Hindawi

Australian Journal of Grape and Wine Research
Volume 2023, Article ID 8847476, 17 pages
https://doi.org/10.1155/2023/8847476

Research Article

AUSTRALIAN SOCIETY
OF VITICULTURE AND
OENOLOGY

ASVO ¥

The Role of Potent Thiols in “Empyreumatic” Flint/Struck-Match/
Mineral Odours in Chardonnay Wine

Damian Espinase Nandorfy 12 Tracey Siebert,' Eleanor Bilogrevic ,! Desireé Likos (),
Flynn Watson,! Sheridan Barter (,! Lisa Pisaniello,! Allie Kulcsar,' Robert A. Shellie (9,2
Russell Keast (9, Leigh Francis ,! and Marlize Bekker 0’

“The Australian Wine Research Institute, P.O. Box 197, Glen Osmond, SA 5064, Australia
2CASS Food Research Centre, School of Exercise and Nutrition Sciences, Deakin University, 221 Burwood Highway, Burwood,

Vic 3125, Australia

Correspondence should be addressed to Damian Espinase Nandorfy; damian.espinasenandorfy@awri.com.au

Received 17 January 2023; Revised 22 June 2023; Accepted 14 July 2023; Published 31 July 2023

Academic Editor: Anthony Saliba

Copyright © 2023 Damian Espinase Nandorfy et al. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Background and Aims. A wide range of Chardonnay styles exist on the market, from fruit-forward examples to wines displaying
“empyreumatic” aromas such as flint, smoky, mineral, and struck-match. The thiols 2-furylmethanethiol and phenylmethanethiol
have been linked to these aromas, and this study aimed to determine the contribution of these compounds to specific sensory
properties in Chardonnay wines, as well as the consumer acceptance of wine displaying “empyreumatic” aromas. Methods and
Results. Twenty-four Australian and New Zealand Chardonnay wines were selected for volatile analysis and quantitative sensory
descriptive analysis. Consumer liking of a subset of six wines was also determined, and a further sensory study involving additions
of the thiols to a base wine was conducted. Partial least squares regression showed that flint/struck-match/mineral aromas were
related to 2-furylmethanethiol concentration with phenylmethanethiol less well associated. The odorant addition study confirmed
that 2-furylmethanethiol directed flint/struck-match/mineral aromas and exerted strong suppression of other aromas while
phenylmethanethiol played a lesser role. Consumer acceptance (1 =92) was overall lower for wines displaying high flint/struck-
match/mineral aromas, although cluster analysis of the liking scores identified a sizeable consumer group (33%) who preferred
wines with this attribute. Conclusions. The potent thiol 2-furylmethanethiol was indicated to be the primary contributor to flint/
struck-match/mineral aromas in Chardonnay wines, with phenylmethanethiol playing a subordinate role. Significance of the
Study. Increased concentration of 2-furylmethanethiol and the conferred “empyreumatic” odours should be carefully considered
when producing wine styles to appeal to consumers.

1. Introduction

Australian wines made from the Chardonnay cultivar rep-
resent a high proportion of domestic and exported white
wines. They are produced in most regions with varied
winemaking techniques and can display a wide range of
sensory properties. Of these styles, so-called “empyr-
eumatic” aromas are common for some Chardonnay styles,
particularly for barrel-aged or barrel-fermented Chardon-
nay. The odour category of empyreumatic was introduced to
the fragrance lexicon by Dutch scientist H. Zwaardemaker to

describe smoky and burnt odours [1]. Although this category
is not commonly used in wine science literature outside of
Europe, it has been used to describe wines, often oaked white
wines, which display aromas reminiscent of smoke, gun-
powder/gun flint, minerals, roasted coffee, toast, brioche, or
the smoky/sulfidic odour of a struck-match [2, 3].

Links between Chardonnay chemical composition and
specific sensory properties have been reported for several
compounds: thiols with tropical aromas [4]; acetate esters
and terpenes with fruity and floral notes; volatile phenols
with oaky nuances [5]; pyrroles and pyrrolemethanethiols
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with hazelnut-like aromas [6]; fatty acid ethyl and acetate
esters as well as lactones with stone fruit aromas [7, 8];
higher alcohols and floral notes [9]; aldehydes and oxidation
related flavour deterioration [10]. Although these studies
have shown evidence of relationships using winemaking
experiments, correlation tests, or regression approaches,
wine compounds are in many cases ubiquitous and co-
correlated, and these associations do not definitively im-
ply chemical cause and sensory effect.

Regarding “empyreumatic” odours, two polyfunctional
thiols have been linked to this aroma category, phenyl-
methanethiol (benzenemethanethiol and benzyl mercaptan)
[2] and 2-furylmethanethiol (furan-2-ylmethanethiol, 2-
furanmethanethiol, or furfuryl thiol) [3], in both still
Chardonnay table wines and Champagne wines.

Sensory detection threshold testing of compounds likely
to be important to Chardonnay has been conducted with 2-
furylmethanethiol [11] and phenylmethanethiol [2], as well
as for 4-methyl-4-sulfanylpentan-2-one [12], stereoisomers
of oak lactone [13], 1-methylpyrrole-2-methanethiol, and 1-
ethylpyrrole-2-methanethiol [6] which allow for the com-
parison of the potency of aroma compounds. Knowledge of
the sensory detection threshold of a particular compound
has been invaluable to gauge if a compound is likely to
contribute to wine aroma and flavour at the concentration
range found naturally, but again these values lack the ability
to characterise the particular odour quality or intensity in
a wine. Beyond “impact odorants,” the demonstration of
causation is further complicated by complex interactions
which may occur at the chemical, sensory receptor, and
cognitive levels to suppress, augment, or otherwise alter
sensory perception.

Other approaches exploring perceptual interactions by
capturing changes in sensory quality and intensity are robust
sensory methods such as quantitative descriptive analysis
(QDA) [14] coupled with tests such as reconstitution/
omission and odorant spiking experiments [15].

The steps of analytical identification, correlation of
chemical concentration with sensory properties followed by
causally qualifying sensory effects, together contribute in
explaining observed phenomena within a product such as
wine. These types of experimentation, however, cannot
determine if a particular sensory character, directed by
a particular compound, might be important in influencing
consumer acceptance or purchase behaviour. Often this
question is left unresolved; however, wine is a consumer
product and presumably, a wine’s aroma, taste, and
mouthfeel contribute strongly to acceptance and purchase
behaviour, alongside important marketing cues such as
price, packaging, labelling, and advertising. Consumer blind
testing can involve investigation of the influence of a par-
ticular compound, such as “consumer rejection threshold”
methodology reported for 2,4,6-trichloroanisole (TCA) [16],
1,3,3-trimethyl-2-oxabicyclo[2.2.2]octane (1,8-cineole) [17],
and 1,1,6-trimethyl-1,2-dihydronaphthalene (TDN) [18].
Consumer acceptance testing, however, can also evaluate the
wine styles on the market such as the previous study by
Saliba et al. [19] which identified an overall preference of
Australian consumers for fruity Chardonnay styles with
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negligible oak influence. In contrast to “empyreumatic” wine
styles, these more fruit-forward Chardonnay styles, pre-
ferred by consumers, were found to display “peach” aromas
with some sweetness. Using odour addition studies, the ethyl
esters conferring “peach” aroma in Chardonnay have only
recently been demonstrated [20], while the source of
“sweetness” in sugar dry white wines is not well understood.
In dry red wines, the residual amino acid proline has been
shown to increase “sweetness,” “viscosity,” and fruit
flavours [21].

