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While winegrowers usually want to achieve consistent yield targets, there is a high degree of yield and price (and hence gross
revenue) variability in winegrape production. Te aim of this study was to determine whether there are diferences in yield and
revenue variability across climates, varieties, and regions in Australia. Tis was performed by estimating statistical models of the
impact of these three variables on the coefcient of variation of yield and gross revenue per hectare.Te results suggest that hotter
and drier regions exhibit lower interannual yield variability, something that in the past may have been largely explained by the use
of irrigation, but which may change in the future with climate change and higher water prices. Te results also showed that there
are sometimes diferences in yield and revenue variability, not only across regions, but also between varieties.

1. Introduction

Winegrowers appreciate low year-to-year variations in grape
yields. Yield variations are sometimes caused by extreme
events such as droughts [1] or high unexpected pest pres-
sures [2]. However, yield variability is mostly infuenced by
vine management and weather diferences across seasons
[3]. Growers often change their vineyard management
strategies to achieve more consistent yields and thereby
more consistent revenues. Yet, further research is needed to
better understand winegrape yield variability and to develop
techniques for stabilising yields [4]. Tis knowledge is in-
creasingly important because obtaining consistent yields is
becoming more difcult with climate change [5].

Te aim of this study was to determine whether there are
diferences in yield and revenue variability across climates,
varieties, and regions in Australia. Coefcients of variation
(CoV) were computed for diferent variety-by-region
combinations over the 2001-23 period, which were then
regressed on diferent variables. In doing so, insights into
overall yield and revenue variability throughout those years

could be provided. While some of the possible reasons
explaining yield and revenue variability will be discussed,
this study did not intend to provide a causal link between the
explanatory variables used in the models developed and
yield or revenue variability. Te study also did not seek to
identify the variables infuencing yield in a given season, for
which process-based models (e.g., Leolini et al. [6]) or panel
data models (e.g., Puga et al. [7]) may be more suitable.

2. Materials and Methods

2.1. Data. A new dataset developed by Anderson and Puga
[8] provides time series on area, production, and price by
variety and region, as well as many other variables and
indexes. Tese data are based on various sources including
the Australian Bureau of Statistics and Wine Australia, as
well as Vinehealth Australia for South Australia. Anderson
and Puga [9] provide a detailed explanation of the sources
and assumptions used in the compilation of that dataset. An
updated summary of those sources and assumptions is
provided in Note 1 of the Supplementary Information.
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Tese data were used to calculate the CoV of yield (i.e.,
production per hectare) and gross revenue per hectare
(revenue, hereafter). While variability in costs of production
also is highly relevant, cost data by region and variety are
unavailable to match the comprehensive yield and gross
revenue data available. Revenues were calculated using real
prices adjusted for infation based on the Consumer Price
Index (CPI) for the June quarter of each year, providing real
values in 2023 Australian dollars. Te CoV was calculated as
the ratio of the standard deviation to the mean. It therefore
provided a meaningful indicator to compare the degree of
variation between varieties, regions, or variety-by-region
combinations even though the means are very diferent.
For calculating the CoV, data from 2001 to 2023 were used,
after excluding the data for unidentifed varieties. Table 1

shows the CoV values for the regions and varieties with the
largest shares of area.

Climate data on growing season average temperature
(GST) and growing season precipitation (GSP) from
Anderson and Puga [8] were also used for the study. GST is
one of the most-used climate indexes to represent tem-
perature in viticulture [10, 11], and GSP is another com-
monly used index that has a high correlation with other
precipitation-related variables [12].

2.2. Statistical Models. With the main objective of uncov-
ering the extent to which yield variability difers across
regions with diferent GST and GSP, the following model
was estimated:

ln CoV Yieldv,r � α + β1GSTr + β2GSPr + φv + θ ln areav,r + εv,r. (1)

Te dependent variable is the natural logarithm of the
coefcient of variation of yield of variety v in region r, across
all the years for which there are data available for that variety
in that region. Te main variables of interest in this model
are the regional GST and GSP, of which β1 and β2 are their
respective coefcients. Te natural logarithm of the average
area of variety v in region r across the time period ln areav,r

serves as a control variable, and θ is its coefcient.Temodel
also includes variety dummy variables (φv) that control for
diferences in the CoV across varieties. Te term α is
a constant and εv,r is the error term.

With the same objective but for analysing revenue
variability, the following model was also estimated:

ln CoV Revenue per hav,r � α + β1GSTr + β2GSPr + φv + θ ln areav,r + εv,r. (2)

Te diference between models (1) and (2) is the de-
pendent variable, which in this case is the natural logarithm
of the coefcient of variation of revenue per ha of variety v in
region r, also across all the years for which there are data
available for that variety in that region.

In addition to model (1), another model was estimated,
in which the dependent variable is again the natural loga-
rithm of the coefcient of variation of yield given as

ln CoV Yieldv,r � α + φv + cr + θ ln areav,r + εv,r. (3)

Te diference between model (3) and model (1) is that
model (3) includes region dummy variables (cr) instead of
GST and GSP. Tese region dummies aimed to capture all
time-invariant observable and unobservable characteristics
of each region, including their climate. While the climate of
the regions might have changed between 2001 and 2023, we
consider climate as a region-specifc characteristic. Tat is
the reason why the region dummies aim to capture, among
other variables, the region’s GST and GSP. While including
GST and GSP is possible in models such as (3), however, it
leads to massive issues of multicollinearity, as evidenced by
the variance infated factors (VIFs) of the independent
variables of a model of that type (results discussed in Note 2
of the Supplementary Information). Terefore, by indirectly

controlling for more region-specifc characteristics, the
coefcients of the variety dummies are more reliable than
those of themodel (1). At the same time, the region dummies
in this model also provided information on diferences in
yield variability across regions.

