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Mapping and monitoring cluster morphology provides insights for disease risk assessment, quality control in wine production,
and understanding environmental infuences on cluster shape. During the progression of grapevine morphology, cluster closure
(CC) (also called bunch closure) is the stage when berries touch one another. Tis study used mobile phone images to develop
a direct quantifcation method for tracking CC in three grapevine cultivars (Riesling, Pinot gris, and Cabernet Franc). A total of
809 cluster images from fruit set to veraison were analyzed using two image segmentation methods: (i) a Pyramid Scene Parsing
Network (PSPNet) to extract cluster boundaries and (ii) Otsu’s image thresholding method to calculate % CC based on gaps
between the berries. PSPNet produced high accuracy (mean accuracy = 0.98, mean intersection over union (mIoU) = 0.95) with
mIoU> 0.90 for both cluster and noncluster classes. Otsu’s thresholding method resulted in <2% falsely classifed gap and berry
pixels afecting quantifed % CC. Te progression of CC was described using basic statistics (mean and standard deviation) and
using a curve ft. Te CC curve showed an asymptotic trend, with a higher rate of progression observed in the frst three weeks,
followed by a gradual approach towards an asymptote. We propose that the X value (in this example, number of weeks past berry
set) at which the CC progression curve reaches the asymptote be considered as the ofcial phenological stage of CC.Te developed
method provides a continuous scale of CC throughout the season, potentially serving as a valuable open-source research tool for
studying grapevine cluster phenology and factors afecting CC.

1. Introduction

Cluster closure (CC) is typically defned as a phenological
stage (modifed Eichhorn and Lorenz (E-L) stage 32) [1]
when within the cluster berries begin to touch each other.
CC is defned as a single phenological stage; however, it
actually progresses over a period of many weeks as the
cluster changes from a few berries touching one another to
a fully closed cluster where all berries are touching other
berries. In varieties of Vitis vinifera, higher in-contact berry
surface area increases the cluster’s susceptibility to diseases

such as botrytis bunch rot (Botrytis cinerea) and black rot
(Guignardia bidwellii) [2, 3].

Another commonly used term in viticulture is cluster
compactness, which is an indicator of the compactness or
denseness of the cluster [4]. Cluster compactness is generally
quantifed as the number of berries per unit length of the
rachis [3]. However, it is usually measured post-veraison,
whereas CC occurs earlier in the season. Compact clusters
are subject to poor air circulation and microcracks in cuticle
membranes [5, 6]. Tere is an assumption in viticulture that
compact clusters have an earlier CC; however, we know of
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no data that test that hypothesis. Te development of a re-
liable quantifcation method could help researchers better
determine factors that infuence the timing of CC.

Conventionally, CC is estimated using a ranking method
based on the visual interpretation of visible pedicels (In-
ternational Organization of Vine and Wine) [7]. Tis
method covers both CC and compactness, as visible pedicels
would be reduced in more closed and/or more compact
clusters. However, this CC rankingmethod is subjective with
estimates potentially varying among data collectors [7].
Methods of estimating cluster compactness include de-
termining the number of berries per cm rachis or length of
laterals [3, 8], amount of water displacement caused by the
gaps present between the berries [4], or complex com-
pactness indices based on cluster and pedicel number/weight
and/or length [9]. Te measurements of the inputs required
to quantify cluster closure/compactness have been partially
automated; for example, Aquino et al. [12], Coviello et al.
[11], and Zabawa et al. [12] developed a direct method for
counting the number of berries under feld conditions,
which is one of the inputs; however, only a small number of
studies have efectively estimated rachis length (another
crucial input) by generating 3D images from 2D images of
clusters acquired in the feld [13, 14]. A recent study by
Palacios et al. [15] estimated the ratio of the rachis area to
cluster area against OIV ranking as an estimator of cluster
compactness. However, cluster compactness methods
heavily rely on the number of berries, which presumably
remain the same after fruit set, and the rachis generally stops
elongating after veraison [16], but the berries keep
expanding. Tus, tracking CC using cluster compactness
indices would be restraining.

