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Background and Aims. Te assessment of grapevine trunk disease symptoms is a labour-intensive process that requires experience
and is prone to bias. Methods that support the easy and accurate monitoring of trunk diseases will aid management decisions.
Methods and Results. An algorithm was developed for the assessment of dieback symptoms due to trunk disease which is applied
on a smartphone mounted on a vehicle driven through the vineyard. Vine images and corresponding expert ground truth
assessments (of over 13,000 vines) were collected and correlated over two seasons in Shiraz vineyards in the Clare Valley, Barossa,
and McLaren Vale, South Australia. Tis dataset was used to train and verify YOLOv5 models to estimate the percentage dieback
of cordons due to trunk diseases. Te performance of the models was evaluated on the metrics of highest confdence, highest
dieback score, and average dieback score across multiple detections. Eighty-four percent of vines in a test set derived from an
unseen vineyard were assigned a score by the model within 10% of the score given by experts in the vineyard. Conclusions. Te
computer vision algorithms were implemented within the phone, allowing real-time assessment and row-level mapping with
nothing more than a high-end mobile phone. Signifcance of the Study. Te algorithms form the basis of a system that will allow
growers to scan their vineyards easily and regularly to monitor dieback due to grapevine trunk disease and will facilitate corrective
interventions.

1. Introduction

Grapevine trunk diseases (GTDs), such as Eutypa and
Botryosphaeria dieback, are a pervasive and growing issue
across the Australian wine industry that gradually reduces
vineyard performance. Other trunk diseases, such as esca,
Petri disease, Phomopsis dieback, and black foot disease,
cause signifcant issues in other countries but have little
impact in Australia [1]. Eutypa dieback causes leaves to
become distorted and yellow, shoots to stunt, and cordons to
dieback. Botryosphaeria dieback has no distinct foliar
symptoms but causes similar cordon dieback. GTDs are
detected by the visual assessment of experts, and the control

treatments for GTDs can be labour-intensive and most
efective when administered preventively, early in the life of
the vineyard [1–4]. Regular vineyard surveys are not feasible
for many growers due to the labour resources required.

Methods for estimating GTD dieback from aerial im-
agery are well-established but are limited by ground vege-
tation [5]. Recent work by Ouyang et al. [6] used 3D point
clouds collected using an unmanned aerial vehicle to detect
GTD with an accuracy of 87.4%.

Deep learning techniques are part of a rapidly growing
area of machine learning research that is especially efective
for image analysis such as the detection of GTD. Deep
learning methods typically result in higher classifcation
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accuracy and faster testing times than using traditional
machine learning methods, but most critically for this re-
search, they eliminate the need for hand-crafted features [7].
Tese advantages over traditional machine learning have
caused deep learning image analysis to be used in a wide
variety of agricultural applications, including disease iden-
tifcation [8–11]. Researchers applied combinations of dif-
ferent networks, both existing and custom architectures, on
datasets that they had collected and augmented themselves
[7–9, 11, 12].

Mohanty et al. [12] previously achieved an overall ac-
curacy of 99.35% when detecting crop-disease pairs from
images of leaves using DL techniques, but there are key
diferences in the scope of research programs. Tey iden-
tifed 26 diferent diseases in 14 crop species, but the images
used were of a single leaf, taken in a controlled environment
against a consistent background. Our research aims to detect
the presence of a single disease in real time from images
taken in the feld, which introduces a number of compli-
cations. Te in-feld images introduce uncontrolled back-
grounds and conditions, which can reduce the accuracy of
the detection.

For in-feld images, there has been a wide variety of work
in object detection for agriculture, most notably fruit de-
tection. Kuznetsova et al. [13] applied the YOLOv5 algo-
rithms for apple detection with a false positive rate of 3.5%
and a false negative rate of 2.8%. For strawberry detection,
Chen et al. [14] achieved a false positive rate of 5.7 to 15.4%
and a false negative rate between 4.6% and 18.1% on mature
fruit. Wang et al. [15] studied various attributes of fruit
detection using YOLOv5 and recommended that for single-
class object detection, a minimum of 2500 objects should be
labelled and used in training.