Te climate variables in models (1) and (2) are in levels.
While using the natural logarithms is possible, using levels
leads to a straightforward interpretation in which a unit
increase in GST or GSP can be associated with a certain
percentage change in the CoV of yield or revenue. Moreover,
specifying climate variables in levels is a standard practice in
the literature, as using logs can sometimes lead to mis-
interpretation issues [13].

A similar model to (3) was also estimated, but in this case
only to analyse revenue variability, so the dependent variable
is the same as in model (2):

ln CoV Revenue per hav,r � α + φv + cr + θ ln areav,r

+ εv,r.

(4)

Tere was a two-fold justifcation for the use of the
natural logarithm of CoV as opposed to CoV inmodels (1) to
(4). First, this specifcation led to a more straightforward
interpretation of the coefcients: it was easier to analyse
proportional changes in the CoVs than changes in the CoVs
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themselves. Second, using the natural logarithm of the de-
pendent variable could help mitigate issues of hetero-
skedasticity and deal with outlying or extreme values by
narrowing the range of the variable [14].

Te CoV of both yield and revenue per ha was expected
to be smaller for those variety-by-region combinations with
larger areas, which was the reason behind the inclusion of
ln areav,r as a control variable in models (1) to (4). Te
intuition in the inclusion of this control variable is that larger
areas are correlated with more vineyards or growers, and we
expect a lower standard deviation of yield or revenue with
a greater number of vineyards or growers. From a statistical
viewpoint, this relates to the law of large numbers. Since this
control variable and the dependent variable in each model
were in natural logarithms, the θ coefcients were easy-to-
interpret elasticities.Tese specifcations look accurate based
on a visual analysis of the plots in Figure 1. Tese re-
lationships were less smooth and evident when graphing
each CoV against the area, as opposed to their natural
logarithms.

Models (1) to (4) could be straightforwardly estimated
using standard ordinary least squares (OLS) commands if
εv,r ∼ (N, σ2). However, each observation does not represent
a hectare, but rather an average over a number of hectares for

each variety in a given region. As such, it was assumed that
εv,r ∼(N, σ2/ωv,r), where the ωv,r are analytic weights. Te
analytic weights were set to be the average area across the
time period for each variety-by-region combination.

In addition to estimating these models using analytical
weights, the sandwich estimator of variance for obtaining
robust standard errors for models (3) and (4) was applied.
For models (1) and (2), since GST and GSP are region-
specifc variables, standard errors that allowed for intra-
group correlation were specifed using the clustered sand-
wich estimator so that these standard errors were clustered
at the regional level.

3. Results

Table 2 shows the estimation results of models (1) and (2).
Model (1) was observed to ft the data well, explaining 65%
of the variation in the natural logarithm of the CoV of
yield. By contrast, model (2) explained less than half
(28%) of the variation in its dependent variable compared
with model (1). As expected, the coefcients of the natural
logarithm of the area in both models were negative and
statistically signifcant, consistent with what was observed
in Figure 1.

Table 1: Yield, revenue per ha, coefcients of variation (CoV), and climate variables for the regions and varieties with a bearing area higher
than 2,000 ha in 2023.

Area (ha) Yield (t/ha) Revenue/ha (AUD) CoV yield CoV revenue (ha) GST (°C) GSP (mm)
Region
Riverland 19850 22.0 12601 0.63 0.83 22.0 131
Riverina 17108 14.8 7837 0.68 0.72 22.6 237
Barossa Valley 11445 6.2 9994 0.60 0.75 18.8 218
Murray Darling-Swan Hill (vic) 8722 19.0 12248 1.67 1.63 22.0 160
McLaren Vale 7160 7.0 13953 1.27 1.46 19.6 199
Murray Darling-Swan Hill (NSW) 6992 21.3 12974 1.14 1.07 22.4 154
Langhorne Creek 5864 10.8 16990 1.43 2.05 19.8 173
Margaret River 5592 4.9 9981 0.85 0.60 19.6 229
Coonawarra 5479 7.6 11247 0.69 0.81 16.9 283
Clare Valley 4973 4.7 7866 0.50 0.65 19.4 223
Padthaway 3608 9.5 13887 0.62 0.78 18.6 194
Adelaide Hills 3607 6.4 13378 0.79 0.95 17.8 293
Hunter Valley 2622 4.1 6473 1.13 0.86 22.3 565
Wrattonbully 2617 11.3 16656 0.69 0.92 18.3 220
Yarra Valley 2478 5.0 11400 0.84 0.57 17.6 531
Great Southern 2415 3.8 7203 1.00 0.71 18.3 344
Eden Valley 2195 5.0 9852 0.60 0.77 18.6 214
Tasmania 2069 5.3 19476 0.76 0.51 15.1 323
Variety
Syrah 43280 6.0 9891 0.98 0.80 19.2 322
Cabernet Sauvignon 26441 6.2 9598 1.46 1.26 19.3 322
Chardonnay 21512 7.1 11064 0.93 0.81 19.2 322
Merlot 8163 6.7 10112 1.07 0.89 19.2 315
Sauvignon Blanc 6462 8.7 13938 1.20 1.04 19.1 310
Pinot Noir 6029 7.1 12733 1.49 1.57 19.2 320
Pinot Gris 4892 11.2 19730 3.59 2.94 18.9 331
Sémillon 3800 9.3 11721 0.96 0.78 19.3 316
Riesling 3179 7.3 11400 2.12 1.88 19.0 309
Average yield and revenue per ha and coefcients of variation (CoV) based on data from 2001 to 2023. GST is the growing season average temperature and
GSP is the growing season precipitation.
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Te coefcients of GST and GSP in model (1) were
statistically signifcant. Te interpretation of the GST co-
efcient was that a 1°C higher GST was associated with an
8.2% lower CoV of yield (calculated as follows: (EXP
(coefcient)− 1)∗ 100). Te interpretation of the GSP co-
efcient is that a 10mm higher GSP is associated with a 1.1%
increase in the CoV of yield. Unlike the coefcients of GST
and GSP in model (1), these coefcients in model (2) were
not statistically signifcant.