Only a few studies have investigated the consumer re-
sponse to wines displaying empyreumatic aromas such as
those reminiscent of “smoky,” “struck-match,” or “flint.”
Smoke-related compounds such as guaiacol, cresols, and
their glycoconjugates have been demonstrated to cause the
“smoky” aroma and flavour of wines affected by bushfires
[22]. Of these, guaiacol at high and low concentration has
been reported to detract from overall consumer acceptance
scores, but some consumer segmentation in preference was
also reported [23]. Regarding “struck-match” or “flint”
aromas, Capone et al. [4] found “flint” aroma was most
strongly associated with phenylmethanethiol and weakly
negatively related to liking; however, these were unoaked
wines produced with standardised winemaking. No study to
date has assessed the contribution of 2-furylmethanethiol to
consumer acceptance of white wine. Anecdotally, empyr-
eumatic aromas are observed to be more common with
barrel-fermented white wines, particularly Chardonnay.

The concept of “minerality” in wines has been found to be
ill-defined among experts [24]; however, it has been associ-
ated with empyreumatic aromas such as flint, match smoke,
kerosene, slate, granite, limestone, tar, charcoal, graphite, rock
dust, wet stones, metallic, steel, and ferrous [25]. In the same
study relating chemical composition to “mineral” aroma and
flavour ratings, phenylmethanethiol and tartaric acid were
found to have the highest correlation coefficients. A sensory
study investigating “minerality” by comparing wine industry
professional’s projective maps with flavour profiles for
a trained QDA panel found minerality to be positively cor-
related with reduced, chalky, and grassy aromas and bitter
taste [14]. Malic acid, tartaric acid, and the titratable acidity of
the wines were highly associated with minerality. In this
study, a series of experiments were used to better understand
“empyreumatic” odours sometimes found in Chardonnay
wines. A survey of the occurrence of the thiols phenyl-
methanethiol (PMT) and 2-furylmethanethiol (2FMT) was
conducted in commercially produced Chardonnay wines
from Australia, New Zealand, and France, followed by de-
tailed chemical and formal sensory evaluations of a subset of
24 wines. Consumer testing was then completed on six wines.
Finally, a follow-up odorant addition study was conducted to
understand the causal effects of candidate compounds as-
sociated with wines displaying “empyreumatic” aroma
nuances.

The main aim of this work was to assess the sensory
significance of PMT and 2FMT in commercially produced
Chardonnay wines. We hypothesised that PMT, as identified
by Tominaga et al. [2] and Capone et al. [4], would play the
major role in directing these smoky/mineral-like aromas and
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would contribute positively to consumer acceptance. A
secondary objective was to assess the relative importance of
ester compounds and residual proline concentration iden-
tified by Espinase Nandorfy et al. [20] and Espinase Nan-
dorfy et al. [21], respectively, in conferring peach/stone fruit
aroma, sweetness, and viscosity in Chardonnay.

2. Materials and Methods

2.1. Wine Samples. A convenience sample of 71 commercially
produced white wines (2016-2020 vintages, $11-150), de-
scribed as having a flint-like and/or stone fruit-like aromas by
the winery or wine critic review, were purchased. The Aus-
tralian wines (n=61) were sourced from a wide range of re-
gions including South-Eastern Australian blends, while eight
were from New Zealand (across five regions) and two from
France (Chablis, Burgundy). Each wine underwent preliminary
informal tasting by AWRI staff from the sensory and research
teams, and was subjected to analytical testing for thiol con-
centrations. 24 Chardonnay wines were selected for the
commercial wine QDA, regional and basic chemical compo-
sition, and oak usage information available in Table 1, and of
these, six wines were further used for consumer testing.

2.2. QDA Panels. Two sensory panels were convened to
complete the formal QDA studies of this work. The first panel
of eleven assessors (ten females) with an average age of 51 years
(SD=8.4) evaluated the commercial Chardonnay wines. The
second panel consisting of eleven assessors (ten females, av-
erage age of 53 years, SD =6.9), including six of the original
participants, was then convened to assess the aroma of the
odorant spiking samples. All panellists were part of the external
AWRI trained descriptive analysis panel and had extensive
experience in wine sensory descriptive analysis. All assessors
provided informed consent to participate, and this work was
conducted in accordance with Deakin University’s ethics policy
(HEAG-H 169_2019) with the evaluations conducted at the
AWRI in Adelaide, South Australia.

2.3. Sensory Evaluation of Commercial Chardonnay Wines.
A series of four preliminary sensory evaluations by a panel
(n=12) of expert technical wine assessors (four females)
with an average age of 40 years (SD =10.9), were conducted
to select 24 wines, from the 71 wines surveyed. Wines were
selected that displayed a range of intensities of “empyreu-
metic” and stone fruit aromas, excluding wines with
dominant off-flavours or winemaking artefacts. After the
QDA of the commercial wine set, this panel was reconvened
to confirm a subselection of wines deemed appropriate for
further consumer testing and the odorant addition QDA.

Wines were formally evaluated using the generic QDA
method as described in Heymann et al. [14]. To evaluate the
24 commercial wines, assessors attended six two-hour
training sessions to determine appropriate descriptors for
rating in the formal sessions. All the wines from the study
were progressively used during training sessions to generate
and refine appropriate descriptive attributes and definitions
through a consensus-based approach.

Wines were assessed by appearance, aroma, and flavour.
In the third session, standards for attributes were presented
and discussed and these standards were also available during
subsequent training sessions, the booth practice session, and
the formal assessment sessions. As a familiarisation exercise,
assessors revisited these aroma and flavour standards as well
as at least one “warm-up” sample from the wine set at the
beginning of each formal assessment session.

Following the fourth training session, assessors participated
in two practice sessions in the sensory booths under the same
conditions as those for the formal sessions. After the practice
sessions, any terms which needed adjustment were discussed
and the final list of terms and standards were determined. For
the formal sessions, this list was refined to include one ap-
pearance term, fourteen aroma terms (thirteen defined and one
“other” term) and fourteen palate terms (thirteen defined and
one “other” term). The final list of attributes, definitions/
synonyms, and reference standards are shown in Table 2.