Beyond object detection, the classifcation of severity or
other fruit attributes has also been studied. In addition to
their mature strawberry detection, Chen et al. [14] in-
vestigated fower and immature fruit detection, with limited
success. Wang et al. [16] adapted a VGG-16 classifcation
model for estimating apple fower distributions, focussing
on the maturity stage rather than the frequency of each class.
Tey showed it to be more accurate and slightly faster than
YOLOv5 when running on a personal computer.

Te aim of this research was to develop an automated
edge computing system that would allow growers to quantify
the severity of cordon dieback caused by GTDs at a temporal
(every season) and spatial (whole vineyard) scale.Te system
had to use a standard camera mounted on a vineyard vehicle
and intelligent algorithms to monitor and map trunk disease
and be implemented in such a way that it could be accessed
by nontechnical users.

Te aim can be split into two components:
(1) Algorithms for cordon dieback assessment
(2) System for data collection, processing, and display

Tis paper presents the frst component of the research
and evaluates its performance. Te algorithm for cordon
dieback assessment will be a machine-learning-based image
processing algorithm trained using vineyard images col-
lected on a standard camera and will be assessed on the

similarity of the algorithm’s results to expert assessment on
unseen vines. Te scope of this research is limited to vines
with bilateral cordons with spurs, trained on a single wire,
due to these beingmore common than quadrilateral cordons
in an Australian context.

2. Materials and Methods

2.1. Data. Te data used to evaluate the dieback assessment
networks were collected in October of 2020 and 2021 in
eleven vineyards (cv. Shiraz,Vitis vinifera L.) in theMcLaren
Vale and the Clare and Barossa Valleys, South Australia.
Images of the vines were collected using a mobile phone app
developed for the purpose and operating on a pair of
Samsung Galaxy S21+ phones (model SM-G996B) running
Android 11. Tese phones were mounted on a trailer ap-
proximately 300mm from the ground and the middle of the
interrow, with the image sensor facing the vines and the
phone orientated so the cordon wire was near the centre of
the image. See Figure 1 for the experimental setup. Te
trailer was driven throughout the vine rows at a speed of
approximately 7–9 km/h while imagery was captured and
processed by the phone. Images were captured by each
phone at a rate of at least 5 frames per second and a reso-
lution of 1280× 720 pixels. When combined with the wide
feld of view lens in the phone, this enabled the majority of
each vine to be captured, with the trunk at the centre of the
image. Further analysis of the achievable framerate is given
in Section 4.3.

Te proportion of cordon dieback on each vine was also
visually assessed by two experts in the vineyard, and the score
was recorded for each of the assessed vines [4, 17]. Cordon
dieback in these vineyards is predominantly caused byGTDs, as
evidenced by the presence of Eutypa dieback foliar symptoms,
but it should be acknowledged that other factors such as
nematodes, viruses, and other vineyard management practices
may have contributed to the cordon dieback [18]. Each cordon
was assigned a score in the range of (0, 50) in increments of 5,
representing the percentage of dieback on the cordon as a total
of the vine. Class 0 represents a complete and healthy canopy,
and class 50 represents a cordon with no shoots or leaves. Te
assessment of dieback can vary between experts, and there is
a particular difculty in diferentiating between the lower classes
of 0, 5, and 10.Tese scoreswerematchedwith the images of the
vines, and the images were labelled with bounding boxes
around the trunk and around each cordon with the dieback
score. During the growing season for the 2021 vintage, 12,642
bilateral cordon vines were scored and imaged, with 5,570 in the
McLaren Vale and 7,072 in the Clare Valley. In the 2022 vintage
growing season, an additional 1,149 bilateral cordon vines were
scored and imaged, 568 from the McLaren Vale and 581 from
the Clare Valley. Te vines imaged in the 2022 vintage growing
season were also imaged in the previous growing season.
Overall, 13,791 vines were imaged and scored.

2.2. Algorithm Development. Te model chosen for the
dieback assessment network was YOLOv5s, as it is small
enough to deploy on edge computers while maintaining

2 Australian Journal of Grape and Wine Research



good detection results. Te total dataset of all scored vine
image across each vineyard resulted in an unequal number
of instances between cordon classes (Figure 3(a)). Tis class
imbalance can result in the assessment network overftting
to certain classes, artifcially increasing the probability of
assessing certain classes. Tis is particularly detrimental to
the classes with very few training examples, such as classes 45
and 50 (Figure 3(a)). A subset of the total dataset with
a balanced class distribution was created and used as the
balanced training dataset for the network (Figure 3(b)). Te
number of training examples was greatly reduced when
a balanced training dataset was created, as the number of
training examples in each class was reduced to approxi-
mately the number of instances in the smallest class (class
50), and the majority of training examples consisted of
classes 5, 10, and 15. Experimentation was used to explore
the efects of various combinations of training sets
across years.