Table 3 shows the results of models (3) and (4). Te
coefcients and standard errors of the natural logarithm of
the area in both models were similar to those obtained in
models (1) and (2), but the coefcients of determination
(R2) were higher than for models (1) and (2). Specifcally,
models (3) and (4) explained, respectively, 83% and 61% of
the variation in the dependent variable. Tese higher co-
efcients of determination were expected because models
(3) and (4) incorporated region dummy variables that
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Figure 1: Scatterplots showing each observation as a function of the natural logarithm of its coefcient of variation and the natural
logarithm of its area.

Table 2: Estimation results for models (1) and (2).

Model → (1) (2)

Dependent variable → ln_CoV_yield ln_CoV_revenue (ha)
Independent variable ↓ Coef SE Coef SE
GST (°C) −0.086∗∗∗ 0.027 −0.031 0.029
GSP (mm) 0.001∗ 0.001 −0.000 0.000
Variety dummy variables Yes Yes
Region dummy variables No No
ln_area −0.171∗∗∗ 0.023 −0.049∗ 0.057
Constant 1.656∗∗ 0.681 0.457 0.488
R2 0.651 0.281
Te dependent variables of models (1) and (2) are the natural logarithm of the coefcient of variation of yield and the natural logarithm of the coefcient of
variation of revenue per ha, respectively. GST is the growing season average temperature and GSP is the growing season precipitation. “Coef” stands for
coefcient and “SE” for robust standard errors. Statistical signifcance levels: ∗∗∗ �1%, ∗∗ � 5%, and ∗ � 10%.
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Table 3: Estimation results for models (3) and (4).

Model → (3) (4)

Dependent variable → ln_CoV_yield ln_CoV_revenue (ha)
Independent variable ↓ Coef SE Coef SE
Afus Ali 0.823∗∗ 0.390 −1.055∗∗∗ 0.087
Arneis −0.662∗∗∗ 0.139 −0.703∗∗∗ 0.117
Barbera −0.228∗ 0.127 −0.248 0.158
Cabernet Franc −0.060 0.074 0.009 0.100
Cabernet Sauvignon −0.019 0.032 0.016 0.026
Canada Muscat −0.587∗∗∗ 0.090
Cayetana Blanca −0.383 0.411 −0.087 0.137
Chardonnay −0.135∗∗∗ 0.029 0.216∗∗∗ 0.047
Chenin Blanc −0.133 0.138 −0.108 0.149
Colombard −0.264∗∗∗ 0.047 −0.161∗ 0.092
Crouchen −0.047 0.100 −0.114 0.070
Côt −0.129 0.091 −0.165 0.105
Dolcetto 0.009 0.140 −2.291∗∗∗ 0.449
Durif −0.116 0.161 −0.295∗∗∗ 0.101
Fiano −0.183 0.296 −0.106 0.330
Garnacha Tinta −0.157∗∗ 0.079 −0.271∗∗∗ 0.086
Gewürztraminer −0.167∗∗ 0.072 −0.084 0.106
Graciano −1.419∗∗∗ 0.364 −0.639 0.543
Grüner Veltliner −0.664∗∗∗ 0.076 −0.679∗∗∗ 0.093
Korinthiaki 0.962∗∗∗ 0.354
Lagrein −0.248∗∗∗ 0.093 −0.593∗∗∗ 0.088
Marsanne −0.117 0.195 −0.182 0.174
Mazuelo 0.604∗∗∗ 0.106
Merlot −0.231∗∗∗ 0.043 −0.057 0.055
Monastrell −0.014 0.266 −0.172 0.230
Montepulciano −0.367 0.282 −0.541∗∗ 0.237
Muscadelle 0.210 0.136 −0.302 0.319
Muscat Blanc à Petits Grains 0.275∗∗ 0.117 −0.029 0.138
Muscat Blanc à Petits Grains (R) −0.143 0.123 −0.326∗∗∗ 0.125
Muscat of Alexandria −0.163∗∗ 0.065 −0.640∗∗∗ 0.156
Nebbiolo −0.172 0.116 −0.119 0.116
Nero d’Avola −0.306 0.331 −0.265 0.421
Palomino Fino 0.426∗ 0.240 −0.060 0.143
Pedro Ximénez −0.409∗∗∗ 0.126 −0.598∗∗∗ 0.139
Petit Verdot 0.131 0.130 0.102 0.154
Pinot Gris 0.101 0.092 0.003 0.068
Pinot Meunier −0.285∗∗∗ 0.084 0.006 0.218
Pinot noir −0.155∗∗∗ 0.043 −0.174∗∗∗ 0.061
Prosecco −0.240∗ 0.133 −0.333∗∗ 0.165
Riesling −0.346∗∗∗ 0.088 −0.205∗∗∗ 0.063
Roussanne −0.315∗∗∗ 0.113 −0.573∗∗ 0.233
Ruby Cabernet 0.164 0.135 0.049 0.122
Sangiovese −0.139 0.096 −0.088 0.098
Sauvignon blanc −0.204∗∗∗ 0.045 −0.115 0.076
Savagnin Blanc −0.017 0.198
Sultaniye 0.844∗∗∗ 0.144 0.219 0.181
Sémillon −0.187∗∗∗ 0.056 −0.022 0.061
Taminga 0.142 0.113
Tarrango −0.357 0.510 −0.262∗∗∗ 0.089
Tempranillo 0.123 0.119 0.168 0.136
Touriga Nacional −0.535∗ 0.324 −0.561 0.362
Trebbiano Toscano −0.344∗ 0.180 −0.661∗∗∗ 0.096
Tribidrag −0.226 0.190 −0.156 0.208
Verdelho −0.172∗∗ 0.070 −0.085 0.072
Vermentino −0.394∗∗ 0.188 −1.374∗∗∗ 0.387
Viognier 0.001 0.084 0.139∗ 0.081
Adelaide Hills 0.064 0.058 0.175∗∗ 0.083
Adelaide Plains −0.075 0.099 0.362∗∗∗ 0.094
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Table 3: Continued.

