Equation (6), and the second one makes use of
Equation (8). The py is the mean value for NH distribution,
oyy is the standard deviation of the NH distribution, y; is the
mean value for ITH distribution, and oy is the standard deviation
of the IH distribution.

Infinite energy resolution

P —63.02+0.74
. 23.51+0.53
. 89.41+0.72
o 22.86+0.51
o 6.484 7.950 (app.)
Zeore 6.668 9.456 (app.)

TaBLe 7: The comparison of the MH sensitivity for actual
distributions for NH sample at Am? =2.500 x 10%eV? and IH
sample for Am?=-2.460 x 102eV? in two cases. The first case
makes use of Equation (6), and the second one makes use of
Equation (8). The g is the mean value for NH distribution,
oyy is the standard deviation of the NH distribution, y;; is the
mean value for IH distribution, and oy is the standard deviation
of the IH distribution.

3%/\/E energy resolution

Pt ~1525+0.87
o 27.54%0.62
. 14.75 £ 0.84
o 26.55 +0.60
Zloore 1.089 3.960 (app.)
Z{core 1130 3.841 (app.)

relation between the |Ay?| values and the value of the input
parameter for 20 different values, |Amz|input in the range,
2450 107%eV? < [Am?[, < 2.580 x 107%eV?, and we
computed the corresponding experimental sensitivity for
the two cases, with and without including the systematic
uncertainties. In particular, since the main systematic error
is largely dominated by the energy resolution, when we refer
to with/without systematics, we are either taking into
account or not the systematic uncertainty due to the energy
resolution, which is taken to be 3%. Figure 9 illustrates the

variation of |A}(2| as a function of the input atmospheric
neutrino mass [Am?[, ., in the range of 2.450 x 10 eV?

<|Am?|, . <2.580 x 107%eV?, assuming infinite energy
resolution. Figure 10 illustrates the variation of Ax* with
the input atmospheric neutrino mass |Am? linpue In the range

of 2.450 x 10%eV? < |[Am? |, < 2.580 x 10 eV? when the

3% relative energy resolution is included. We performed
additional data collection ignoring the systematic uncer-
tainties in order to provide a strong evidence for the result.

2
input

trino mass hierarchy determination sensitivity depends on
how the significance will be calculated, for example using
Equation (6) or Equation (8).

In case the approximation is not valid, the Z-test for 1D,
sigmalH, can be used to calculate the neutrino MH sensitivity.

input

How the |Ax?| oscillations with Am?_  reflects on the neu-

As expected, the variation of the estimator |Ay?*| will influence
neutrino MH sensitivity. Figure 11 confirms the influence on
neutrino MH sensitivity in case that only the statistical uncer-
tainties are included and the sensitivity varies from about 4.50
to 7.50. Figure 12 confirms this influence in case that the sys-
tematic and statistical uncertainties are included and the sen-
sitivity oscillates from about 0.9¢ to 1.50.

Assuming that the approximation of Equation (7) is
valid at infinite energy resolution, the neutrino mass hierar-
chy determination sensitivity is expected to have a large var-
iation with the input parameter as confirmed in Figure 13.
The sensitivity may vary from about 9.5¢ to 7.50.
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TaBLE 8: Two x? distributions for 1000 (NH) + 1000 (IH) toy JUNO-like simulations generated at |Am?| =2.460 x 10eV? for NH and IH
hypotheses with six years of exposure and the ten near reactor cores. The sensitivity is calculated using Equation (9). The y, is the mean
value for NH distribution, oy is the standard deviation of the NH distribution, g, is the mean value for IH distribution, and oy is the
standard deviation of the TH distribution.