Image segmentation techniques have been widely used in
viticulture to extract cluster morphological features. Liu et al.
[17] used images captured by a mobile phone camera to
create a 3D representation of each cluster. Ivorra et al. [18]
further classifed 3D representations of clusters into berries,
background, and gaps using a colour segmentation algo-
rithm in multiple grapevine cultivars. In comparison,
Cubero et al. [19] used Bayesian discriminant segmentation
to classify the gaps between the berries and estimated cluster
compactness using averaged areas of pixels representing
gaps at areas above the certain width of the cluster (25%,
50%, and 75% width relative to the cluster central axis).
When the 2D image analysis-based cluster compactness
methods are compared with 3D scanner-based methods, the
authors discovered that 3D image-based methods are con-
strained by the variations inherent in the dataset, particularly
when dealing with loose clusters [20]. Tis limitation can
pose challenges in terms of generalizing these methods to
diferent datasets. 3D images help describe the gaps between
the berries in depth from the inner to the outer cluster;
however, a simpler solution could be used for CC that
suggests the extent to which berry surfaces are touching one
another.

Te objective of this research was to develop a conve-
nient method for quantifying the progression of CC by
tracking the gap area between the berries as percentage area
relative to the cluster area using 2D image analysis under

feld conditions, resulting in a continuous CC scale that can
be used as a research tool. Further development and vali-
dation of this cluster tracking tool is expected to aid studies
of cluster morphology and phenology and may be used for
potential applications such as modelling disease infection
periods.

2. Methods and Materials

2.1. Study Area and Image Collection. Cluster images were
collected in three vineyard blocks. Two blocks (Riesling and
Pinot gris) were located in Portland, NY, USA (42°21′10″N,
79°29′27″W), and one block of Cabernet Franc was in
Lansing, NY, USA (42°34′23″N, 76°35′44″W). Tese culti-
vars are commonly grown in New York State, USA. Clusters
from these nonreplicated vineyard blocks were used to
develop the CCmodel and may not have been representative
of the same cultivars grown in the broader region. For
example, the Cabernet Franc block was particularly of low
vigour than at the other sites in the region, yielding looser
clusters compared to high-vigor vines. Tus, the inclusion of
the low-vigour Cabernet Franc block in the study enabled
the testing of the developed tool on both compact and loose
clusters. All blocks were managed in the same way using the
standard viticultural practices for the region.

Each week starting from fruit set (E-L stage 27), ap-
proximately 50 images per cultivar were collected. Within
each block, four contiguous panels were selected based on
vine uniformity. On each sampling date, basal clusters only
were sampled arbitrarily from the four-panel block since
grape growers in the region sometimes cluster thin the vines
to 1 cluster/shoot. A mobile phone camera with ∼9 mega
pixels and 96 dots per inch resolution was used. Clusters
were imaged from one side/angle while attached to the vine
(i.e., clusters were not removed for imaging). A whiteboard
was placed behind the cluster to use as a background, with
the goal of calculating %CC based on the %white space/gaps
present in between the berries. Te whiteboard also helped
capture clear cluster boundaries and prevented inclusion of
nontarget objects such as soil, cover crop, and vine canopy
foliage.Te images were taken by a hand held mobile phone,
without the use of any supplementary lighting, specialized
camera equipment, or specifc aperture settings during the
capture process.

Riesling and Pinot gris images were collected every week
for fve weeks (June 29, July 6, July 12, July 19, and July 28 in
2021) and Cabernet Franc for seven weeks (July 2, July 11,
July 19, July 26, August 3, August 12, and August 23 in 2020).
A total of 224, 233, and 325 (total of 809) images were
included for Pinot gris, Riesling, and Cabernet Franc, re-
spectively. Te frst image collection was at the grape
phenological stage of the fruit set (E-L stage 27), and the last
one was when the clusters were mostly closed (approxi-
mately E-L stages 32–34).