Data augmentation techniques were used to increase the
number of training examples, so that the network would be
more robust to changes in orientation and variable envi-
ronmental conditions. Each training image was fipped
horizontally with a probability of 85%, which would simulate
driving the vehicle carrying the camera in each direction
along the row of vines, capturing images of both sides of the
vine. A Gaussian blur was applied to the training images to
increase the number of training instances and to increase the
robustness of the algorithm to lower-quality images which
may occur when capturing images from a moving platform.
Te weather conditions greatly afected the brightness of the
grapevine images, so each of the images had its brightness
both increased and decreased using a gamma correction
function to simulate a range of weather conditions. Gamma
correction applies a mathematical function to each pixel that
either lightens or darkens the image overall, depending on
the parameters used. Te augmentations applied increased

Figure 1: Two pairs of smartphones mounted facing the opposite rows for continuous data collection. Tis prototype setup also includes
two action cameras and two vertically orientated phones; note that only images collected from the horizontally orientated phones were
included here. Other than a companion phone to control these phones from the driver’s seat, no additional infrastructure was needed. See
Figure 2 for an example image.

Figure 2: Detection from the unseen test set. Te dieback on the right cordon is underestimated as the shoots from the adjacent cordon
extend into the bounding box.
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the number of training images from 2084 images to 13076
images. Te validation and test set images were not aug-
mented in any way (Table 1).

Experiments were carried out to evaluate the suitability
of the proposed algorithm by varying the hyperparameters
and the data used for training each model (Supplementary
Table 1 to Supplementary Table 6). Te Ultralytics YOLOv5
version 6.1 Python library was used to implement the al-
gorithm [19]. Training was carried out on a personal
computer with 16 Intel® Core™ i9-9900KF CPUs using
Python 3.7.3 and Ubuntu 18.04.6 LTS.Te data used to train
a deep learning image processing network is crucial and one
of the defning factors in the results.

All models were evaluated on an unseen test set consisting
of all the assessed vines in one block. Tis was to ensure that
there was no overlap between the training and test data and that
the results of each experiment could be directly comparable.
Te primary variables that were investigated were the data used
to train the network and the training hyperparameters. All
experiments were trained to completion, with completion
being defned as the trend of the accuracy on the validation set
across training epochs appearing to stabilise, with training
lasting at least 300 epochs.

Te most accurate model was evaluated not only on the
unseen test set (Block 4) but also on a much larger set of
images from the remaining blocks, again ensuring that these
images were not included in either the training or
validation sets.

2.2.1. Algorithm Evaluation Metrics. Te success of the
dieback assessment algorithm was measured using the fol-
lowing criteria:

(i) Percentage of trunks detected
(ii) Percentage of cordons detected
(iii) Percentage of cordons with dieback scores identifed

correctly (class accuracy)
(iv) Percentage of cordons with dieback scores identifed

within 5% of correct score (variation accuracy ±5%)

(v) Percentage of cordons with dieback scores identifed
with 10% of correct score (variation accuracy ±10%)

Te percentage of trunks detected should be as high as
possible, as the system used to analyse the images relies on
the detection of a trunk or half cordon to denote the results
of the dieback assessment algorithm. By detecting the trunk
and using images only where the trunk appeared close to the
centre of the image, double-counting of successive half
cordons was avoided. Te algorithm must be able to detect
the grape vine cordons in order to identify the extent of
dieback, so the successful detection of cordons must occur
for the algorithm to be efective.Te assessment of the extent
of dieback is subjective and can vary between experts.
Terefore, the identifcation of the dieback score for each
cordon will be assessed on an exact match to the in-feld
scoring as well as with a margin of 5% or 10% error.

2.3. System Overview. To manage, control, and observe the
scanning process with ease, a smartphone-based two-
application system was designed with a “controller” and
a “scanner” application (Figures 4 and 5). Te system only
needs to connect to external devices on two occasions: for
the initial fast localisation of the GNSS system or when
downloading the map data for display on a computer. Te
system is able to process the images and automatically
generate a map of the GTD in real time using only the
“scanner” phone, the results of which are displayed on the
“controller” phone or a computer. Further details of the
system are outside the scope of this paper and available on
request.