Energy resolution Infinite 3%
NH IH NH H

T 810.7 +1.53 889.6 + 1.61 860.10 + 1.56 867.60 £ 1.51
Oni 48.48 +1.08 51.05+1.14 49.39+1.10 47.67 +1.06
T 869.8+1.63 800.2 £ 1.50 875.80 + 1.54 852.9 £ 1.55
Om 51.57 +1.15 47.30 £ 1.06 48.77 £1.09 49.03£1.10
Z{5r) 1.0720 02190

2 1.0890 0.2230

TaBLE 9: Two y? distributions for 1000(NH) + 1000 (IH) toy JUNO-like simulations generated at |Am?| = 2.500 x 102eV? for NH and TH
hypotheses with six years of exposure and ten near reactor cores. The sensitivity is calculated using Equation (9). The g is the mean value
for NH distribution, o is the standard deviation of the NH distribution, g, is the mean value for IH distribution, and o7y is the standard
deviation of the TH distribution.

Infinite 3%
NH IH NH H

T 807.6 + 1.46 865.30 + 1.52 862.60 + 1.53 870.20 + 1.60
Onm 46.05 + 1.03 48.12+1.08 48.49 + 1.08 50.58 +1.13
Py 870.60 + 1.53 806.20 + 1.48 877.80 +1.55 857.4+1.58
O 48.34 £ 1.08 46.91£1.05 49.04£1.10 49.90 £ 1.12

(N 0.9160 0.2040
z, 09100 0.2000

TaBLe 10: Two x? distributions for 1000 (NH) + 1000 (IH) toy JUNO-like simulations generated at Am? =2.500 x 10%eV?* for NH
hypothesis and Am? =-2.460 x 102eV? for IH hypothesis with six years of exposure and ten near reactor cores. The sensitivity is
calculated using Equation (9). The gy is the mean value for NH distribution, oy is the standard deviation of the NH distribution, g
is the mean value for TH distribution, and oy is the standard deviation of the IH distribution.

Infinite 3%
NH IH NH IH

T 807.6 + 1.46 889.6 +1.61 862.60 + 1.53 867.6 +1.51
Onm 46.05+1.03 51.05+1.14 48.49 +1.08 47.67 +1.07
7 870.60 + 1.53 800.2 + 1.50 877.80 + 1.55 852.90 + 1.55
O 48.34+1.08 47.30+1.06 49.04 +1.08 49.03 +1.07
2N 1.1590 02170

(IH) 1.1130 0.2190

Assuming that the approximation of Equation (7) is still

in Figure 15 and from 0.240 to 0.180 assuming 3% relative
valid at 3% relative energy resolution, the neutrino mass

energy resolution, as shown in Figure 16.

hierarchy determination sensitivity is not robust as con-
firmed in Figure 14. The sensitivity using Equation (8) varies
from a maximum of 4.10 to about 3.20.

5.2. The x? Robustness. The significance using y* as bidi-
mensional distribution through Equation (9) varies from
1.30 to 0.90 assuming an infinite energy resolution as shown

The oscillation of the experimental sensitivity with the
value of the input parameter, the neutrino atmospheric mass
difference (|Am?| implies that the standard method
results have a strong dependency on the input parameter
value. Whether the approximation is not valid or not, system-
atic uncertainties included or not, this dependence still holds.

input ) >
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Am? = 2460x10 eV and |[Am? | = 2460x10-%eV? Am? = 2460x10eV2 and [Am? | = 2460x10-°eV?
1200 1200
 [Entries 1000 C [Entries 1000
T100Fvicany s+ 1611 LTI00 HVENY w6 1500
L|rRMSx 473+ 1.058 L C[RMS X 49.03 + 1.096
Elrvsy 510451041 R C|RMS y  47.67 = 1.066 - .
1000~ LRLY 1000 = s
= - = -
oz 900 :— “Z 900 :—
800 800 _
- Entries 1000 - i Entries 1000
- - Meanx 869.8  1.631 - RCREL SR R Meanx 8758 + 1.542
- Meany 810.7 + 1.533 - Meany 860.1+ 1.56
700 RMSx 5157+ 1153 700 = .. IZIMS: 3;0'11 }og
- RMSy 48.48 + 1.084 o RMSy  49.39 + 1.104
600 PR | PR | P S PR | PRI 600 M | . 1 — | A L . 1. "
600 700 800 900 1000 1100 1200 600 700 800 900 1000 1100 1200
Xiu Xin
(a) (®)