2.2. Image Annotation. Following the cluster image col-
lection, 204 images were randomly selected across all
samples (total 809 images) depicting diferent
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phenological stages. Te images were manually annotated
(steps 1 and 2 in Figure 1). Subsequently, an initial seg-
mentation algorithm named the Pyramid Scene Parsing
Network (PSPNet) [21] was trained using the original and
annotated images to extract the boundaries of the clusters
(step 3). Te resulting cluster boundaries were then
employed to mask the original images, after which ad-
ditional image processing techniques such as grayscale
conversion and contrast enhancements were applied (step
4). Due to the white-coloured background, the berry
pixels appeared darker than the surrounding white space/
gap pixels in grayscale images. Hence, a second single
value-based image segmentation technique, Otsu’s image
thresholding method [22], was employed to calculate
a threshold image value to distinguish between the berry
and the gap pixels, utilizing the image histogram distri-
bution (step 5). Subsequently, the images were converted
into binary images, where pixels were assigned to either
the berry class or the gap class based on the threshold
value. Finally, % CC was calculated by determining the
ratio of the number of berry pixels to the total cluster area
(step 6).

Te Computer Vision Annotation Tool (CVAT) (https://
cvat.org) was used to annotate 204 images using automatic
boundaries’ functionality. Te automatic boundary de-
tection in CVATmeasures the colour and contrast between
the user-drawn boundaries and creates the image labels.
Images were labelled into two classes: cluster and noncluster.
Only cluster boundaries were delineated as a cluster class,
and the rest of the image area was labelled as
a noncluster class.

2.3. Extraction of Cluster Boundaries. Even though the
whiteboard was used as a background, the presence of
unwanted objects such as a human hand and similar entities
in colour and shape, such as canopy and clusters captured
other than the intended one, were there in the image dataset
with diferent zoom-out levels (as shown in Figure 2). In all
images (Figure 2), the target cluster is typically positioned at
the centre of the overall image and above the whiteboard,
despite the presence of objects with similar colours and
shapes. Tus, contextual information was very important to
extract cluster boundaries accurately. In addition to image
context, the size of the cluster compared to the noncluster
area is relatively smaller for all images making multiscale
information crucial for accurately separating the two classes.
Terefore, a semantic image segmentation algorithm cap-
turing contextual and multiscale information was imple-
mented. Semantic image segmentation is a technique where
each pixel is assigned to a specifc class label; here, it was
cluster class and noncluster class. We primarily used PSPNet
proposed by Zhao et al. [21] for segmenting the cluster area
because of its computational efciency andmultiscale spatial
pooling method. However, we also tried DeepLabv3 [23] as
another representative benchmark method, and the exper-
imental results can be found on the GitHub page (https://
github.com/manushibt/Qunatifying-Grapevine-Cluster-
Closure-QCC-.git), along with all codes used in this study.

PSPNet is based on a convolutional neural network
(CNN) and can capture multiscale and contextual in-
formation of the image dataset. PSPNet utilizes a pyramid
pooling module to capture contextual information from
diferent levels of feature maps. Te pyramid pooling
module divides the feature maps into multiple regions of
images into diferent scales (1× 1, 2× 2, 3× 3, etc.) and then
applies pooling operations to capture contextual in-
formation within each region.Tis allows PSPNet to capture
multiscale contextual information, from local to global
context, which helps improve the segmentation accuracy.
Te pooled feature maps are then concatenated and further
processed to generate the fnal segmentation map. PSPNet
was trained using PaddleSeg [24]. Te dataset was divided
into training and testing sets using an 80 : 20 ratio. Tis
resulted in 163 out of 209 annotated images being utilized
for training, while accuracies were assessed on a testing
dataset comprising 41 images. Te random distribution of
images across these sets aimed to mitigate modelling bias.
Te model parameters were set as batch size: 4; iteration:
10000; backbone: ResNet50_vd; learning rate: 0.01; and loss:
cross entropy. Basic augmentation techniques of image
resizing and image fipping were used as a part of PSPNet.