2.4. Evaluation. The wines were presented to assessors in
30 mL aliquots in 3-digit-coded, covered, and ISO standard
wine glasses at 22-24°C in isolated booths under daylight-type
fluorescent lighting. Randomised presentation order across
assessors was followed except in the practice sessions when
there was a constant presentation order. All samples were
expectorated. In the formal booth sessions, the assessors were
presented with four trays of three samples per tray, per day. The
assessors were forced to have a 60-second rest between samples
and were encouraged to rinse with water, and a minimum ten-
minute rest between the trays. During the ten-minute break,
they were requested to leave the booths. Formal evaluation was
completed in six two-hour sessions on separate days. A new
bottle was used for each of the presentation days. The 24
commercial wines were presented to assessors three times, in
a Williams Latin Square random block design generated by
using Compusense20 sensory evaluation software (Compusense
Inc., Guelph, Canada). The intensity of each attribute listed in
Table 2 was rated using an unstructured 15cm line scale
(numericized 0 to 10), with indented anchor points of “low” and
“high” placed at 10% and 90%, respectively. Data were acquired
using Compusense20 sensory evaluation software.

2.5. Sample Preparation for Odorant Addition Study. A single,
fruity commercial Chardonnay wine (South Australia, 2021
vintage) was used as the base wine with compounds PMT and
2FMT (Sigma-Aldrich, Castle Hill, NSW, Australia) added in
a 5° full factorial design (two compounds, each added at five
concentrations) that generated 25 permutation samples, with
each of the five concentration levels increasing by a factor of
2.5. The concentration range chosen represented the
minimum-maximum measured in commercial samples pre-
viously tested. Appropriate aliquots of PMT (100.0 ug/L) and
2FMT (100.9 ug/L) solutions in ethanol (food grade-ultra
premium, Tarac Technologies, Nuriootpa, SA, Australia) were
added volumetrically to the homogenized volume of base wine
targeting 0, 2.6, 6.3, 16.3, and 40.6 ng/L of PMT and 0, 10, 25,
62.5, and 156.5ng/L of 2FMT as well as all design combina-
tions. The small amount of ethanol added from the stock
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solutions was equalized for all samples including the base wine
control. Addition samples were prepared freshly each day. The
Chardonnay wine used as the base wine for the addition ex-
periment was approximately 18 months old, bottled (750 mL)
with screw-cap closure, 13.2% v/v ethanol, pH 3.33, titratable
acidity (TA)=5.7g/L, SO, (free) =20mg/L, and SO, (total)

=100mg/L. A preliminary informal tasting by AWRI staft
from the sensory and research teams assessed the base wine as
having subtle oak characters but no struck-flint-like aroma. The
concentrations of PMTand 2FMT in this base wine were 1.1 ng/
L and 2.6 ng/L, respectively.

2.6. Sensory Evaluation of Confirmatory Odorant Addition
Study. Very similar training and evaluation conditions as
described above were used for the follow-up confirmatory
study investigating the aroma contribution of PMT and
2FMT to a fruity base Chardonnay wine with the following
changes. Assessors participated in three days of training
where each sample was presented at least once, followed by
three formal evaluation days. All samples were evaluated by
aroma only with the rated attributes listed in Table 2. The 25
combinations of the experimental design were presented to
assessors in triplicate, with five trays of five samples per tray
presented on each of the three formal evaluation days.
Assessors took 30-second breaks between each sample.

2.7. Consumer Test Participants and Evaluation Conditions.
A hedonic consumer test involving 92 regular white wine
drinkers took place at the AWRI sensory laboratory located
in Adelaide, South Australia. The sample of consumers was
screened and selected based on their drinking preferences
and habits, aimed to be balanced for age and gender as
practically as possible. Consumers who drink Chardonnay
wine at least once or twice per year, were not pregnant and
were between 18 and 65years of age participated in the
assessment. Consumer demographic details can be found in
Table S1. Each consumer attended a single session to
taste six Chardonnay wines selected to broadly
represent the range of attributes differentiating the
samples from the statistical analysis of QDA data
as well as having similar basic chemical compo-
sitions. Consumers gave informed consent, com-
pleted a demographic questionnaire, and were
briefed on the hedonic task which lasted less than
1 hour.

The wines were presented to respondents monadically
following a Williams Latin Square random block design,
presented in 3-digit-coded ISO wine tasting glasses con-
taining 30 mL aliquots of wine at 10.5+ 0.8°C. Tasting took
place in isolated sensory booths under daylight-type light-
ing. A 2-minute break between the samples was enforced
where participants were encouraged to drink water between
the samples. Tasters could choose if they wanted to drink or
expectorate the samples into the sink available in each booth.
Each wine was first rated by the consumers using a nine-
point hedonic scale labelled from “dislike extremely” to “like
extremely” [26], then purchase intent was collected using
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a five-point scale labelled from “definitely would not buy” to
“definitely would buy.” A few questions relating to wine use
and attitudes were administered after the tasting, with
participants receiving a $30 gift coupon as a reward for
their time.

2.8. Statistical Analysis and Interpretation. Trained panel
performance was assessed using Compusense20 software
and R with the SensomineR (sensominer.free.fr/) and
FactomineR (factominer.free.fr/) packages. The perfor-
mance assessment included analysis of variance for the
effect of assessor, wine and presentation replicate and
their interactions, degree of agreement with the panel
mean, degree of discrimination across samples, and the
residual standard deviation of each assessor by attribute.
All assessors were found to be performing at an acceptable
standard.

Analysis of variance (ANOVA) for the QDA data was
carried out using Minitab 20 (Minitab Inc., Sydney, NSW)
for the effects of wine, assessor, presentation replicate, and
all their two-way interactions. A Fisher’s protected least
significant difference (LSD) value was calculated at a 95%
confidence level using the mean sum of squares value from
the assessor by treatment interaction effect. Principal
component analysis (PCA) was conducted for the means of
the samples of the attributes using the correlation matrix,
calculated by using XLSTAT 2020 (Addinsoft, France). For
the odorant addition study response surface regression
modelling (RSM), ANOVA and visualisations were com-
pleted with STAT-EASE 360 (MN, USA) treating pre-
sentation replicates as blocks.

For the consumer test data, ANOVA was calculated for
the effects of wine and assessor, treating consumers as
a random effect. Agglomerative hierarchical clustering
(AHC) of raw liking scores was then calculated, as rec-
ommended in MacFie [27],by transforming to (dis)simi-
larity matrix and using Pearson correlation coefficient index
with average linkage (unweighted pair groups), and used
inspection to the level of 0.58 to truncate clusters. A Fisher’s
protected LSD value was calculated at a 95% confidence level
for each of the consumer groups.