3. Results

3.1. Dieback Assessment Algorithm. Following the experi-
ments used for training the dieback assessment algorithms,
model 6 gave the best overall performance (Table 2). Te
trunk class was excluded from the confusion matrix
(Figure 6) for the best performing model (model six) as all
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Figure 3: (a) Te distribution of vine cordon GTD labels for imagery collected in the 2022 vintage. (b) Te more balanced distribution of
vine cordon GTD labels used for training the models, using data collected from both 2021 and 2022 vintages. Zero indicates no GTD
symptoms observed, and 50 indicates complete dieback for that cordon. Te total number of cordons is approximately twice the number of
vines as indicated by the number of trunks identifed.
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trunks were correctly detected in the test set. Missing cor-
dons, which are cordons that were labelled, but not detected
by the algorithm, were designated a separate class (“M”) in
the confusion matrix.

Model 6 was applied to images collected in the same
blocks used for training. Even though these vines and images
were not seen by the model during training or validation,
excellent correlation with ground truth is seen, with over
99% of vines having an estimated GTD dieback severity
within 10% of the manual ground truth (Table 2 and
Figure 6(b)).

When the most successful model (model 6) was applied
to the unseen test set; that is, with vines from a block
completely unseen in the training or validation, the shape of
the distribution is well matched against ground truth data
(Figure 7(a)). Similar patterns were seen for the blocks used

as part of the validation (within the training process)
(Supplementary Figure 1). Examples of detections in images
are shown in Figures 8 and 9.

3.2. Evaluation of the Selected Model across Eleven Test Sites.
Data from the eleven sites used for training and validating
the algorithm were processed with model 6 using the
smartphone—with an additional block in the Barossa Valley
also mapped (Block 1). Histograms were used to display the
distribution of GTD severity across the block (Supple-
mentary Figure 1). Te vines and severity of GTD were
georeferenced and plotted on aerial images (Figures 10–12).

In Block 1 (Figure 10), the mapped data displayed a high
degree of average severity uniformly distributed across all of
the surveyed vines. Whilst there are pockets of higher-

Table 1: Number of images in each data subset.

Data subset Number of images
All data 13,791
Balanced training data 2,084
Augmented balanced training data 13,076
Balanced validation data 821
Test data from a single unseen vineyard with no augmentations or balancing 172

- Start/stop/pause/resume ongoing
scans (can control individually or for all

connected scanners)

Able to manage up to two scanners
simultaneously, including:

- Change scanner settings (e.g. custom
names, configured facing, etc.)

- Download previous scans
- Preview images from scanners

Connections are
managed via

Bluetooth Classic

Locally manages the scan
processing, geotaggings
and saving of GTD scan
data. Can send data such

as preview images, scanner
settings, immediate results
and previous scan results to

a connected controller
application

Scanner Application

Controller Application

Figure 4: Application ecosystem overview.
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severity vines (such as in the centre of the top row), most
vines exhibit symptom severities in the 40–60 percent range.
Tis could indicate an older block, where the disease has had
time to spread throughout most vines and less attention has
been placed on remedial treatment.

In Block 5 (Figure 11), a high concentration of vines
exhibiting severe symptoms were located at the northern end
of the rows. Grapevine trunk disease does not normally
follow a spatial pattern—so the grouping of the afected
vines in one section of the vineyard was surprising. On
further investigation, it was identifed that the northern end
of the block had reduced vigour as it is prone to frost, and
a frost event had occurred several weeks before the as-
sessment. Regardless of the cause, this gives growers an
indicator that this is an area where the vines are performing
poorly. A further manual inspection would often be made of
the worst-afected areas to confrm the cause of an unusually
concentrated area of increased dieback.

Te mapping of Block 8 (Figure 12) exhibits less severe
symptom severity. Te high-symptom severity vines are
clustered into small groups and distributed across the
eastern portions of the block.

Vine symptom severity was usually normally distributed
across the respective block, with a skew towards lower levels
of severity (Figure 13). Te results across blocks were typ-
ically clustered to a 10–20% range with some outliers. Blocks
3 and 5 exhibit results with a wider spread, with lower peaks,
and a fatter distribution. In Block 5, this was a cause of the
severe concentration of vine symptom severity in a small
section of the block (see Figure 11).