FIGURE 6: Two islands of y? for 1000 (NH) + 1000 (IH) toy JUNO-like simulations generated at |Am?| = 2.460 x 10~2eV? for NH hypothesis
(blue color) and IH hypothesis (red color) with six years of exposure and the ten near reactor cores. An infinite energy resolution is assumed

for (a) and 3%/vE energy resolution for (b). The experimental sensitivities under these terms are reported in Table 8.

Am?, =2500x10%eV?and [Am?, | = 2500x10-%eV? Am?, =2500x10°e¢V?and |Am? | = 2500x10%V?
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1000 = 1000 =
] = = E
8z 900 2 5 900 =
800 | 800
- Entries 1000 E Entrics 1000
- Mean x 8706 +1.529 C Mcunxv 877 Si I,§51
700 Ny e e 700F- Aoy s
o RMSy 4605+ 1.03 o RMSy 48491184
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FIGURE 7: Two islands of x? for 1000(NH) + 1000 (IH) toy JUNO-like simulations generated at |Am?| = 2.500 x 103eV? for NH hypothesis
(blue island) and IH hypothesis (red island) with six years of exposure and the ten near reactor cores. An infinite energy resolution is
assumed for (a) and a 3% relative energy resolution for (b). The experimental sensitivities under these terms are reported in Table 9.
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F1Gure 8: Two islands of y? for 1000 (NH) + 1000 (IH) toy JUNO-like simulations generated at Am? =2.500 x 10~>eV? for NH hypothesis
(blue island) and Am? = -2.460 x 10-3eV? for TH hypothesis (red island) with six years of exposure and the ten near reactor cores. An
infinite energy resolution is assumed for (a) and a 3% relative energy resolution for (b). The experimental sensitivities under these terms
are reported in Table 10.
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resolution. The error bars correspond to the standard error of the |A;(2| that is calculated as the standard deviation of the Ay?
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like simulations for each point of |Am2|injected with six years of exposure and the ten near reactor cores assuming 3% relative energy

resolution. The error bars correspond to the standard error of the |A}(2| that is calculated as the standard deviation of the Ay’
distribution divided by the square root of the sample size.
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F1GURE 11: The oscillation of significance with |Am2|injected in the range of 2.450 x 107%eV? < |Am?| < 2.580 x 10°eV? for 1000 (NH) + 1000

(IH) JUNO-toy-like simulations for one benchmark assuming an infinite energy resolution where the blue line is for NH sample and the red
line is for IH sample. The sensitivity using Equation (6) varies from about 4.5¢0 to 7.50.
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(IH) JUNO-toy-like simulations for one benchmark assuming an infinite energy resolution where the blue line is for NH sample and the red
line is for IH sample. The sensitivity using Equation (8) varies from about 6.50 to 9.50.
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FIGURE 14: The variation of significance with \Amz\mjemd in the range of 2.450 x 10%eV? < |Am?| < 2.580 x 10~%eV? for 1000 (NH) + 1000

(IH) JUNO-toy-like simulations for one benchmark assuming 3%/ VE energy resolution where the blue line is for NH sample and the red
line is for IH sample. The sensitivity using the zScorIH varies from about 3.20 to 4.10.
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FiGURE 15: The oscillation of significance using x* as bidimensional distribution through Equation (9) with |Am2|injected in the range of

2.450 x 107%eV? < |Am?| <2.580 x 1073eV? for 1000 (NH) + 1000 (IH) JUNO-toy-like simulations for one benchmark assuming an
infinite energy resolution where the blue line is for NH sample and the red line is for IH sample. The significance varies from about 0.8¢

to 1.30.
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F1GURE 16: The oscillation of the experimental significance using y* as bidimensional distribution with |Amz|injected in the range of 2.450

x 1072eV? < |Am?| < 2.580 x 1072eV? for 1000 (NH) + 1000 (IH) JUNO-toy-like simulations for one benchmark assuming a 3% relative
energy resolution where the blue line is for NH sample and the red line is for IH sample. The significance using Equation (9) varies

from about 0.1750 to 0.240.