Te model was evaluated using two metrics: mean ac-
curacy (mAcc) and mean intersection over union (mIoU)
[25]. mAcc gives % of pixels classifed correctly for each
image in the testing data set, and mIoU shows the ratio of %
overall area overlaps between classifed and annotated im-
ages. Both metrics range from 0 to one. Moreover, precision
and recall rates were reported per class. Precision measures
the number of correctly classifed pixels for each of the
classes and recall measures the completeness of the pre-
dictions for each of the classes. All metrics ranged from
0 to 1.

2.4. Image Processing and Quantifcation of % CC. After
segmenting images into cluster vs. noncluster class, only the
cluster area was extracted by masking the original images
with segmented images using the NumPy package in Python
[26]. Te areas other than the cluster were set to null value.
After this step, the masked images could be categorised as
berry pixels and the gap pixels. Since the gap pixels were
brighter and white in colour, the berry and gap pixels could
be separated using an image histogram and a single value-
based image thresholding method to classify each pixel into
either berry or gap class. Image thresholding is a simple way
of image segmentation where a fxed or variable threshold
value is used to convert original images into binary images
with values 0 or 1. Even though there was a distinct colour
diference in the masked image (white and green), a fxed
threshold value of red-green-blue (RGB) colour space was
not optimal because of the variation in zoom levels of images
and the angle of the images causing various shades of green.
To standardize the RGB colour space and eliminate varia-
tion, the masked images were converted from three-
dimensional RGB colour space into one-dimensional
grayscale images (step 4 in Figure 1) using the OpenCV
package [27]. Te grayscale image had only pixel intensity
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values and did not have colour shades (hue and saturation
value) information, facilitating further image processing and
analysis.

Te grayscale images had mostly bimodal image dis-
tribution early in the season.Te left peak in the distribution
exhibits berry pixels with low-intensity values (closer to 0),
and the right peak shows gap pixels with high-intensity
values (closer to 255) (Figure 3). Otsu’s image thresholding
method was used to segment these bimodal images into
berries and gap class. Otsu’s method is an automatic,
nonparametric, and unsupervised way to threshold images
and classify into two classes, foreground and background
[22]. In this method, the probability distribution of image
pixels is calculated for each foreground (berries) and
background (gaps present between the berries) class. Ten,
the class variance is calculated for each possible threshold
value (0 to 255). Te fnal threshold is the value giving
minimum intraclass variance and maximum interclass
variance. Te thresholding was implemented using the
OpenCV package in Python.

Te calculated Otsu’s threshold value was accurate for
early-stage images where a higher number of gap pixels were
present indicating clear bimodal image distribution. How-
ever, as berries expanded, the number of gap pixels de-
creased, lowering the magnitude of the right peak into the
right tail (Figure 3(c)). Tis efect was prominent for

compact cluster cultivars such as Riesling and Pinot gris.
Tus, images captured later in the season had uniform image
distribution for these cultivars. Otsu’s threshold method
performs poorly for unimodal image distribution as it has
a larger intraclass variance than the interclass one [28]. In
addition, some of the berry pixels were brighter at every
phenological stage because of the variations in illumination,
image angle, and berry/canopy shading. Combining these
reasons, the images closer to CC had falsely classifed
brighter berry pixels into gap pixels (Figure 4) because
Otsu’s threshold value was almost in the centre of the image
distribution (Figure 3(e)).

Te issue of unimodal image distribution was overcome
by increasing the contrast using the image-shifting tech-
nique. Te original image values were shifted left by sub-
tracting the absolute 40 intensity value from the original
image intensity values. Te number of falsely classifed
images out of 809 images was calculated for diferent shifting
values, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, and the value 40
was chosen as it gave the least falsely classifed images (1.6%
of total images). Te number of falsely classifed images was
calculated using visual interpretation. Te highest possible
value for shifting was set to 100 as the diference between
Otsu’s threshold and desired threshold values was ap-
proximately 100. By increasing the contrast, the brighter
pixels of the berries were darkened. Te increased contrast