3.3. Application Performance and Optimisation. Te target
framerate (5 FPS) was achieved consistently as a result of
optimisation of the phone application. Images were captured
at 1280× 720 pixels and processed at 640× 360 pixels using
model 6. Te two test phones used (128GB and 256GB

models of the SM-G996B Samsung Galaxy S21+ 5G) were
both able to maintain a throughput of at least 5 FPS, shown
as the ability to process individual images consistently in less
than 200ms over 110minutes (Figure 14). Te increase in
processing time observed in the 128GB model at the
60minute mark is likely due to processor throttling as the
phone heated up over time; however, the 200ms threshold
was not exceeded.

 . Discussion

4.1. GTD Detection Algorithm

4.1.1. Trunk and Cordon Detection. Trunk detection was
high across all the experiments, with at least 97% of trunks
being detected in each experiment and trunk detection as
high as 100% in two of the trained models. Trunk detection
was consistently high because of the number of instances in
the training data and the appearance of the trunks. Te
trunks are visually distinct from the cordons, most notably
due to their orientation. For every grapevine, there is a single
trunk and two bilateral cordons with spurs; quadrilateral-
cordon vines were considered out of scope for this research
due to their distinctly diferent appearance. Given that the
cordons are broken down into 10 classes based on the extent
of dieback, the number of instances of trunks is much higher
than any other class. Deep learning object detection algo-
rithms require many examples to accurately detect objects in
images; therefore, the high number of training instances for
trunks ensures that the trunk detection was successful.

Te algorithm must detect the grapevine cordons in
order to classify them based on the extent of dieback, which
makes the percentage of cordons detected critical to the
overall performance of the algorithm. Te percentage of
detected cordons rose with the number of training examples
and the increase in the left-right fip during training. Te
increase of the left-right fip hyperparameter also efectively
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increased the number of training images as the images are
reversed horizontally, as most clearly seen in the 67% in-
crease in the detected cordons between experiments 1 and 2
when a 0.85 left-right fip was applied. Te efects of in-
creasing the training examples diminished as more training
examples were used, but the network achieved the correct
detection of 99% of cordons in the unseen test set which
underpins the rest of the analysis.

Two cordons were not detected in the test set. In the frst
example of a missing cordon, the cordon was not detected as

there was a tree in the background with the foliage extending
above and below the cordon, so the cordon was not dis-
tinguished from the background (Figure 15). For the second
missed cordon detection, the photo is blurred and the
leaves are pale in the image, but the cordon is not unrec-
ognisable to a human observer (Figure 16). Tere are other
considerations for the algorithm in this example. First, the
right cordon was detected with a confdence score of 0.41,
low compared to the majority of cordon confdence scores,
which suggests that the light conditions and the blur (more
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Figure 6: Confusion matrices for cordon class detections for model 6 (as described in Table 2). (a) Images for the unseen test set were
collected from vineyards where other images from those vineyards were used in training. (b) Images for the unseen vines comprised of vines
from Block 4 which had not been used for any model training or validation the yellow of-diagonal terms have been highlighted as a± 10
threshold has been applied in the evaluation of results in this paper. Te general diagonal form of the results is evident, with some outliers
(discussed below).
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Figure 7: A comparison of manually assessed and detected severity of grapevine trunk disease in test sets when using model 6 described in
Table 2 for (a) images collected from Block 4 and (b) unseen vines in vineyards used for training the algorithm. Black bars indicate manually
assessed severity and white bars show detected severity. A score of 0 represents no cordon dieback and a score of 50 represents no foliage
present.
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signifcant on the left cordon) were a major factor in any
detections of the left cordon falling under the confdence
threshold of 0.25. Te bounding box for the trunk is also
much wider than the typical trunk bounding boxes as the
trunk itself is slanted (Figure 16). Te cordons do not
originate from the centre of the trunk bounding box, as is the
norm, and combined with the thinness of the left cordon,
this creates additional difculties for the detection of this
cordon.

In terms of pure object detection accuracy using
YOLOv5, Kuznetsova et al. [13] obtained an accuracy of
97.1% in counting apples in general images. It is not sur-
prising that the trunk detection results in this work are
slightly higher in accuracy given the size and uniqueness of
the shape compared with apples.