To explore relationships between wine chemical com-
position, sensory profiles, and consumer responses, partial
least squares regression (PLS-R) models were generated
using the NIPALS algorithm (30,000 iterations) and
standardisation. Models first linked chemical composition
(x) to sensory attributes (y); then, another model was
generated which associated sensory attributes (x) with mean
consumer liking and consumer clusters mean liking scores
(). Wine chemical compounds important to sensory at-
tributes and sensory terms identified as important to con-
sumer response were identified by statistical jack-knifing
and considering the size of regression coefficients as rec-
ommended in [28].

Due to the relatively small sample sizes practicable in
wine research, less emphasis was placed on arbitrary P value
significance levels, instead attention was given to the level of
statistical evidence (P value), magnitude of effect size (F
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value) and absolute effect value (sample mean values) to
interpret and draw conclusions about effects of sensory
significance [29, 30]. Statements ascribing the level of sta-
tistical evidence in this work are as follows: P >0.10 “vir-
tually no evidence,” P<0.10 “weak evidence” (¥), P<0.05
“evidence” (*), P<0.01 “strong evidence” (**), and P <0.005
“very strong evidence” (***).

2.9. Chemical Analysis. Targeted volatile compounds were
quantified using previously published methods by Siebert
et al. [7] and updated by Espinase Nandorfy et al. [20] that
are routinely used in-house and are described briefly below.
Furthermore, two new methods developed to quantify n-
alkyl y-lactones and benzyl compounds are described in
detail. All analytical methods for volatile compounds used
deuterated analogues as the internal standards, and MS in
selected ion monitoring mode or MS/MS with multiple
reaction monitoring except the method using a GC/sulfur
chemiluminescence detector (SCD) which instead used two
chemically similar compounds to the analytes.

The set of 71 survey wines, including the subset of 24
wines were analysed for polyfunctional thiols (including
PMT and 2FMT) by HPLC/MS/MS after derivatisation with
4,4'-dithiodipyridine (Acros Thermo Fisher Scientific,
Thebarton, SA, Australia) and SPE as described by Capone
et al. [31] and Cordente et al. [32] using an Exion UHPLC
coupled to a 6500 QTrap+ (Sciex, Mulgrave, Vic., Australia).

The following analyses were only conducted on the
subset of 24 wines. Fermentation-derived aroma compounds
were analysed by headspace (HS)-solid phase micro-
extraction (SPME)-GC/MS as described by Siebert et al. [33]
except using a polyacrylate (PA, white) 85um SPME fibre
(Supelco, Sigma-Aldrich), a VF-624ms (30 m x 0.25 mm x
1.4 um; Agilent) GC column, and an Agilent 7890A GC
(Agilent Technologies Australia, Mulgrave, Vic., Australia)
coupled to an Agilent 5975C MS and equipped with a Gerstel
MPS2  multipurpose sampler (Lasersan Australasia,
Tanunda, SA, Australia). Monoterpenes and Cl13-
norisoprenoids were analysed according to Pisaniello
et al. [34] using membrane-assisted solvent extraction
(MASE)-GC/MS on an Agilent 7890B GC, coupled to an
Agilent 5977B MS and equipped with a Gerstel MPS Robotic
Pro (Lasersan). The MASE membrane bags were supplied by
Lasersan. Oak-derived aroma compounds were quantified
according to Pollnitz et al. [35]; all compounds were ana-
lysed by liquid-liquid extraction-GC/MS using an Agilent
6890 GC, coupled to an Agilent 5973 MS and equipped with
a Gerstel MPS2. Volatile sulfur compounds were analysed
according to Siebert et al. [36] and Cordente et al. [32]
utilising static HS-GC/SCD on an Agilent 7890B GC,
coupled to an Agilent 8355 SCD and equipped with a Gerstel
MPS2 XL (Lasersan).

n-Alkyl y-lactones were quantified by direct-immersion
(DI)-SPME-GC-MS/MS similar to that described for (Z)-6-
dodeceno-y-lactone [37] using an Agilent 7000C Triple
Quadrupole GC-MS/MS system (version 7.03) equipped
with a Gerstel MPS2-XL (Lasersan). y-Octa, -nona, -deca,
and -dodecalactone, were purchased from Sigma-Aldrich.

(2)-6-Dodeceno-y-lactone was kindly donated by Symrise
(Holzminden, Germany), and y-methyldecalactone was
kindly donated by Pyrazine Specialties. (Z)-7-Decen-5-olide
was supplied by Penta International (Livingston, NJ), and 6-
pentyl-a-pyrone was supplied by Pyrazine Specialties
(Ellenwood, GA). n-Alkyld,-y-lactones (C8-C12) had been
synthesized in-house [38]. Stock solutions and dilutions of
n-alkyl y-lactones were prepared in ethanol (gradient grade
for LC, Merck, Bayswater Vic, Australia). Samples were
prepared by diluting wine (5mL) with water (4mL) and
adding internal standard (25 yL) into a 10 mL vial (Agilent).
Analytes were then extracted with DI-SPME using a 65 ym
DVB/PDMS (blue) fibre (Supelco, Sigma-Aldrich) for
40 minutes at 30°C with agitation at 250 rpm. The fibre was
then washed in a 20 mL vial containing water for 1 minute
prior to desorption to decrease the amount of inlet con-
tamination due to sugars and other nonvolatiles. Volatiles
were  desorbed at 260°C onto a VF-200ms
(30m x0.25mm x 0.25 ym; Agilent) which was held at
a constant flow of 1 mL/min. During injection, the inlet was
splitless for 2 minutes followed by inlet purging at 50 mL/
min. To enable back-flushing, the analytical column was
connected to a Deans switch, where, during analysis,
compounds were transferred to the MS using
1.5mx0.15mm fused silica held at a constant flow of
1.2 mL/min. The temperature program for the oven was:
40°C for 1 minute, ramped to 120°C at 20°C/min, and then
ramped to 180°C at 2°C/min. The analytical column was then
backflushed for 5 minutes (2 column volumes) at 260°C. The
MS transfer line was held constant at 240°C for the duration
of the analysis. Method linearity was determined using ten
calibration levels, each in duplicate, over the concentration
range of 0.1-100 ug/L of all listed lactones except for (Z)-6-
dodeceno-y-lactone at 1-1000 ng/L, and included control
wine samples without any addition of analytes. The limit of
detection (LOD) was calculated as S/N =3 and the limit of
quantification (LOQ) was calculated as 2 x LOD. Method
precision and recovery were determined using seven rep-
licate samples spiked at low and high concentrations (1 and
10 ug/L for all lactones except 10 and 100 ng/L for (Z)-6-
dodeceno-y-lactone). See Table S2 for calibration and val-
idation data. To check the accuracy of the analysis, at least
one in every six wines was analysed in duplicate.