Model → (3) (4)

Dependent variable → ln_CoV_yield ln_CoV_revenue (ha)
Independent variable ↓ Coef SE Coef SE
Alpine Valleys −0.092 0.085 0.054 0.084
Beechworth −0.088 0.102 0.185 0.203
Bendigo 0.033 0.061 0.236∗∗∗ 0.077
Big Rivers-other −0.067 0.118 0.120 0.091
Blackwood Valley 0.233∗∗∗ 0.088 0.350∗∗∗ 0.113
Canberra District 0.228∗∗∗ 0.080 0.162 0.114
Central Ranges-other 0.616∗∗∗ 0.097 0.466∗∗∗ 0.095
Central Victoria-other 0.204 0.274 0.434∗ 0.261
Clare Valley −0.103 0.089 0.159∗∗∗ 0.060
Coonawarra 0.153∗ 0.082 0.362∗∗∗ 0.061
Cowra 0.287∗∗∗ 0.105 0.327∗∗∗ 0.101
Eden valley −0.049 0.054 0.033 0.075
Fleurieu-other 0.415∗∗∗ 0.077 0.539∗∗∗ 0.108
Geelong −0.025 0.081 −0.539∗∗∗ 0.122
Geographe 0.030 0.083 0.227∗∗∗ 0.074
Gippsland 0.215∗∗ 0.101 −0.355∗∗ 0.157
Glenrowan −0.158∗ 0.087 −0.247 0.250
Goulburn Valley −0.265∗∗∗ 0.100 0.157∗∗ 0.077
Grampians −0.051 0.070 0.112 0.082
Granite Belt 0.454∗∗∗ 0.086 0.123 0.103
Great Southern 0.165∗∗ 0.071 0.215∗∗ 0.083
Greater Perth -other −0.474 0.154
Gundagai −0.016 0.101 −0.051 0.102
Hastings River 0.006 0.139
Heathcote −0.282∗ 0.165 −0.197 0.174
Henty −0.009 0.073 −0.289∗∗ 0.113
Hilltops −0.032 0.084 0.073 0.076
Hunter Valley 0.455∗∗∗ 0.054 0.340∗∗∗ 0.082
Langhorne Creek 0.129∗ 0.066 0.517∗∗∗ 0.056
Limestone Coast-other −0.024 0.050 0.234∗∗∗ 0.068
Macedon ranges 0.191∗∗ 0.083 0.046 0.115
Manjimup 0.263∗∗ 0.114 0.320∗∗ 0.157
Margaret River −0.044 0.051 −0.011 0.088
McLaren Vale 0.144∗ 0.079 0.321∗∗∗ 0.052
Mornington Peninsula 0.098 0.078 −0.152 0.130
Mudgee 0.649∗∗∗ 0.055 0.424∗∗∗ 0.075
Murray Darling-Swan Hill (NSW) −0.455∗∗∗ 0.091 −0.124 0.078
Murray Darling-Swan Hill (vic) −0.436∗∗∗ 0.056 −0.135∗∗ 0.068
North East Victoria-other 0.010 0.088 0.186∗ 0.110
Northern Rivers-other −0.414∗∗∗ 0.116 −0.157 0.160
Northern Slopes 0.399∗∗∗ 0.137 −0.114 0.106
Orange 0.093∗ 0.055 0.314∗∗∗ 0.079
Padthaway −0.095∗∗ 0.047 0.227∗∗∗ 0.061
Peel 0.116 0.142 −0.373∗∗ 0.157
Pemberton 0.199 0.181 0.185 0.305
Perricoota 0.530∗∗∗ 0.101 0.436 0.278
Perth Hills −0.067 0.263 −0.159∗ 0.091
Port Phillip-other −0.009 0.135 −0.117 0.127
Pyrenees 0.325∗∗∗ 0.081 0.316∗∗∗ 0.101
Qld-other 0.373∗∗ 0.160 −0.057 0.105
Riverina −0.667∗∗∗ 0.049 −0.194∗∗ 0.079
Riverland −0.648∗∗∗ 0.051 0.222∗∗∗ 0.057
Rutherglen 0.042 0.090 0.293∗∗∗ 0.077
SA-other 0.026 0.125 0.274∗∗∗ 0.066
South Burnett 0.867∗∗∗ 0.082 0.218∗∗ 0.100
South Coast-other −0.039 0.150 −0.337∗ 0.175
Southern Highlands 0.410∗ 0.222
Southern New South Wales-other 0.024 0.135 −0.086 0.135
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aimed to control for all time-invariant observable and
unobservable characteristics of each region, including both
GST and GSP.