4.1.2. GTD Dieback Detection. Detecting trunks and cor-
dons in vineyard images allows the algorithm to fulfll the
aim of detecting the extent of dieback. Model 4 had the
highest class accuracy, with 27% of cordons classifed by
the algorithm matching the labels given in the vineyard
(Table 2). As previously stated (see Section 3.1), the
dieback scoring is subjective and can vary between dif-
ferent experts, and there is particular difculty in dif-
ferentiating between classes 0, 5, and 10. When the
variation accuracy within 5% and 10% was considered,
model 6 had the highest ±10% variation accuracy (84%),
as well as a higher ±5% variation accuracy and more
cordons detected than model 4. Models 4 and 6 had
slightly diferent training hyperparameters, but the main
diference between these models was the training data

Figure 8: Detections from model 6. Te labelled classes were 15 on the left and 15 on the right. Te detected classes were 15 for the left
cordon and 10 for the right, as the detected classes are given frst in the bounding box labels. Te decimal in the bounding box is the
confdence score, an expression of how sure the algorithm is of what is detected.

Figure 9: Detections from model 6. Te labelled classes were 25 on the left and 30 on the right. Te detected classes were 20 for the left
cordon and 30 for the right, as the detected classes are given frst in the bounding box labels. Te decimal in the bounding box is the
confdence score, an expression of how sure the algorithm is of what is detected.
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Figure 10: Block 1 vine symptom mapping—each point represents the overall vine assessment combining both cordons.

Figure 11: Block 5 vine symptom mapping—each point represents the overall vine assessment combining both cordons.
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used. Model 6 used the V2021 and V2022 augmented
data, resulting in many more training examples which
improved the performance similarly to the cordon de-
tection. Te augmented data adjusted the exposure and
blur of the training images, which theoretically would
make the algorithm more robust to changing light con-
ditions and changes in photo quality, as shown by Wang
et al. [15]. However, the test set images were taken on
a single day using one model of phone. Terefore, the
efects of changing illumination due to weather condi-
tions and changing the photo quality due to the camera
used were not directly assessed.

Te ±10% variation accuracy is quite reasonable given
that some classes included as little as 50 training images
(prior to augmentation), and Wang et al. [15] recom-
mended 2500 training images for a single class. Te de-
tection algorithm is more likely to overestimate the extent
of the dieback rather than underestimate it, with 19
cordons underestimated by at least 15% and 28 cordons
overestimated by at least 15%, the manual scoring factors
in all the shoots extending from each cordon, including
when a shoot extends over the adjacent cordon, although
this is not common. Te detection algorithm estimates the
extent of dieback based on the volume of leaves around
the cordon, as the training images were labelled with
a bounding box around the cordon, and the volume of
leaves in the bounding box is largely consistent with the

amount of dieback. If a shoot extends to another cordon,
the algorithm will estimate the extent of dieback in-
correctly (see Figure 2). Te right cordon in this example
was given a manual score of 50, but the detection algo-
rithm assigned a score of 30 due to the shoots from the
adjacent cordon extending into the bounding box. Te
accuracy of 84% on an individual vine level compares well
with that of Ouyang et al. [6], who achieved 87% accuracy
on an aggregated row level. Te number of classes of
severity used by Ouyang et al. [6] was slightly smaller,
which would also lead to improved results.

When the frequencies of each class in the manual scoring
and detections were compared between a set of vines from
a vineyard that was not used in training (Figure 7(a)) and
a larger test set consisting of the unseen vines in vineyards
that were used in training the algorithm (Figure 7(b)), the
algorithm performed better on the unseen vines in vineyards
used in training.Te images of the unseen vineyard are often
overexposed, although some of the unseen vines in the
training blocks are overexposed as well, these are a higher
proportion in the unseen vineyard.Te images in the unseen
vineyard are blurred in addition to the light conditions that
would cause more difculties in accurately estimating the
dieback.

Tere are two possible courses of action to potentially
improve the results. Te training images could be given new
scores based on the volume of leaves around each cordon.