6. Results

In order to present the findings as clear as possible, it is
imperative to study the three reported issues of the
standard algorithm in the range of the atmospheric mass
between 2.450 x 107> eV? and 2.580 x 107 eV2.  These
issues are categorized into two types depending on which
estimator is being used. The first sensitivity category using
Ax* estimator is reported in subsection 6.1. The second
sensitivity category using x> is reported in subsection 6.2.
For each category, a detailed study is provided for 20
different values of the atmospheric mass in the range of
2.450 x 10°eV? < |Am?[;, . <2.580 x 10 eV?, with and
without systematic errors. The final results now provide
solid evidences about the problematic use of the standard
algorithm.

6.1. The Issues of Ayx*. Here, we report two results. First, our
result on the limited power of Ax? (issue one) confirming
that, when systematic uncertainties are included, the
approximated Equation (7) is not acceptable in the range
of neutrino atmospheric mass, 2.450 x 107%eV? < [Am?|; .,

<2.580 x 10%eV2. We provide the results of 20 different
values of the [Am?*|, . in that range showing the limit of
the approximation when including the systematic uncer-
tainties (as confirmed in Figure 17). Although Equation (7)
is widely accepted, it suffers from some limitations due to
its limitation when systematic uncertainties are included
(Figure 17). The limitation manifests itself decreasing the
power of the Ay* estimator to determine the correct neu-
trino MH. The reasons behind this limitation are explained
in details in Section 3. As a result, the power of this estimator
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FIGURE 17: Ay? estimator for 1000 (NH) + 1000 (IH) toy JUNO-like simulations generated at 20 different values of the atmospheric mass in
the range of 2.450 x 1073eV? < |[Am?| <2.580 x 10eV? for NH hypothesis (blue distribution in each plot) and ITH hypothesis (red
distribution in each plot) with six years of exposure and the ten near reactor cores, with energy resolution 3%/v/E. The sensitivities due

to these conditions are reported in Table 11.

for the MH discrimination is not promising as reported in
Table 11. On the contrary, without including the systematic
uncertainties, Equation (7) is valid, and the Ay? results are
very good as reported in Figure 18 and Table 12. Second, the
studies about the Ay* robustness in the range of 2.450 x
107%eV2 < [Am?|, < 2.580 x 1072eV? show its dependence.
This result is directly in line with previous result in Section
5. From these sensitivity tables, (Tables 11 and 12), it is clear
that the experimental sensitivity using Ay? has a strong depen-
dence on the value of the input atmospheric mass. If the value
of the input parameter, input atmospheric mass, is modified,

input

the experimental sensitivity will change according to it. This
change is not affected by the systematic uncertainties. It is an
intrinsic property of the Ay? itself. Table 12 shows the sensi-
tivities using Ay? with infinite energy resolution. As can be
seen in the table, the experimental sensitivities vary a lot with
different values of the neutrino atmospheric mass proving that
the robustness of Ax? is not well established even at infinite
energy resolution. Table 11 provides the sensitivities including
the systematic uncertainties: the neutrino mass ordering dis-
crimination varies a lot. The implications of this issue are fully
discussed in Section 5.
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TaBLE 11: The comparison of the MH sensitivity using Ay? for actual distributions for NH sample and IH sample, for 20 different values of
the atmospheric mass in the range of 2.450 x 10eV? < |Am?| < 2.580 x 10eV2. The table indicates the sensitivity calculations using
the Z-test for the 1D test in two cases. The first case is without the approximation of Equation (7), and the second one is using the
approximation of Equation (7).