Step‐5

Step‐4Step‐3

Step‐2

Step‐1

Image segmentation‐1
Image segmentation‐2

Image processing

Images collected 
using mobile phone

Annotating images

Step‐6

cluster

non‐
cluster

PSPNet
Otsu’s image 
thresholding

%cluster closure =
#no of berry pixels

#no of gap pixels + # no of berry pixels
×100

Figure 1: General workfow of the proposed method; steps 1 and 2 include image collection and annotating part of the collected image
dataset; step 3 includes running the frst image segmentation algorithm (PSPNet) to segment images into the cluster and noncluster class;
step 4 includes multiple steps of image processing such as image masking, grayscale conversion, and image contrast enhancement (see
methodology section); step 5 is second image segmentation where cluster areas were segmented into berry pixels and gap pixels using Otsu’s
thresholding method; step 6 uses berry area and gap area to calculate % CC.
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decreased the intensity variation within the berry pixels by
other means. Tus, by lowering the intraclass variance of the
berries class, the interclass variance between classes was
maximized. Te threshold value for left-shifted image dis-
tribution was optimal as it only captured the lower tail
representing gap pixels (Figures 3(e) and 4). Te contrast
was increased only for compact cluster cultivars (Pinot gris

and Riesling) for every timestep and not for looser clusters
(Cabernet Franc).

After determining the automatic threshold value for each
image, the images were converted into binary images with
berry and gap pixels. Te fnal percentage of CC was cal-
culated using the equation as follows:

% cluster closure �
#no of berry pixels

#no of gap pixels + #no of berry pixels
􏼠 􏼡 × 100. (1)

It is important to note that using the abovementioned
equation, the calculated % CC represents the expansion of
the berry area over time rather than the shrinking gaps
between berries, although these two aspects complement
each other. Te decision to focus on the degree of cluster
closure in the context of berry expansion was solely the
authors’ choice to guide the discussion.

2.5. Statistical Analysis. Two main statistics were computed
in this study using R. Te frst set of statistics comprised
basic measures such as the mean and standard deviation of
CC at each timestep. Te second set involved ftting a curve
between quantifed CC and time. Based on the data pattern,
an asymptotic regression approach was employed using the
drc package in R, using the following curve equation:

(a) (b) (c)

(a1) (b1) (c1)

Figure 2: Examples of original images (a–c) in the dataset exhibit complexities such as varying zoom levels, the presence of unwanted
objects (e.g., a hand), or similar objects in terms of shape and colour (e.g., canopy and clusters other than the intended one). Tese
complexities have the potential to afect the segmentation process. Correspondingly, images (a1–c1) represent the segmented cluster
boundaries generated using PSPNet, demonstrating its robustness in overcoming these challenges.
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Figure 3: An example of Pinot gris clusters for histogram shifting and image thresholding representing the diference in Otsu’s thresholding
values between original and contrast images; (a–d) are images from June 29 to July 19 (E-L 27–32) where no diference was observed;
(e) is an image of July 28 (E-L 33) where Otsu’s threshold value for original image captures a larger portion of pixel values (>80), which can
be the berry pixels, whereas for contrast images, the threshold value mainly captures the tail of pixel values (<120) representing gaps between
the berries.
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f(x) � a − (a–b). exp− CX
, (2)

where a� asymptote, b�CC value when x� 0 (here x is
number of weeks), and c represents the rate of progression in
CC. Tese model parameters were quantifed for each cultivar,
and the corresponding x value was calculated for each cultivar,
representing the time at which CC reached the asymptote.

3. Results

3.1. Delineating Cluster Boundaries. Te PSPNet produced
an overall mAcc of 0.98 and mIoU of 0.95. Tese results
suggest that PSPNet provided a precise delineation of cluster
boundaries regardless of other artifacts present in the images
(Figure 2). Further analysis of individual class mIoU
revealed that the mIoU was marginally higher for the
noncluster class (0.98) than the cluster class (0.92). Both the
precision and recall rate for the noncluster class was 0.99,
and for the cluster class, it was 0.96.