Since models (3) and (4) controlled for these region-
specifc characteristics, they provided more reliable esti-
mates of the variety dummy variables than models (1) and
(2). Tese variety dummies, which were not reported in
Table 2 to save space, are shown in Table 3. Te base variety
selected was Syrah and the base region was the Barossa
Valley. Importantly, the coefcient and statistical signif-
cance of each variety dummy were computed with respect to
the base variety, which was Syrah in both models. Tis
variety was chosen as the base because it is the most-planted
variety in Australia, accounting for 30% of the country’s
bearing area. Te database used in this study (i.e., Anderson
and Puga [8]) uses Syrah instead of Shiraz as the prime name
for this variety, even though Shiraz is its more common
name in Australia. Te choice of the prime names is
explained in Note 3 of the Supplementary Information.
Anderson and Puga [8] provide a list of all varieties’ prime
names and their synonyms.

In addition to setting the base variety as Syrah, models
(3) and (4) were reestimated with the base variety selected
from among the next fve most-planted varieties: Cabernet
Sauvignon, Chardonnay, Merlot, Sauvignon Blanc, and
Pinot Noir.Te regression results were then used to estimate
the expected percentage diference in the CoV of a variety
when compared to the six most-planted varieties. Table 4
shows the estimates for the CoV of yield for the 27 most-
planted varieties, and Table 5 provides the same information
for the CoV of revenue per ha. Overall, these results sug-
gested variable and often substantial diferences across some
varieties in their CoV.

Besides showing variety dummy variables, Table 3
reports the region dummies for models (3) and (4). Te
Barossa Valley was set as the base region for both models
as it is a well-known wine region that is by far the largest

by bearing area after the three main hot irrigated regions
(i.e., Riverland, Riverina, and Murray Darling-Swan Hill).
Terefore, the coefcient and statistical signifcance of
each region dummy were computed with respect to the
Barossa Valley. Te estimates were used to compute the
expected diference in the coefcients of variation of yield
and revenue per ha of a region compared to the Barossa
Valley. Table 6 shows these expected diferences for the 27
largest regions.

4. Discussion

Te results of models (1) and (2), shown in Table 2, provided
insights into how regions with diferent climates might difer
in terms of yield and revenue variability. Hotter regions tend
to exhibit less yield variation, the same as drier regions. Tis
is consistent with the results (discussed in Note 4 of the
Supplementary Information) of the models similar to model
(1) but in which the independent variables of interest are the
natural logarithm of yield and the natural logarithm of real
price. Tese models suggest that regions with higher yields
and lower prices exhibit lower yield variation. Te main
inland hot and dry irrigated regions (i.e., Riverland, Riv-
erina, andMurray Darling-SwanHill) have higher yields and
lower prices when compared to most other regions in
Australia. Tere are a few possible explanations for these
diferences in yield variability. Hotter regions are less prone
to frosts, which may frequently have negative impacts in the
cooler regions of Australia [7]. Drier regions may also be less
susceptible to the major grape diseases, which are exacer-
bated by higher precipitation [15].

Tat said, the main explanation for these diferences in
yield variability could be related to the production systems of
the regions. Most regions that are hot and dry are irrigated
regions, meaning that growers in these areas may often reach
their targeted yields by irrigating either more or less.
However, in drought years, even irrigated regions may have

Table 3: Continued.

Model → (3) (4)

Dependent variable → ln_CoV_yield ln_CoV_revenue (ha)
Independent variable ↓ Coef SE Coef SE
Strathbogie Ranges 0.062 0.145 0.114 0.315
Sunbury 0.191∗ 0.108 −0.101 0.336
Swan District 0.090 0.149 0.116 0.129
Tasmania −0.300∗∗∗ 0.066 −0.503∗∗∗ 0.107
Tumbarumba 0.117∗ 0.071 −0.069 0.145
Upper Goulburn 0.404∗∗∗ 0.128 0.462∗∗∗ 0.119
WA-other −0.312∗∗ 0.146 −0.057 0.131
Western Plains 0.656∗∗∗ 0.247 0.025 0.283
Western Victoria-other 0.167 0.133 0.257∗∗ 0.122
Wrattonbully 0.144 0.098 0.390∗∗∗ 0.093
Yarra Valley −0.041 0.052 −0.080 0.090
ln_area −0.110∗∗∗ 0.014 −0.027∗ 0.015
Constant −0.117 0.121 −0.494∗∗∗ 0.129
Te dependent variables of models (1) and (2) are the natural logarithm of the coefcient of variation of yield and the natural logarithm of the coefcient of
variation of revenue per ha, respectively. “Coef” stands for coefcient and “SE” for robust standard errors. Statistical signifcance levels: ∗∗∗ �1%, ∗∗ � 5%, and
∗ � 10%.
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lower yields, because grower allocations of water tend to
decrease and water prices spike in those years. With climate
change, droughts are projected to become more prevalent in
the future [16], meaning that these hot and dry regions may
have higher yield variability, primarily due to lower yields in
drought years.

Perhaps surprisingly, the results did not indicate that
regions with a certain climate type exhibited more or less
variation in revenue. Te GSTand GSP coefcients in model
(2) were not statistically signifcant. Tis observation was
also in line with the coefcient of determination (R2) of
model (2) being less than half that of model (1). Tis may be

Table 4: Expected diference (%) in the coefcient of variation of yield of a variety when compared to the six most-planted varieties.