Benzyl compounds were quantified by HS-SPME-GC/
MS using an Agilent 7890A GC coupled to an Agilent 5975C
MS and equipped with a Gerstel MPS2-XL. Benzaldehyde,
benzyl alcohol, and benzyl acetate were supplied by Sigma-
Aldrich, dg-benzaldehyde by Cambridge Isotopes (Nova-
chem, Collingwood, Vic, Australia), and ds-benzyl acetate
and ds-benzyl alcohol by CDN Isotopes (SciVac, Hornsby,
NSW). Stock solutions of benzaldehyde, benzyl alcohol, and
benzyl acetate, and mixed dilutions were prepared in ethanol
(LC grade, Merck). The GC was fitted with a Deans switch
(Agilent) to utilise a postrun backflush program. The ana-
lytical column used was a VF-624 ms
(60m x0.25 mm x 1.4 ym; Agilent) and the restrictor col-
umn was deactivated fused silica 1.0 m x 0.10 mm; Agilent).
The carrier gas was helium (ultrahigh purity, BOC, Adelaide,
SA, Australia) in constant flow mode: analytical column



1.75 mL/min (initial pressure 273 kPa) and restrictor column
1.85 mL/min (initial pressure 137 kPa). A polyacrylate (PA,
white) 85um SPME fibre (Supelco, Sigma-Aldrich) was
exposed to the headspace (20 mins at 45°C) with agitation
(250 rpm). The SPME fibre was desorbed in splitless mode
and left in the injector for 10 min. The splitter, at 29:1, was
opened after 2min. The injector temperature was held at
250°C. The oven temperature was started at 50°C, held for
1 min, raised to 140°C at 20°C/min, and then further raised to
235°C at 5°C/min. Subsequently, the inlet pressure was re-
duced to 7kPa, the reversed flow through the analytical
column at —4.5 mL/min via the Deans switch, and the oven
heated to 280°C and held for 5 min. The temperature of the
transfer line was 240°C. The mass spectrometer was operated
in electron (EI+) ionization mode at 70eV and utilising
simultaneous scan/SIM mode. The wine samples were
prepared for HS-SPME; sampling was as follows: a 5mL
aliquot of wine, 50 uL of internal standard mixed solution
ds-benzaldehyde, ds-benzyl acetate, and ds-benzyl alcohol
(each at 20 mg/L), a 5 mL aliquot of tartrate buffer (pH 3.20),
and sodium chloride (2g; Merck) was added to a 20 mL
screw-cap vial (magnetic, Teflon lined silicone septum;
Agilent). Method precision and calibration linearity were
validated by a series of standard addition experiments to
white wine diluted 1:1 with model wine (12% v/v ethanol,
pH 3.20). Method linearity was determined using ten cali-
bration levels, each in duplicate, over the concentration
range of 2-2000 ug/L of benzaldehyde, benzyl alcohol, and
benzyl acetate and included control wine samples without
any addition of analytes. The LOD was calculated as S/N =3
and the LOQ was calculated as 3 x LOD. Method precision
was determined using seven replicate samples spiked at low
and high concentrations (50 and 500 pg/L). See Table S3 for
calibration and validation data. To check the accuracy of the
analysis, at least one in every six wines was analysed in
duplicate. To check the recovery, a master mix of all samples
was spiked with 50 yg/L and 500 ug/L of the analytes in
duplicate.

The concentration of proline was quantified using 'H
NMR. Analysis was performed on a Bruker Avance Neo
operating at 400 MHz (Bruker, Sydney, Australia). Samples
were prepared as follows: 900 4L of wine was buffered with
Bruker “Buffer C,” and then automatically titrated with
1.0 M HCl or 1.0 M NaOH to pH 3.10 using a microtitrator
(Bruker). A 600uL aliquot of the titrated wine was then
transferred to a 5mm tube (Duran Wheaton Kimble,
Economic, ASIS Scientific, Adelaide, Australia) and sub-
mitted for acquisition. Experiments, including tuning,
matching, locking, shimming, and pulse calibration, were
performed automatically according to the Bruker
FoodScreener module [39]. Proline was then quantified from
the water and ethanol suppressed noesygpps spectrum (ds 4,
ns 32, TD 64Kk, sw 20 ppm, rg 16) using an in-house workflow
(Python3.9, https://github.com/AWRIMetabolomics/pro-
nmr-quant.), where the area under the curve (AUC) of
the multiplet at ~2.3 ppm was obtained and regressed against
a calibration function. The ppm coordinates were identified
as a range containing a clean signal specific to proline,
relatively free of other compounds in wine.

Australian Journal of Grape and Wine Research

The subset of 24 wines was analysed by Affinity Labs for
their basic composition using a Foss WineScan FT 2 as
described by the manufacturer (Foss, Hillered, Denmark),
and the free and total sulfur dioxide (F/T SO,) were mea-
sured using a Gallery discrete analyser (Thermo Fisher
Scientific, Thebarton, SA, Australia).

3. Results and Discussion

3.1. Chardonnay Survey of the Occurrence of 2FMT and PMT.
A total of 71 white wines (66 Chardonnay) were analysed
for the concentration of 2FMT and PMT, with the results
shown in Figure 1. The range of 2FMT in the wines was
approximately 0.2-164.5 ng/L, with a mean of 15.1 ng/L and
median value of 3.5ng/L. For PMT, the range was
0.2-7.8 ng/L, with a mean of 1.7 ng/L and a median value of
1.4ng/L. 2FMT and PMT were significantly correlated
(P<0.0001, r=0.47, n="71), but differed in their distri-
bution, with PMT following a normal distribution while
2FMT was strongly right skewed with many values in the
low range and a few high concentrations. The concentra-
tion of both compounds was above the reported aroma
detection thresholds (0.4 ng/L and 0.3 ng/L) for almost all
wines. The concentration range of 2FMT measured here
was much higher than the eight white wines reported by
[40] or the nine Spanish Chardonnays reported in [41]
(2-19ng/L) but below the range reported in some aged
Champagnes [3] (up to 5500 ng/L). The maximum con-
centration of PMT measured in this study was approxi-
mately five times lower than the maximum non-Sauvignon
Blanc white wines reported in [41] (36 ng/L) and lower than
the values reported in [4] (up to 40 ng/L).

3.2. Sensory Descriptive Analysis of Commercial Chardonnay
Wines. The attributes rated by the trained panel were
generated by a consensus-based approach during training
sessions. The attributes (Table 2) consisted of one colour
attribute, one nasal sensation (pungency), twelve aromas,
three tastes, three mouthfeel terms, and seven flavour
attributes.