3.2. Error in Quantifcation. Figure 5 illustrates an example
of cluster progression as phenology advances, along with the
quantifed % CC for each image. Precise separation between
berry and gap pixels was observed visually in almost every
image for each cultivar, regardless of the phenological stage.
However, a small percentage (<2%) of the whole image
dataset resulted in inaccurate % CC. Specifcally, 3% (7 out of
224) of Pinot gris images, 1% (3 out of 233) of Riesling

images, and less than 1% (3 out of 325) of Cabernet Franc
images falsely captured berries and gap pixels, leading to
inaccuracies. Despite leading to a small number of images
with inaccurately captured % CC, these images were in-
corporated into the modelling of % CC. Tis was done to
assess the viability of the proposed method in tracking % CC
throughout the growing season.

3.3. Temporal Variation in % CC. Te mean % CC for Pinot
gris was 80.3%, 90.3%, 94.2%, 93.5%, and 94.7% with
standard deviations of 7.4%, 5.6%, 2.8%, 2.6%, and 2.1%
across the phenological stages of June 29, July 6, July 12, July
19, and July 28, respectively (distribution of calculated % CC
showed in Figure 6). For Riesling, the mean % CC for similar
dates was 71.6%, 87.1%, 88.1%, 90.0%, and 93.6% with
standard deviations of 9.2%, 7.2%, 5.2%, 5.9%, and 4.2%.Te
lower mean % CC by 1% for Pinot gris on July 19 compared
to July 12 was due to a relatively higher number of falsely
classifed images (5 out of 7) that mistakenly identifed
brighter berry pixels as gap pixels, even after enhancing
image contrast. Such efects were not observed for Riesling.
For Cabernet Franc, the mean % CC ranged from 55.9% to
79.3% from July 2 to August 23. Te standard deviation was
6-7% across all phenological stages. In general, compact
cluster cultivars exhibited higher % CC values, ranging from
71% to 98%, compared to loose clusters with values ranging
from 55% to 80%. Nonetheless, the range of mean % CC
values for both types of clusters across the entire season was

(a) (a1) (a2) (b) (b1) (b2)

(c) (c1) (c2)

(e) (e1) (e2)

(d) (d1) (d2)

Figure 4: Comparison between fnal segmented images with and without enhancing contrast; (a–e) are grayscale images; (a1–e1) are fnal
segmented images using original images (without enhancing contrasts); (a2–e2) are fnal segmented images using enhanced contrast images.
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similar, 27% for compact clusters and 25% for loose clusters.
Te diferences in mean % CC at a particular phenological
stage with respect to the next stage were 10.0%, 3.9%, 0.8%,

and 1.2% for Pinot gris and 15.5%, 1.0%, 1.9%, and 3.6% for
Riesling. Similarly, for Cabernet Franc, the progression was
7.1%, 12.9%, 3.2%, 0.6%, 1.0%, and 0.1% throughout the

Pinot gris

Riesling

Cabernet Franc

29th June 6th July 12th July 19th July 28th July

29th June 6th July 12th July 19th July 28th July

(a) (b) (c) (d) (e)

(a1) (b1) (c1) (d1) (e1)

(f) (g) (h) (i) (j)

(f1) (g1) (h1) (i1) (j1)

2nd July 11th July 19th July 26th July 3rd August 12th August 23rd August

(k) (l) (m) (n) (o) (p) (q)

(k1) (l1) (m1) (n1) (o1) (p1) (q1)

Figure 5: Examples of original images and fnal segmented images with % CC; (a–e) are the collected RGB images of Pinot gris, and
(a1–e1) are fnal segmented images of these RGB images with %CC noted in the top right corner; similarly, (f–j) and (f1–j1) are Riesling, and
(k–q) and (k1–q1) are Cabernet Franc.
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season, indicating that clusters progress much faster towards
closure early in the season, especially in the frst two to three
weeks, after which the % CC starts to reach an asymptote
(Figure 6).