Relative energy resolution 3%/+/E

|Am? |y X 107 2.450 2455 2.460 2.465

T, ~16.91 +0.880 ~15.19 +0.834 ~15.68 + 0.8484 ~15.48 +0.85

Oni 27.82+0.622 26.38 +0.590 26.83 +0.5999 26.88 +0.601

. 15.72 +0.871 14.29 +0.856 14.75 +0.8396 15.22 +0.8427

o 27.55+0.616 27.06 +0.605 26.55 +0.5937 26.65 +0.5959

Z(NH) 1.173 4.112 (app.) 1.118 3.897 (app.) 1.134 3.960 (app.) 1.142 3.934 (app.)
ore 1.184 3.965 (app.) 1.089 3.780 (app.) 1.146 3.841 (app.) 1.152 3.901 (app.)
|Am? |y X 107 2.470 2475 2.480 2.485

T ~17.10 + 0.8709 ~15.55 +0.8126 ~17.21 +0.8646 ~16.76 + 0.9159

Ong 27.54+0.6158 25.70 + 0.5746 27.34+0.6114 28.96 + 0.6477

. 15.07 + 0.8645 12.54 +0.8437 14.49 + 0.8539 12.99 + 0.856

o 27.34+0.6113 26.68 +0.5966 27.00 +0.6038 27.07 +0.6053

Z(NH) 1.168 4.135 (app.) 1.093 3.943 (app.) 1.159 4.148 (app.) 1.027 4.094 (app.)

M) 1.177 3.882 (app.) 1.053 3.541 (app.) 1.174 3.807 (app.) 1.099 3.604 (app.)
|Am?| g X 107 2.490 2.495 2.500 2,510

T ~13.86 + 0.8974 ~13.89 +0.8476 ~15.25 + 0.8709 14.52 +0.871

Ong 28.38 +0.6345 26.80 + 0.5994 27.54+0.6158 27.55+0.616

. 13.58 + 0.8955 13.59 + 0.8372 12.83 +0.8681 11.87 +0.853

o 28.32 +0.6332 26.47 +0.5920 27.45+0.6138 26.97 +0.603

2(NH) 0.967 3.723 (app.) 1.025 3.727 (app.) 1.020 3.905 (app.) 0.958 3.811 (app.)
M) 0.969 3.685 (app.) 1.038 3.686 (app.) 1.023 3.582 (app.) 0.978 3.445 (app.)
|Am?| g X 107 2.520 2.523 2.530 2.540

T ~16.15 +0.870 ~16.52 +0.872 -16.25 +0.861 ~13.91 +0.856
Ong 27.52+0.615 27.57 +0.616 27.24 +0.609 27.07 +0.605

. 13.55 +0.857 13.72 +0.858 13.26 + 0.855 12.61 +0.888

o 27.11 +0.606 27.14 +0.607 27.03 +0.605 28.08 +0.628
2(NH) 1.079 4.019 (app.) 1.097 4.064 (app.) 1.083 4.031 (app.) 0.9797 3.30 (app.)
(IH) 1.096 3.681 (app.) 1.114 3.704 (app.) 1.092 3.641 (app.) 0.944 3.551 (app.)
|Am? |y X 107 2.550 2.560 2.570 2.580

T ~16.32+0.848 ~15.69 + 0.861 ~12.82+0.880 ~14.04 + 0.834
Oni 26.83 + 0.600 27.24 +0.609 27.84+0.623 26.37 £0.590

. 11.97 +0.922 10.54 + 0.860 12.00 + 0.861 11.68 +0.876

o 29.14 + 0.652 27.20 +0.608 27.24+0.609 27.70 +0.619
2z 1.054 4.040 (app.) 0.963 3.961 (app.) 0.892 3.581 (app.) 0.975 3.747 (app.)
ZH 0.971 3.460 (app.) 0.964 3.247 (app.) 0911 3.464 (app.) 0.944 3.418 (app.)
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FIGURE 18: Ay? estimator for 1000 (NH) + 1000 (IH) toy JUNO-like simulations generated at 20 different values of the atmospheric mass in
the range of 2.450 x 107%eV? < |Am?| <2.580 x 10eV? for NH hypothesis (blue distribution in each plot) and IH hypothesis (red
distribution in each plot) with six years of exposure and the ten near reactor cores. An infinite energy resolution is assumed. The

sensitivities due to these conditions are reported in Table 12.