Variety Area (%) S CS C M SB PN

Cabernet franc 0.2 –6 –4 8 19 16 10

Cabernet sauvignon 18.4 –2 12 24 20 15

Canada muscat 0.2 –44 –43 –36 –30 –32 –35

Chardonnay 14.8 –13 –11 10 7 2

Chenin blanc 0.3 –12 –11 0 10 7 2

Colombard 1.0 –23 –22 –12 –3 –6 –10

Côt 0.4 –12 –10 1 11 8 3

Durif 0.6 –11 –9 2 12 9 4

Garnacha tinta 1.3 –15 –13 –2 8 5 0

Gewürztraminer 0.5 –15 –14 –3 7 4 –1

Merlot 5.6 –21 –19 –9 –3 –7

Monastrell 0.6 –1 1 13 24 21 15

Muscat blanc à petits grains 0.7 32 34 51 66 61 54

Muscat of alexandria 1.3 –15 –13 –3 7 4 –1

Petit verdot 0.8 14 16 30 44 40 33

Pinot gris 3.4 11 13 27 39 36 29

Pinot noir 4.2 –14 –13 –2 8 5

Prosecco 0.2 –21 –20 –10 –1 –3 –8

Riesling 2.2 –29 –28 –19 –11 –13 –17

Ruby cabernet 0.5 18 20 35 48 45 38

Sangiovese 0.3 –13 –11 0 10 7 2

Sauvignon blanc 4.4 –18 –17 –7 3 –5

Sémillon 2.6 –17 –15 –5 4 2 –3

Syrah 30.1 2 14 26 23 17

Tempranillo 0.6 13 15 29 42 39 32

Verdelho 0.7 –16 –14 –4 6 3 –2

Viognier 0.5 0 2 15 26 23 17

Average of above –9 –7 5 16 13 7

Average of all varieties –4 –2 10 21 18 12

“Area (%)” refers to the percentage of winegrape area planted to a variety in Australia as of 2023. Only those varieties with an area share higher than 0.2% are
shown in this table. Tose varieties are compared to the six most-planted varieties in the last six columns. S� Syrah; CS�Cabernet Sauvignon;
C�Chardonnay; M�Merlot; SB� Sauvignon Blanc; PN�Pinot Noir. Each number represents the percentage diference in the coefcient of variation of yield
that is expected from a variety in the frst column when compared to one of the varieties in the last six columns. For example, Chardonnay is expected to have
a coefcient of variation of yield that is 13% lower than the one of Syrah or 10% higher than the one ofMerlot.Te colour represents the level of signifcance of
the coefcient used for computing each number: significant at the 1% level, significant at the 5% level, and significant at the 10% level, and not statistically
signifcant when not highlighted. All these computations are based on the results of model (3). “Average of above” is the unweighted average of the varieties in
the frst column; “average of all varieties” is the unweighted average of the varieties in the frst column and all the others with an area lower than 2%.
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because, while hotter and drier regions may have lower yield
variability, this lower variability may be ofset by higher price
variability. Indeed, a similar model to (1) and (2) but with the
natural logarithm of real price as a dependent variable

(instead of the natural logarithm of yield or revenue per ha)
suggested that the hotter and drier regions do indeed exhibit
more price variation (results discussed in Note 5 of the
Supplementary Information).

Table 5: Expected diference (%) in the coefcient of variation of revenue per ha of a variety when compared to the six most-planted varieties.