Table 1 presents the asymptote values for diferent
cultivars, where Pinot gris had the highest value (94%)
followed by Riesling (91%) and Cabernet Franc (81%). Te
time taken for Pinot gris to reach the asymptote was at
3.4 weeks, while Riesling took around 4weeks. Cabernet
Franc, however, did not reach the asymptote, although this
could be due to the low-vigour vines in the block that were
not necessarily representative of other blocks nearby. Te
progression rate (parameter c in equation (2)) was not
signifcantly diferent between the compact cluster cultivars
of Pinot gris (1.20%) and Riesling (1.19%), while it was al-
most half for the loose cluster of Cabernet Franc (0.58%).
However, these model estimates are based on data com-
prising signifcant variation among clusters in % CC at any
given time.

4. Discussion

Te method outlined in the study has two notable advan-
tages. First, unlike conventional cluster compactness
methods that rely on the estimation of the number of berries
per cm of rachis length [3], the developed approach is solely
based on the gaps between berries. Tis independence from
other viticulture parameters such as rachis length, number of
berries, etc., makes the developed method less prone to
errors caused by variations in cluster shape, size, or cluster
morphology across cultivars. Second, the data collection
method used in this study is nondestructive and requires
minimal resources (i.e., a mobile phone and whiteboard).
Given that the % CC metric employed in this study rep-
resents a percentage ratio between gap area and cluster area,
there is no need for distance standardization in the image or
the use of additional instruments for data collection. It al-
lows for the tracking of cluster phenology under feld
conditions without the need for cluster removal from the
vine or specifc cluster selection.

In this study, the reduction in gaps serves as a proxy for
the percentage of berry surface area that is in contact with
other berries. It does not separate out the pedicel, peduncle,
or fower pixels (seen in images in the frst two weeks). Tis
proxy measure or quantifed % CC partially captures cluster
compactness but only in later phenological stages (here after
mid-July). However, such a proxy measure of CC for early
phenological stages is limited by the overlay efect resulting
from the 2D nature of the images. In 2D images, small
berries may overlap each other, but due to the missing 3rd

dimension (depth), it creates an illusion of berries touching
each other causing a higher % CC. For instance, an image
taken on July 2 of all cultivars in Figure 5 shows that the
cluster is flled approximately 40–50%. However, the
overlapping small berries and some fowers give the im-
pression that the berries are touching each other, but in
reality, there are few, if any, berries that are in contact with
other berries. Tis could also be a possible cause of a large
standard deviation of % CC for the early phenological stages

compared to later stages for both Pinot gris and Riesling
(as depicted in Figure 6). Specifcally, for Pinot gris, the
standard deviation in % CC on June 29 and July 6 was
7.4% and 5.6%, respectively, whereas it was less than 3%
for later stages. Similarly, for Riesling, the deviations in %
CC ranged from 7 to 10% for early phenological stages and
4-5% post-July 6. Note that we have captured only basal
clusters, but a larger vineyard block, less uniform vines,
and/or inclusion of distal clusters would potentially in-
troduce more variability, but the method should reliably
refect that variability as long as the appropriate clusters
are imaged. Going forward, it would be benefcial to
address this limitation either by using depth cameras to
capture cluster structures [29] or by frst distinguishing
the berry pixels from other pixels (such as pedicel, pe-
duncle, and fowers) and subsequently identifying indi-
vidual berries, as proposed by Aquino et al. [12].
Furthermore, Luo et al. [30] and Zabawa et al. [12]
employed edge image processing to compute berry di-
ameter and berry detection, respectively. Tis technique
could potentially be refned and applied to determine the
actual % CC by calculating the areas of berries touching
each other and could be compared with the proposed
method.

Despite this limitation, % CC can still be a useful tool for
tracking the overall progression of CC because such overlay
efects become marginal at the block level across the entire
timeline. Our fndings reveal that instead of viewing CC as
a single phenological stage where the bunch is closed, it
should be considered as a temporal progression of cluster
phenology by means of the percentage of berry areas
touching each other. CC progresses continuously
throughout the season, leading up to veraison, and should be
quantifed as such.We used weeks as ourX axis, but date/day
of the year or thermal time could also be used.