From the ANOVA, very strong evidence was found that
all the attributes rated by the panel differed between the 24
commercial wines except for toasty aroma (Table 3). The
largest differences, indicated by the largest F values, between
the wines were the degree of yellow colour intensity, flint
aroma, and mineral/flint flavour.

As a visual overview of the sensory properties of the 24
Chardonnay samples, a PCA (Figure 2) was conducted on
the mean values of the sensory attributes (Tables S4 and S5).
Principal components 1 and 2 explained 63.4% of the
variation in the sensory data. PCs 3, 4, and 5 were also found
to have eigenvalues above 1 and explained a further 8.8%,
6.8%, and 5.2% of the variation in the data. However, these
PCs are mainly related to the intensity of cheesy aroma. The
horizontal separation of the wines along PC1 related to the
intensity of nonfruit sensory attributes pungency, natural
gas aroma, flint aroma, mineral/flint flavour, tinned vege-
table aroma, and woody/vanilla aroma and flavour, which
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FI1GURE 1: Box plots visualising the distribution of 2FMT and PMT from a survey of 71 white wines from Australia, New Zealand, and France,
including 66 Chardonnay samples. The inclusive median quartile occurs within the box are shown with vertical whiskers corresponding to
minimum and maximum values within a range limit and absolute maximum and minimum indicated by (0) and mean by (+). Outlier
point wines fall beyond the upper whisker with those values beyond 2.5 standard deviations marked () and 3 standard deviations marked

(x).

TABLE 3: F ratios, probability values', degrees of freedom (df), and mean square error (MSE) from the analysis of variance of QDA data.

Attribute Wine (W) Assessor (A) Rep (R) W % A R+ W Rx*x A MSE
Yellow colour 22.12%** 104.79*** 0.50 1.83*** 1.12 527" 0.182
Pungency A 3.99%** 68.80"** 0.45 1.19 2.08%** 4.18%** 0.285
Flint A 19.4*** 8.37* 0.89 1.74*** 1.16 1.51 2.268
Peach A 3.74* 30.82"* 2.29 1.89*** 1.27 0.78 1.600
Passionfruit/grapefruit A 2.84*" 8.73** 0.01 1.63*** 0.94 2.56*** 1.819
Pineapple A 4917 20.15*** 2.71 1.95** 1.35 1.72* 1.488
Citrus A 2.18%** 40.73*** 1.82 1.28* 1.22 6.90"** 0.436
Natural gas A 4.75*"* 5.68"*" 1.16 1.62%** 1.36 1.99%* 0.453
Woody/vanilla A 4.79*** 24.79*** 1.15 1.81%** 1.46* 0.61 1.350
Toasty A 1.37 68.22%** 0.19 1.33%** 1.17 1.56 0.841
Apple/pear A 479 15.17"** 1.05 1.80"** 1.30 6.60"** 0.876
Tinned vegetables A 3.44* 10.86*** 0.75 1.19 1.13 2.40%** 1.005
Cheesy A 4.12%** 5.24*** 0.25 2.00%** 0.75 2.19%** 1.150
Floral A 5.92%** 15.60%** 0.59 1.70*** 0.71 2.28*** 1.800
Sourness T 3.98%** 46.817** 0.68 1.29% 1.06 3.53%** 0.468
Bitterness T 1.90** 41.34** 0.84 1.39*** 1.43* 7.18*** 0.422
Viscosity MF 1.65* 258.86"** 1.10 1.32%* 0.78 1.76* 0.313
Hotness MF 3.477* 58.89"** 5.31" 0.93 0.63 3.39%** 0.535
Sweetness T 3.19%** 93.26*** 2.47 1.09 0.99 1.25 0.766
Astringency MF 3.20"*" 26.61"** 1.04 1.49%** 0.99 9.57*** 0.378
Citrus F 3.28" 113.87*** 4.04" 1.27* 0.76 2.74%** 0.466
Stone fruit F 2.30%** 34.78%* 2.23 1.71%** 1.36 2.34%** 0.965
Tropical F 2.59%** 48.53*** 5.33* 1.55%** 0.97 1.35 1.186
Mineral/flint F 7.35%** 15.13*** 0.19 1.76*** 1.26 1.16 1.325
Apple/pear F 3.58** 28.63"*" 0.71 1.99%** 1.36 3.14%* 0.823
Toasty F 1.66* 81.22%** 0.54 1.39%** 1.20 1.44 0.792
Woody/vanilla F 5.44*** 23.17%** 0.08 1.43%** 0.73 2.15%* 1.444
df 23 10 2 230 46 20 460

Note: A: aroma, F: flavour, T: taste, MF: mouthfeel, Rep: presentation replicate. 'Significance levels are as follows: *P < 0.05; **P < 0.01; *** P < 0.005; and
P < 0.10. df = degrees of freedom.
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F1GURE 2: Biplot of principal component analysis PC1 and PC2 of all the wine sensory attributes and the scores for the 24 Chardonnay wines
assessed by quantitative descriptive analysis. Wines selected for consumer testing are highlighted (@).

were heavily negatively loaded on PC1 with wines from
Marlborough (MBHI1, MBH2, and MBH3) as well as sam-
ples AH1 and TAS rated higher in these attributes. Con-
versely, fruity attributes passionfruit/grapefruit aroma,
citrus aroma, apple/pear aroma and flavour, peach aroma,
pineapple aroma, tropical flavour, as well as floral aroma
were positively loaded on PC1 with wines MV, MR2, AH9,
and AHS5 rated the highest in these attributes. The vertical
separation along the PC2 was driven by the ratings of
sourness, astringency, citrus flavour, as well as toasty aroma
(ns) and flavour, viscosity, sweetness, and stone fruit flavour.
Generally, the retail price of the wines was higher for those to
the left of Figure 2, with price positively and significantly
(P<0.05) correlated with flint aroma (r=0.45), woody/
vanilla aroma (r=0.55) and flavour (r = 0.52) and pungency
(r=0.42). Overall, the wines selected showed a range of
“empyreumatic” aroma and flavour intensities.

3.3. Assessing the Association of PMT and 2EMT with Smoky/
Burnt Sensory Characteristics Using PLS-R. Basic chemical
composition for the 24 wines is shown in Table 1, and Table
S6 lists the volatile compounds quantified in the wines,

together with their CAS numbers; abbreviation codes;
published aroma detection thresholds; and mean, minimum,
and maximum concentrations.