Variety Area (%) S CS C M SB PN

Cabernet franc 0.2 1 –1 –19 7 13 20

Cabernet sauvignon 18.4 2 0 –18 8 14 21

Canada muscat 0.2 –8 –10 –26 –3 3 9

Chardonnay 14.8 24 22 0 31 39 48

Chenin blanc 0.3 –10 –12 –28 –5 1 7

Colombard 1.0 –15 –16 –31 –10 –5 1

Côt 0.4 –15 –17 –32 –10 –5 1

Durif 0.6 –26 –27 –40 –21 –17 –11

Garnacha tinta 1.3 –24 –25 –39 –19 –14 –9

Gewürztraminer 0.5 –8 –10 –26 –3 3 9

Merlot 5.6 –6 –7 –24 0 6 12

Monastrell 0.6 –16 –17 –32 –11 –6 0

Muscat blanc à petits grains 0.7 –3 –4 –22 3 9 16

Muscat of alexandria 1.3 –47 –48 –58 –44 –41 –37

Petit verdot 0.8 11 9 –11 17 24 32

Pinot gris 3.4 0 –1 –19 6 12 19

Pinot noir 4.2 –16 –17 –32 –11 –6 0

Prosecco 0.2 –28 –29 –42 –24 –20 –15

Riesling 2.2 –19 –20 –34 –14 –9 –3

Ruby cabernet 0.5 5 3 –15 11 18 25

Sangiovese 0.3 –8 –10 –26 –3 3 9

Sauvignon blanc 4.4 –11 –12 –28 –6 0 6

Sémillon 2.6 –2 –4 –21 4 10 16

Syrah 30.1 0 –2 –19 6 12 19

Tempranillo 0.6 18 16 –5 25 33 41

Verdelho 0.7 –8 –10 –26 –3 3 9

Viognier 0.5 15 13 –7 22 29 37

Average of above –7 –9 –25 –2 4 10

Average of all varieties –20 –21 –36 –15 –10 –4

“Area (%)” refers to the percentage of winegrape area planted to a variety in Australia as of 2023. Only those varieties with an area share higher than 0.2% are
shown in this table. Tose varieties are compared to the six most-planted varieties in the last six columns. S� Syrah; CS�Cabernet Sauvignon;
C�Chardonnay; M�Merlot; SB� Sauvignon Blanc; PN�Pinot Noir. Each number represents the percentage diference in the coefcient of variation of
revenue per ha that is expected from a variety in the frst column when compared to one of the varieties in the last six columns. For example, Cabernet
Sauvignon is expected to have a coefcient of variation of revenue per ha that is 18% lower than the one of Chardonnay or 21% higher than the one of Pinot
Noir. Te colour represents the level of signifcance of the coefcient used for computing each number: significant at the 1% level, significant at the 5% level,
and significant at the 10% level, and not statistically signifcant when not highlighted. All these computations are based on the results of model (4). “Average
of above” is the unweighted average of the varieties in the frst column; “average of all varieties” is the unweighted average of the varieties in the frst column
and all the others with an area lower than 2%.
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Winegrape varieties were also observed to difer in their
yield variability over time. Tese diferences across varieties
were often both statistically and agronomically/economi-
cally signifcant when compared to the six most-planted
varieties (Table 4). Varieties such as Cabernet Sauvignon,
Muscat Blanc à Petits Grains, Petit Verdot, Pinot Gris, Ruby
Cabernet, Syrah, Tempranillo, and Viognier tend to exhibit
higher yield variability. On the other hand, varieties such as

Canada Muscat, Colombard, Riesling, Sauvignon Blanc,
Sémillon, and Verdelho were observed to have more variable
yields over the years studied.

Overall, a clear pattern in yield variability based on the
colour of the varieties was not observed, which was evi-
denced by further analysis that suggested that there was no
statistically signifcant diference in yield variability between
red and white varieties (results discussed in Note 6 of the

Table 6: Expected diferences (%) in the coefcients of variation of yield and revenue per ha of a region when compared to Barossa Valley.

Region
Area CoV diference (%)

ha % Yield Revenue (ha)

Mudgee 1909 1.3 91 53
Hunter valley 2622 1.8 58 41

Pyrenees 878 0.6 38 37

Cowra 930 0.6 33 39

Great southern 2415 1.7 18 24

Coonawarra 5641 3.9 17 44

Wrattonbully 2696 1.9 16 48

Mclaren vale 7189 5.0 15 38

Langhorne creek 5812 4.0 14 68

Mornington peninsula 901 0.6 10 -14

Orange 1061 0.7 10 37

Swan district 893 0.6 9 12

Adelaide hills 3587 2.5 7 19

Rutherglen 790 0.5 4 34

Geographe 788 0.5 3 25

Yarra valley 2478 1.7 -4 -8

Margaret river 5592 3.9 -4 -1

Eden valley 2267 1.6 -5 3

Padthaway 3742 2.6 -9 25

Clare valley 4952 3.4 -10 17

Goulburn valley 1211 0.8 -23 17

Heathcote 1686 1.2 -25 -18

Tasmania 2069 1.4 -26 -40

Murray darling -swan hill (Vic) 8722 6.0 -35 -13

Murray darling -swan hill (NSW) 6992 4.8 -37 -12

Riverland 20054 13.8 -48 25

Riverina 17108 11.8 -49 -18

“Area” refers to the winegrape area planted in a region in Australia as of 2023. Only those regions with an area share higher than 0.5% are shown in this table.
Each number in the last two columns represents the percentage diference in the coefcient of variation of yield or revenue per ha that is expected in a region
when compared to Barossa Valley. For example, Mudgee is expected to have a coefcient of variation of yield that is 91% higher than that of the Barossa Valley.
Te colour represents the level of signifcance of the coefcient used for computing each number, also compared to Barossa Valley: significant at the 1% level,
significant at the 5% level, and significant at the 10% level are not statistically signifcant when not highlighted. All these computations are based on the
results of models (3) and (4).
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Supplementary Information). Tis fnding difers from the
previous observations reported by Fernandez-Mena et al.
[17] which indicated that white winegrape varieties showed
larger diferences between actual and targeted yields than red
varieties. However, the two studies are not directly com-
parable because the methods and explanatory variables in
both studies difer and the study areas are not the same
(Languedoc-Roussillon in France versus Australia).

Similar to the observations for yield variability, it was
found that grape varieties frequently difered in their rev-
enue variability. When observed, these statistically and
economically signifcant diferences in revenue variability
were evident when comparing varieties (Table 5). Char-
donnay, Tempranillo, and Viognier were observed to have
more variable revenues over the years studied. Meanwhile,
Colombard, Côt, Durif, Garnacha Tinta, Muscat of Alex-
andria, Pinot Noir, Prosecco, Riesling, and Verdelho
exhibited lower revenue variation.

Despite some diferences in the varieties which dem-
onstrated the highest variability in either yield or revenue, it
was found in general that the varieties that exhibited higher
yield variation also exhibited greater revenue variation, and
vice versa. Unlike with yields, there appeared to be overall
diferences in revenue variation based on the colour of the
varieties. Further statistical analysis suggested that on av-
erage, white varieties exhibited 9.5% higher CoVs than red
varieties, and that diference was statistically signifcant at
the 5% level (results discussed in Note 7 of the Supple-
mentary Information).

Regions also difered in their degree of yield and revenue
variation, and the interregional diferences observed were
often large (Table 6). Te regions with less yield variability
were often hotter and drier, and included the main three hot
irrigated regions (i.e., Riverland, Riverina, and Murray
Darling-Swan Hill). However, there were some exceptions,
notably Tasmania. Regions exhibited levels of revenue
variability that were in line with their yield variability, al-
though this was not always the case. Te Riverland was the
most extreme example of such a case, as this region has a low
level of yield variability but a high level of revenue
variability.