As mentioned in Section 3, the MH sensitivities using
Z-test, zﬁiii? and zﬁilo?e, do not exactly equal to the MH
sensitivities obtained in the approximated Equation (7),
Z0) (app.)and zggi)e(app.). Table 11 reports this observation
for 20 different values for the atmospheric mass at infinite
energy resolution providing a solid experimental evidence

for overestimation behavior for this approximation.

6.2. The Issues of x°. Each plot of Figures 19 and 20 proves
that y* has not enough ability to produce high sensitivity
to distinguish between the right and wrong ordering of

the neutrino using the medium baseline reactor spectrum.
From the sensitivity tables (Tables 13 and 14), it is clear
that the experimental sensitivity using the y* estimator
has a strong dependence on the value of the neutrino
atmospheric mass. If the neutrino atmospheric mass value
is modified, the experimental sensitivity will change
according to it, even when the systematic uncertainties
are not included.

The results about the standard algorithm confirmed the
three statistical issues in the range of 2.450 x 10%eV? <

|Am? |, < 2.580 x 10 V2,

input
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TaBLE 12: The comparison of the MH sensitivity using Ax? assuming infinite energy resolution for NH sample and IH sample, for 20
different values of the atmospheric mass in the range of 2.450 x 10%eV? < |Am?| < 2.580 x 10~3eV2. The table indicates the sensitivity
calculations using the Z-test for the 1D test in two cases. The first case is without the approximation of Equation (7), and the second one
is obtained using the approximation of Equation (7).

Infinite energy resolution

x 1072

|Am?| o 2.450 2455 2.460 2.465

s ~51.90 +0.735 ~53.72+0.732 ~59.20 +0.788 ~69.43 +0.7681

Onm 23.24 +0.520 23.14+0.518 24.91+0.557 24.29 +0.5431

i 78.03 +0.752 85.41 +0.720 89.41+0.723 90.09 + 0.7482

O 23.77 +0.532 22.76 +0.520 22.86+0.511 23.65 +0.5291

208 5590 7204 (app) 6013 7.329 (app.) 5966 7.694 (app.) 6567 8332 (app.)
(1H)

score

5.466 8.833 (app.)

6.113 9.242 (app.)

6.501 9.456 (app.)

6.745 9.456 (app.)