To link chemical composition and sensory response
using PLS-R, a five-factor model was used that explained
72% of the total sensory response variance from the chemical
compositional data. Visualisation of the scores and loadings
for factors 1 and 5 from this model can be seen in Figure S1.
Chemical compounds (X’s) and sensory attributes (Y’s)
located together in Figure S1 are generally positively asso-
ciated, and those towards the outside of the plots are
considered well modelled. Compounds of sensory signifi-
cance were identified by considering both the size of their
regression coeflicients (Figure 3) and statistical importance
as determined by a jack-knife resampling test. Significant
compounds most strongly and positively associated with
flint aroma were 2FMT, acetic acid, the oak compounds 4-
methyl guaiacol, eugenol, guaiacol, and trans-oak lactone,
while 3-damascenone was significantly negatively associated
with this attribute and positively related to several of the
fruity attributes. In addition to those identified as significant,
the compounds PMT, ethyl thioacetate, and ethanethiol had
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relatively high and positive regression coefficients for flint
aroma intensity. The model was strong (R’ calibration
predicted vs measured = 0.91 and R” validation predicted vs.
measured = 0.70). Similar compounds were also identified as
important to mineral/flint flavour, and f-citronellol and 3-
sulfanylhexanol were additionally implicated, again with
a strong model. Linear regression tests of PMT (R*>=0.102,
P =0.128) and 2FMT (R*=0.589, P < 0.0001) with flint/
struck-match/mineral aroma intensity confirmed 2FMT was
much more strongly correlated than PMT. Previous studies
implicated PMT with “flint” aroma in research Chardonnay
wines [4] and other white wines [2]; however, the stronger
association uncovered for 2FMT was unexpected.

As a secondary objective of this work, we sought to
determine the role of ethyl esters which had been identified
in a recent association study and multistep screening re-
constitution study as conferring peach aroma to model wine
samples [20]. For the peach aroma attribute in the present
study, 3-sulfanylhexyl acetate, 2-methylbutyl acetate,
p-damascenone, 3-methylbutyl acetate, and 2-phenylethyl
acetate were all identified as significant and had high positive
regression coeflicients (Figure 3). Ethyl octanoate and ethyl
hexanoate had small negative regression coefficients for the
five-factor model, with a small positive regression coefficient
for a one-factor model. Ethyl octanoate was present in
a much narrower concentration range in these wines
(933-1560 ug/L, Table S6) than previously tested with re-
constitution experiments (0-1500 ug/L). The importance of
ethyl esters of fatty acids to fruity aromas was thus not
confirmed here, likely due to masking effects on fruity
odorants making a statistical association difficult to be
uncovered. Even though monoterpenes were found at rel-
atively low concentrations, as is commonly reported for
Chardonnay wines [42], linalool (0-5ug/L) was also sig-
nificant and positive to peach aroma, while a-terpineol
(3-12ug/L) had a high positive regression coefficient for
stone fruit flavour. Monoterpenes were also found to be
linked to fruity attributes in an earlier study [4].

Compounds understood to be related to odours resulting
from reductive fermentations and oak maturation were
generally strongly and negatively associated with fruity at-
tributes, likely due to masking effects. For natural gas aroma,
an attribute denoting reductive oft-odour, compounds
methanethiol and ethanethiol had the highest regression
coefficients along with 2FMT and PMT; however, none were
significant by the jack-knifing test. For the oak-related
aroma attribute woody/vanilla, 4-methyl guaiacol, cis- and
trans-oak lactone, eugenol, guaiacol, and vanillin all had
significantly high regression coefficients, with PMT and
2FMT relatively high but nonsignificant, while passionfruit/
grapefruit aroma was most significantly and positively as-
sociated with 3-sulfanylhexyl acetate, linalool, 2-phenylethyl
acetate, hexyl acetate, and 2- and 3-methylbutyl acetate
(Figure 3).

Recently, Espinase Nandorfy et al. [21] demonstrated the
sensory influence of the residual amino acid proline in dry
red wine, which increased perceived sweetness, fruit flavour,
and viscous mouthfeel, while diminishing bitterness and
astringency. Although the proline concentration is reported
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to be lower in white wines (0.025-1.4 g/L) compared to red
wines (0.018-4.4g/L) as reviewed by Gutiérrez-Gamboa
et al. [43], the range can span across the sensory de-
tection threshold reported in water of approximately 2 g/L
[44] and has been linked to wine “body” previously [45]. In
this study, the range of proline measured was 0.6-1.4 g/L and
had modest, but not significant regression coefficients from
the PLS model, relating positively to viscosity (0.0346) and
negatively to astringency (—0.0298). Stronger and significant
associations, however, with taste and mouthfeel terms were
found for pH and titratable acidity (TA) in agreement with
the previous findings [46].

3.4. Aroma QDA of a Chardonnay Wine with Added PMTand
2FMT. From the sensory evaluation of the 25 wines created
by adding PMT and 2FMT to a fruity and lightly oaked base
Chardonnay wine in a full factorial design, nine aroma
attributes were generated to describe their sensory prop-
erties by a consensus-based approach. Nearly identical
definitions and standards as those used during the QDA of
the commercial Chardonnay wines were agreed to by the
sensory panel.

From the response surface regression models summary
presented in Table 4, very strong evidence was found that
wines differed in their aroma intensity of all attributes with
the addition of PMT and 2FMT. The largest linear effect
observed was for 2FMT to increase the intensity of flint
aroma while added PMT also imparted this aroma, albeit
with an effect size 22 times smaller. It is noteworthy that the
maximum concentration of 2FMT was nearly four-fold
higher than that of PMT in the addition samples, which
was aimed to better represent the observed maximum found
naturally in Chardonnay wines. Therefore, it is feasible, that
PMT could be as potent as 2FMT in white wine if ever found
at similar concentrations. From a practical perspective, the
concentration of 2FMT was found to be 21-fold higher than
that of PMT in this survey, suggesting the influence of PMT
is naturally limited. Weak evidence (P=0.052) of an in-
teractive effect between PMT and 2FMT was also found to
result in slight mutual suppression for this attribute. These
effects on flint aroma can be visualised in Figure 4. The other
attributes (Table 4) were all found to be suppressed by the
two compounds, with 2FMT exerting stronger suppression
on peach, apple/pear, and floral attributes than PMT, as
indicated by the effect size values.

Opverall, the results of this study have clarified the role of
2FMT and PMT in “empyreumatic” aromas, including smoky,
gun smoke, flint, or struck-match characters, in Chardonnay
wines. From the commercial wines QDA, flint/struck-match/
mineral aroma was only modestly related to PMT, as previously
reported by Tominaga et al. [2, 3] with more evidence found
supporting a link to 2FMT. Although 2FMT is reported to
contribute a roasted coffee aroma to certain wines [11], no
evidence of this was found during either sensory studies
conducted here. Both sensory panels described and rated wines
high in 2FMT (and PMT) as high in flint/struck-match/
mineral aroma rather than any roasted coffee-related attribute,
suggesting the context set by other red or white wine volatiles
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FIGURE 3: Regression coefficients from partial least squares models generated to relate the chemical composition of the 24 commercial
Chardonnay wines with aromas (a) flint, (b) peach, (c) passionfruit/grapefruit, (d) natural gas, (e) woody/vanilla, as well as sensory attributes
related to (f) overall consumer liking (n = 92), (g) consumer cluster 1 (n=62), and (h) consumer cluster 2 (n = 30) liking scores. Significant
variables shaded grey (1), not significant shaded in black (). Abbreviations of chemical compounds can be found in Table Sé6.