Te preliminary fndings of this study suggest that
a higher variation in quantifed % CC during the frst three
weeks may indicate that clusters do not progress uniformly
at the beginning of the season, but they eventually catch up
later, reaching an asymptote. However, the time required to
reach the asymptote is cultivar dependent. For instance,
Pinot gris had a 3% higher asymptote than Riesling and
reached the asymptote earlier (3.4 weeks) than Riesling
(∼4weeks). Tis could be because the intercept parameter
for Pinot gris was 42% at the beginning, which was almost
twice that of Riesling (26%). However, loose clusters of low-
vigour Cabernet Franc never reached an asymptote and
progressed through veraison. Note that intercept should be
used as a comparative mean across cultivars and not as an
absolute value as it is a model estimate. Additional research
is necessary to examine if the CC distribution varies within
the cluster and whether that variation infuences CC at the
block level. It should be noted that this study aims to es-
tablish a user-friendly method for tracking cluster closure
under feld conditions. Terefore, the specifc % CC trends
for each cultivar should be considered as examples only;
determining diferences in % CC among cultivars would
require additional investigation at multiple vineyard sites.
Further investigations are needed to study this across more
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cultivars and also examine the efects of climate, crop load,
weather, soil, and other environmental and biological factors
that afect the progression of CC.

We propose using the method introduced in this paper as
a research tool to address new and continuing discussions in
viticulture. For instance, the infection of Botrytis cinerea in
mature grapes is greatly infuenced by wetness [31]. Young
berries require an even shorter duration of wetness to cause
infection [32], and vines at any stage of phenology starting as
early as fowering are susceptible to such disease infection
[33, 34]. In addition, disease severity is closely related to cluster
compactness in mature grapes [2]; thus, this method can
potentially be used as another variable in studies of interactions
among the host, pathogen, and environmental conditions.
Integrating this methodology with an automated system of
cluster detection [35] could increase the spatial resolution and
allow for fner temporal data, facilitating a more in-depth study
of the variation in rapid cluster phenological progression.

Overall, this research provides an open-source tool to
implement the methodology to quantify % CC directly,
enabling the tracking of % CC progress in-feld in a non-
destructive manner (https://github.com/manushibt/
Qunatifying-Grapevine-Cluster-Closure-QCC-.git).

5. Conclusion

Tis research presents a novel preliminary method for
quantifying cluster closure (CC) and its timing and pro-
gression using image segmentation and image thresholding.
Te method, once validated at diferent sites and climates,

will provide a tool for the progression of CC during the
season with minimal feld resources and open-source
methodology, with less than 2% error in quantifed % CC.
Despite the limitation of inaccuracies in % CC during early
phenological stages, the proposed method efectively cap-
tured the trend of % CC throughout the season for both
cultivars with compact clusters and those with loose clusters.
Te % CC metric allows for further investigation of the
relationship of CC to cluster compactness, disease suscep-
tibility, and other parameters of interest in grape production.
Tis research tool can be applied and validated for in-
vestigating CC progression in diferent cultivars and
climates.

Data Availability

All images, data, and code have been posted to GitHub at
(https://github.com/manushibt/Qunatifying-Grapevine-
Cluster-Closure-QCC-.git).
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Figure 6: Temporal variation of quantifed % CC; (a) Pinot gris; (b) Riesling; and (c) Cabernet Franc. Te line represents the nonlinear
regression model with an asymptote. Te red line represents the time when it reaches the asymptote. Cabernet Franc (c) did not reach an
asymptote. Te x-axis represents the number of weeks after berry set (E-L stage 27).

Table 1: Asymptote regression model parameters for quantifcation of % CC in Pinot gris, Riesling, and Cabernet Franc.

Cultivars Asymptote (parameter a
in equation (2)

Intercept (parameter b
in equation (2)

Rate of increase
(parameter c in
equation (2)

Time of cluster
closure (weeks) as
indicated by X

value at asymptote
Pinot gris 94.58∗∗∗ 42.24∗∗∗ 1.29∗∗∗ 3.46
Riesling 91.61∗∗∗ 26.21 1.19∗∗∗ 3.90
Cabernet Franc 81.19∗∗∗ 33.68∗∗∗ 0.58∗∗∗ —
Te values with ∗∗∗represent p value <0.001 using the t-test.
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