Figure 12: Block 8 vine symptom mapping—each point represents the overall vine assessment combining both cordons.
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Tis would not refect the manual scoring system as closely
but may align more with the needs of the growers. Te
presence of growth in the area is more important than
exactly which vine it extends from. Alternatively, semantic
segmentation could be used to identify exactly which shoots

extend from each cordon to align with the manual scoring
more closely. Semantic segmentation would not appear to
currently be a feasible technique for real-time processing on
a mobile phone due to the need to classify each pixel rather
than identify three bounding boxes. Te training data would
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Figure 13: Cordon dieback severity distribution across blocks, relative to 25% of total number of vines scanned in that block. Subfgures
(a–k) correspond to Blocks 1 to 11, respectively.
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Figure 14: Sustained processing time of GTD dieback scanning across diferent S21+ models—128GB (a) and 256GB (b).

Figure 15: A missing cordon detection from the test set.

Figure 16: Another missing cordon detection from the test set.

Australian Journal of Grape and Wine Research 13



also need to be labelled by experts in manually scoring
dieback as correctly allocating each shoot to the correct
cordon is very important.

4.2. Evaluation of the Selected Model across Eleven Test Sites.
By comparing the results across all the test sites, signifcant
variation in the spatial pattern, incidence, and severity of
GTD dieback symptoms was observed. Tis may be due to
diferent ages of vines, diferent GTDs involved, or local
climatic conditions. Te incidence and severity of GTDs
increases with age of vines [3, 4, 20]. Te distribution of
pathogens that cause Eutypa and Botryosphaeria dieback
varies between Australian regions [21, 22] which may also
explain some of the variability observed between regions in
the current study. Rainfall is required for infection, and
certain temperature and humidity conditions favour the
diferent causal pathogen species [23, 24]. Nonetheless, this
work lays the foundation for the analysis of data over
multiple seasons or before and after remediation activities to
monitor changes in GTD symptoms.

Very few blocks have a low average severity (Supple-
mentary Figure 1), partially due to grapevines being a natural
system and not growing uniformly despite the best endeav-
ours of growers. It also highlights the potential for growers to
tend to underestimate the severity throughout their blocks, as
once the canopy is more fully grown, shoots will tend to
spread out and disguise diseased sections of the cordon.

4.3.EvaluationofSmartphoneApplication. After running for
many hours in-feld conditions, the smartphone “scanner”
application was able to successfully collect, process, and geo-
reference all the images across the eleven test sites. Despite
the hard requirement of 5 FPS processing, the phone was
able to sustain this performance consistently in tests lasting
more than an hour. Compared with the aerial method of
Ouyang et al. [6], the ability to undertake the survey using
only a mobile phone mounted on a vehicle is somewhat
simpler yet of comparable accuracy, giving greater oppor-
tunity for industry adoption.

5. Conclusions

Tis paper presents and evaluates an algorithm to detect and
map grapevine trunk disease dieback using only a smart-
phone. Te YOLOv5-based algorithm was successfully ap-
plied in a smartphone app to collect and process data from
more than 13,000 vines in the McLaren Vale, Clare Valley,
and Barossa Valley regions of South Australia across two
growing seasons and ten vineyards.

Te algorithm was efective, as it was able to classify 99%
of cordons within 10% of expert visual dieback assessment on
unseen vines from the same blocks as used in the training and
validating the model. When tested on vines from a diferent
block, again unseen by the model, a classifcation accuracy of
84% was achieved and 99.5% of cordons were detected.

Furthermore, the algorithm reliably operated at a frame
rate of 5 FPS on a commercially available smartphone,

including capturing, processing, and mapping the data
with GNSS.

Further research into the robustness of the algorithm
under diferent weather conditions and image quality is
recommended to ensure that the system remains efective for
manymodels of phone used and that the system is not reliant
on good weather conditions. A variation of the algorithm
that can be used in vineyards with diferent training systems
(e.g., multiple cordons) would also be a recommended area
of further research. A reliance on existing deep learning
algorithms mean the GTD level had to be discretised; further
work could examine methods for providing a continuous
numerical output.

Being able to transform a deep learningmodel trained on
a server to run in real-time on a smartphone has provided
a powerful tool for growers to attach to a vehicle and obtain
maps of GTD dieback symptoms. Tis opens the potential
for rapid assessment of GTD more widely across the in-
dustry on bilateral cordon-trained vines. It also highlights
the potential for deep learning models to be trained to detect
visual symptoms of other diseases and to be applied in the
feld with just a smartphone.
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