TABLE 4: F ratios, probability values', degrees of freedom (df), and mean square error (MSE) from the response surface model of quantitative
descriptive analysis aroma data from the individual PMT and 2FMT addition samples blocked by presentation replicate.

Factors and interaction

Attribute

Model PMT 2FMT PMT % 2FMT MSE
Citrus 6.08"** 1.53 13.90*** 0.02 0.085
Peach 21.01*** 8.18** 39.81%** 0.14 0.225
Flint 78.11%** 7.01** 152.70*** 3.90° 0.309
Apple/pear 21.35%** 0.083 41.63*** 2.09 0.108
Pineapple 8.25*** 3.51% 14.65*** 0.13 0.147
Floral 15.63*** 3.69" 34.90%** 0.01 0.223
Toasty 2.51* 3.25% 5.48" 1.53 0.219
Sweaty 4,62+ 1.36 10.33*** 0.02 0.202
Pungency 3.827 2.65 0.2 7.83*" 0.024
DF 3 1 1 1 69

Note: "Significance levels are as follows: *P < 0.05; **P < 0.01; ***P < 0.005; and *P < 0.10. df = degrees of freedom.

may affect the odour percept conferred. Ferreira [47] stated  the same study to impart toasty, burnt, and empyreumatic
PMT together with 2FMT can impart empyreumatic aromas to ~ notes at levels of 0.7 and 1.4 ng/L. Our concentration range of
some aged wines including Chardonnay, but also young wines, =~ PMT (2.6-40.6 ng/L) was again higher than that of Mateo-
based on the studies of Mateo-Vivaracho et al. [41] and Vivaracho et al. [41] and the effect was less pronounced
Tominaga et al. [2, 3], which is in some degree of agreement  compared to 2FMT. These differences may also be explained by
with the results presented here for high concentration ranges,  the use of a dearomatised wine in the 2010 report rather than

although our results provide evidence for a greater role of  a wine with all other aroma compounds still present.
2FMT. The addition studies reported by Mateo-Vivaracho et al.

[41] indicated that the low concentrations of 2FMT were de-  3.5. Consumer Acceptance and Associations with Sensory
scribed (by free choice notes) as increasing fruitiness and Properties. A selection of six of the wines from the QDA was
pineapple character, while contributing toasty and coffee nu-  assessed for consumer liking. The wines were selected to

ances above 5.3 ng/L. Our study did not find any evidence that ~ represent the range of sensory properties heavily loaded on
2FMT at low levels contributed fruity nuances; however, the =~ PC1 from the QDA (Figure 2), particularly targeting the
first addition step of 10ng/L was higher than their study.  range of flint aroma intensity while attempting to have basic
Conversely, for PMT, very low concentrations were reportedin ~ chemical composition measures such as alcohol and
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FIGURE 4: Response surface relating the intensity of flint aroma to the concentration of added 2-furylmethanethiol (2FMT) and phe-
nylmethanethiol (PMT) in Chardonnay base wine from the confirmatory odorant addition quantitative descriptive analysis. Presentation
replicated mean values of design points are displayed with those above (@) and below (Q) the response surface indicated.
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FIGURE 5: Mean liking scores for the total consumer sample as well as for two clusters of consumers for the six Australian Chardonnay wines,
AHI1 (m), TAS (m), MP (@), AH6 (O), YV1 (H), and AH9 () with varied intensity of flint/struck-match/mineral aroma. Fisher’s LSD value for

each consumer group (black bar).

titratable acidity as similar as practicable. Wines with other
characters such as overt bitterness or sweetness were not
included in the consumer test.

From the ANOVA of the consumer liking scores,
strong evidence was found (P =0.002, F=3.78) sup-
porting a difference across the wines. The mean liking
scores (n=92) are shown in Figure 5. Wines AH1 and TAS
were high in flint aroma intensity (mean values of 4.4 and
3.6), MP and AH6 were scored moderately (mean values

of 2.4), while wines YV1 and AH 9 were the lowest (mean
values of 1.1 and 1.0). The wines MP, YV1, and AH9 were
most well liked, with the high flint wines AH1 and TAS
liked the least. From the PLS-R (Figure S2), mean liking
scores were positively related to sweetness, viscosity, and
toasty flavour, with the model having a high calibration
predicted versus measured R* value of 0.98, although the
validation R* was relatively low (0.41) and the MP wine
was especially poorly predicted.
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There was evidence for two clusters of consumers based
on the liking scores (Figures 5 and S2). For cluster 1 (67% of
the consumers) the pattern of liking scores was similar to
that of the total sample of consumers, with the two high flint
wines (AH1 and TAS) not well liked. For cluster 2 (33% of
the consumers), the AH1 wine was the most well liked, while
the lowest flint intensity wine YV1 was liked the least, and
the PLS-R indicated that the toasty flavour was most strongly
and positively associated with liking for this cluster, flint
aroma being only moderately associated, while hotness was
strongly negatively associated.

This finding expands on the consumer test conducted
by Capone et al. [4] with unwooded research wines which
also found a consumer group who responded negatively
to samples with higher flint aroma. Overall wines with
low to moderate flint aroma were well accepted, while
those with high flint intensity could be considered po-
larizing to consumers. There was no difference found in
demographics or usage and attitudes between the two
clusters.

4. Conclusion

This study showed that the potent thiols, 2FMT and PMT,
are at concentrations of sensory significance in most
commercially produced Chardonnay wines from Australia.
PMT and 2FMT were confirmed to be associated with
“empyreumatic” nuances with 2FMT most strongly related
to flint/struck-match/mineral aroma. Challenging our
original hypothesis, the role of 2FMT is newly highlighted as
a major contributor to this character in Chardonnay, rather
than roasted coffee as suggested by previous reports [11]. The
flint/struck-match/mineral note was found to be polarizing
to consumer acceptance, with the largest proportion of
consumers responding negatively to wines high in this
character. Further work should assess the winemaking
practices responsible for the occurrence of PMT and 2FMT.
The odorant addition study demonstrated that different
volatile compounds can, when present in a complex natural
mixture such as wine, contribute to the same odour quality,
even if in isolation (such as assessed in water or on a smelling
strip) they are aromatically distinct. These findings em-
phasise the importance of pairing analytical quantification
with robust sensory evaluation such as QDA and the need
for confirmatory experiments when attempting to draw
conclusions from associational tests with commercial
samples. The inclusion of formal consumer testing can also
provide an extra layer of practical insight into the flavour
research.
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