|Am? |y X 107 2470 2475 2.480 2485
T ~76.04 +0.7834 ~82.90 +0.7452 ~55.70 +0.7471 ~85.54 +0.7595
Onu 24.77 +0.554 23.55 +0.5269 23.62 +0.5283 24.29 +0.5431
. 86.13 +0.762 78.36 + 0.7904 66.17 +0.7649 90.09 + 0.7482
o 24.07 +0.5388 24.99 +0.5589 24.19 +0.5409 23.65 +0.5291
(N 6.547 8.720 (app.) 6.848 9.105 (app.) 5.160 7.463 (app.) 7.231 9.249 (app.)
M) 6.737 9.281 (app.) 6.453 8.852 (app.) 5.038 8.134 (app.) 7.426 9.492 (app.)
|Am? |y X 107 2.490 2.495 2,500 25510
T ~76.63 +0.7387 ~71.32+£0.7365 ~63.02 +0.743 57.12+0.778
Oni 23.36 £0.5223 23.29 +0.5208 23.51+0.526 24.60 + 0.550
. 52.48 +0.7507 54.03 + 0.7557 59.13 +0.726 77.89 +0.738
o 23.74 +0.5308 23.90 + 0.5344 22.95+0.513 23.33+£0.522
Z(N) 5.527 8.445 (app.) 5.382 8.445 (app.) 5.196 7.939 (app.) 5.488 7.556 (app.)
21 5.439 7.244 (app.) 5.280 7.351 (app.) 5.322 7.690 (app.) 5.787 8.826 (app.)
|Am? |y X 107 2.520 2.523 2.530 2.540
T ~65.19 +0.760 ~70.90 + 0.754 -82.07 £0.777 -86.72 +0.727
Onm 24.04+0.538 23.85+0.533 24.58 +0.550 23.00+0.514
. 94.35 +0.739 96.01 +0.755 90.90 + 0.737 71.51 +0.762
o 23.36 +0.523 23.89 +0.534 23.31+0.521 24.10 +0.539
Z(N) 6.636 8.074 (app.) 6.998 8.420 (app.) 7.037 9.059 (app.) 6.880 9.312 (app.)
(IH) 6.830 9.713 (app.) 6.987 9.798 (app.) 7.420 9.534 (app.) 6.566 8.456 (app.)
|Am? |y X 107 2.550 2.560 2.570 2.580
T ~73.80 + 0.743 ~54.30 + 0.746 ~43.64 +0.752 ~54.54 +0.791
Onn 23.48 +0.525 23.58 +0.527 23.79 +0.532 25.03 +0.560
. 54.95 +0.786 56.23 + 0.744 71.52 +0.733 84.58 +0.748
o 24.85 +0.556 23.51 +0.526 23.18 +0.518 23.67 £0.529
Z{N) 5.483 8.591 (app.) 4.687 7.369 (app.) 4.841 6.606 (app.) 5.848 7.385 (app.)
(IH)

Zscore

5.181 7.413 (app.)

4.701 7.50 (app.)

5.0 8.457 (app.)

5.877 9.197 (app.)
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FiGURE 19: Two y? distributions for 1000 (NH) + 1000 (IH) toy JUNO-like simulations that generated at 20 different values of the
atmospheric mass in the range of 2.450 x 10°eV? < |Am?| < 2.580 x 1073eV? for NH hypothesis (blue distribution in each plot) and IH
hypothesis (blue distribution in each plot) with six years of exposure and the ten near reactor cores with infinite energy resolution. The
sensitivities due to these conditions are reported in Table 13.
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Ficure 20: Two x2 distributions for 1000 (NH) + 1000 (IH) toy JUNO-like simulations generated at 20 different values of the atmospheric
mass in the range of 2.450 x 103eV? < |Am?|__ , < 2.580 x 103eV? for NH hypothesis (blue distribution in each plot) and TH hypothesis

input
(blue distribution in each plot) with six years of exposure and the ten near reactor cores, with energy resolution 3%/+/E. The sensitivities
due to these conditions are reported in Table 14.
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Ami,

=2465x10"eV? and |Amlm| =2465x10"%eV?*
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Ficure 21: y? distributions for 1000 toy JUNO-like simulations generated for NH samples at 20 different values of the atmospheric mass in

the range of 2.450 x 1073eV? < |Am?|;

input =

<2.580 x 1073eV? for NH hypothesis (blue graphs) and for TH hypothesis (red graphs) with six

years of exposure and the ten near reactor cores with an infinite energy resolution.

7. Conclusion

Advances in statistical methods may play a decisive role in
the discovery reachable at neutrino physics experiments.
Evaluating the used statistical methods and updating them
is a necessary step in building a robust statistical analysis
for answering the open questions in neutrino physics [20].
The statistical issues on the v MHD from the reactor
experiments have been illustrated, starting from the limited
power of the Ay?. When the simulation is performed on

an event-by-event basis and not on a semianalytical one,
the significance drastically drops. In fact, the systematic
uncertainties due to the 3% relatively energy resolution
cause unbalanced migration effects between events that do
not show up when the simulations are not made on an
event-by-event basis. To confirm the effect, simulations at
infinite energy resolution have also been performed confirm-
ing the validation of the assumption of Equation (7) in case
of exclusion of the systematic uncertainties. Ax? is fully
controlled by the statistical assumptions as explained in
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FIGURE 22: x? distributions for 1000 toy JUNO-like simulations generated for IH samples at 20 different values of the atmospheric mass in

the range of 2.450 x 1073eV?