Based on the price dynamics of winegrapes, in years with
higher yields, the price would be expected to be lower due to
a higher supply of winegrapes, if demand remains constant
[18].Terefore, it might be expected that regions would have
greater diferences in yield than in revenue variability.
However, the diferences between yield and revenue vari-
ability were observed to have similar magnitudes across
varieties (Tables 1, 4 and 5) and regions (Tables 1 and 6).

To address the main reasons which might have infu-
enced yield variability in the time period under study, it must
be noted that wine-producing countries such as Australia
difer from Europe in that many geographical indications of
European countries place limits on winegrape yields [19].
Tat said, in winegrowing countries such as Australia,
growers may sometimes purposely reduce yields in order to
achieve quality targets [20]. For example, 10% of Australia’s
grape growers perform crop thinning, and in some regions
that proportion may be more than 50% [21]. However, most

of Australia’s grape production is not subject to crop
thinning, and target yields are usually set at higher levels.
Terefore, interannual variations in yield in Australia could
mostly be explained by weather events, including droughts,
and by management practices (see review by
Clingelefer [4]).

While there has been a substantial body of research
related to yield variability, there are still some areas in which
a lack of knowledge exists. An example of such an area
relates to the degree to which alternate bearing afects
winegrape production. Alternate bearing is a phenomenon
in which a year with high yields is followed by a lower-
yielding year, and vice versa. Since this phenomenon is
induced by weather events, regional weather tends to syn-
chronise alternate bearings in farms that are located within
the same region, usually leading to biennial diferences in
yields [22]. Alternate bearing is very evident in perennial
crops such as apple, olive, mango, citrus, pistachio, litchi,
dates, and avocado [23]. Smith and Samach [24] argue that
grapes do not exhibit a great degree of alternate bearing due
to canopy management and other strategies. Tat said, the
degree to which alternate bearing manifests in grapes is still
unknown, and there is some evidence of this phenomenon
for table grapes in some Australian regions (see Dahal et al.
[25]). However, this phenomenon is less clear-cut in the case
of winegrapes, and requires further investigation before it
could be considered as a legitimate driver of yield variability.

Despite the usefulness of the methods in this study, there
were some limitations that are worth noting. One relates to
the cross-sectional nature of our statistical analyses. Trends
in yields or revenues could lead to higher CoVs.Tese trends
in yields were not quite evident from the data, but trends in
prices could be more easily distinguished for certain variety-
by-region combinations. Fortunately, using real revenues
decreased this issue.

At the same time, it might also be expected that diferent
results across periods might be due to the impact of changes
in planting areas and/or even in the climates within regions.
While it could be possible to divide the dataset into two
separate periods to attempt to observe diferences in the
impact of variables such as GST and GSP across these pe-
riods, it was chosen not to do so due to the statistical ad-
vantages of working with a longer time series and larger
sample sizes. Tat said, Note 8 of the Supplementary In-
formation discusses estimates of models (1) to (4) with the
data divided into two periods: 2001–2012 and 2013–2023.
Research which aims to analyse interannual variation could
use a panel data framework rather than a cross-sectional
approach such as the one used in the current study. Tis is
because panel data methods allow one to identify the impact
of growing season weather and other drivers of seasonal
yields (Blanc and Schlenker [26]).

Another potential issue is dealing with the (in practice
incorrect) assumption that GSP and GST have the same
efects across variety-by-region combinations. Tis might
likely be also an issue when using panel data, as encountered
by Puga et al. [7]. In the context of the current study, these
diferences could have been estimated using subsets of data
for diferent regions. However, doing so would have
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decreased both the sample sizes and spectrum of GSTs and
GSPs across regions, rendering models (1) and (2) less
appropriate in their goal of determining the average infu-
ence of climatic variables on the CoVs of yield and revenue.

Another limitation may also relate to the use of the CoV
as an index for measuring variability. Due to its mathe-
matical formula, the CoV gives equal weight to positive and
negative deviations from the average yield or revenue. Fu-
ture research could use other indices or techniques that
might allow for the decomposition of this variability into
positive and negative shocks. Tat is, positive or negative
efects on yield or revenue variation.

Te CoV of revenue could also be decomposed by an
alternative approach, that is, using yield and price variability.
Note 9 of the Supplementary Information discusses esti-
mations using the CoV of real price as the dependent
variable. Yet, further research could look at more formal
treatments of this type of decomposition, perhaps based on
the work of Piggott [27], who introduced a method for
decomposing revenue variation into components due to
supply variability, demand variability, and an interaction
between them. Subsequent research on variability de-
composition might also be useful (e.g., Qiao et al. [28]).

5. Conclusion

Hotter and drier regions exhibit lower interannual yield
variability. Tis may primarily be explained by growers in
these regions having more options to irrigate their vines.
However, in the wake of climate change, and with higher
water prices in drier years, Australia’s wine regions may
expect higher yield variability in the future than was ob-
served over the period of our study. Furthermore, despite
having less variable yields, growers in hotter and drier re-
gions experience similar levels of revenue variability to those
in cooler and wetter regions, due to greater price variability.

It was also evident from the analysis that there are
diferences in yield and revenue variability across varieties.
Possible explanations are related to management practices
and the impact of weather events, including droughts.
However, more research is needed to better understand and
quantify the impact of the mechanisms infuencing yield
variability, including diferences across varieties. A better
understanding will also be important in the future, con-
sidering that revenues appeared to vary as much as yields, so
this knowledge may help growers to stabilise both yields and
revenues, for example, by guiding choices regarding new
planting material.
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