< |Am2|input <2.580 x 1073eV? for NH hypothesis (blue graphs) and for TH hypothesis (red graphs) with six

years of exposure and the ten near reactor cores with an infinite energy resolution.

Section 3. That is the major limit to the approximation, reduc-
ing the experimental standard sensitivity that is officially
reported. To conclude this first issue, it has been pointed out
that the Ax? estimator provides us with different results
following different simulation procedures. Second, the strong
positive correlations between the X7, ) and X2y, () When

they are drawn in a 2-dimensional map confirms the y* =

( an in (1) X; i (NH)) being a bidimensional estimator. As a

second issue, we then conclude that JUNO sensitivity using
x* as bidimensional estimator is not promising as well. Third,
the Ay? is dominated by the |Am?|, . value as described in

input
dx_dm. Then, the MHD significance using |Ay*| depends on
the values of the input parameter |Am? linpur- That is the reason
we were interested in studying the MHD problem by using the
standard method at 20 different values of [Am?|,,, in the

range between 2.450 x 10°eV? and 2.580 x 10 eV?.
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input < 2.580 % 1073eV? for NH hypothesis (blue graphs) and for IH hypothesis (red graphs) with six

years of exposure and the ten near reactor cores with an 3%/+/E energy resolution.

Appendix
Fitting with TMinuit Class

Toy simulations were based on a single event basis and the
expected systematic errors via a Gaussian distribution cen-
tered at the expected mean and with the standard deviation
of the estimated uncertainty can be added. For JUNO, a
global 3%/+/E(MeV) resolution on the energy reconstruc-
tion is expected. The oscillation parameters have been taken

from the most recent global fits listed in Table 1. The Pois-
son statistical fluctuation is automatically included.

The fitting procedures and the minimization of y* are
done via the ROOT minimization libraries (the TMinuit
algorithm). In the minimization procedure, all the oscilla-
tion parameters were fixed to the best-fitting values of [8].
A total of 108357 signal events are processed for each toy
simulations. The official version of JUNO Software
“T17v1rl” is used. Ay? will be often scaled with the number
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FIGURE 24: x? distributions for 1000 toy JUNO-like simulations generated for IH samples at 20 different values of the atmospheric mass in

the range of 2.450 x 1073eV? < |Am?|

input =

<2.580 x 107%eV? for NH hypothesis (blue graphs) and for IH hypothesis (red graphs) with six

years of exposure and the ten near reactor cores with an 3%/+/E energy resolution.

of degrees of freedom, which is clearly equal to the number of
fitted data minus the constraints: bin—6. Figures 21 and 22 indi-
cate y* distributions for 1000 toy JUNO-like simulations gener-
ated for NH and IH samples, respectively. The simulations are
generated at 20 different values of the atmospheric mass in
the range of 2.450 x 10°eV? < |Am?[,,, <2.580 x 107eV?
for NH hypothesis (blue graphs) and for IH hypothesis
(red graphs) with six years of exposure and the ten near reac-

tor cores with an infinite energy resolution. Figures 23 and 24
indicate the x* distributions for 1000 toy JUNO-like simula-
tions generated for NH and IH samples, respectively. The sim-
ulations are generated at 20 different values of the atmospheric
mass in the range of 2.450 x 107%eV? < [Am?[; < 2.580 X
10~2eV*for NH hypothesis (blue graphs) and for TH hypothe-
sis (red graphs) with six years of exposure and the ten near

reactor cores with an 3%/+/E energy resolution.
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