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Most of the existing smoke detection methods are based on manual operation, which is difficult to meet the needs of fire
monitoring. To further improve the accuracy of smoke detection, an automatic feature extraction and classification method based
on fast regional convolution neural network (fast R-CNN) was introduced in the study. This method uses a selective search
algorithm to obtain the candidate images of the sample images. The preselected area coordinates and the sample image of visual
task are used as network learning. During the training process, we use the feature migration method to avoid the lack of smoke
data or limited data sources. Finally, a target detection model is obtained, which is strongly related to a specified visual task, and it
has well-trained weight parameters. Experimental results show that this method not only improves the detection accuracy but also
effectively reduces the false alarm rate. It can not only meet the real time and accuracy of fire detection but also realize effective fire
detection. Compared with similar fire detection algorithms, the improved algorithm proposed in this paper has better robustness

to fire detection and has better performance in accuracy and speed.

1. Introduction

In the process of rapid economic development in today’s
cities, people’s lives and property as well as the normal
operation of enterprises are often threatened by fire. Fire has
the characteristics of suddenness and great harm [1, 2], and
there is a clearly realistic demand for fire detection and early
warning. At present, there are three fire detection and alarm
methods: sensor based, image processing, and depth
learning.

The causes and places of fire are diverse, which hinder
the fire early warning and fighting. The detection method of
traditional sensors is to use a variety of sensors to detect the
smoke, flame, heat, and other signals generated during fire.
The purpose of distinguishing fire is achieved by analyzing
different phenomena, such as the temperature sensor for
detecting heat change and the smoke sensor for detecting
smoke concentration in the air. These signals are processed
by sensing the changes of different parameters, to detect
whether there is a fire. At present, the main types of fire
detectors are heat-sensing detectors, light-sensing detectors,
and smoke-sensing detectors. These traditional detectors are

cheap and accurate, but they generally have some defects
that are difficult to solve. For example, due to the relatively
long time required for the occurrence of smog propagation
and temperature rise, the response delay of traditional
sensors will inevitably occur. In addition, the sensor is
usually installed close to the fire point and exposed to a large
amount of dust for a long time, which makes the traditional
sensors vulnerable to failure. Moreover, they are especially
unsuitable for fire detection in places with high fire hazards,
such as tall space or outdoor scenes. The development of
more effective and reliable detection methods has always
been the direction of fire control efforts. Effective identifi-
cation of smoke in the early stage of fire has important
theoretical significance and application value [3].

The traditional detection method based on image pro-
cessing is to extract the dynamic and static features of flame
or smoke from video by image processing technology and
then determine whether there is a fire by recognition al-
gorithm. To make effective use of the existing video mon-
itoring hardware resources, the research on video-based fire
detection technology has important theoretical and appli-
cation value. The fire prevention method based on video
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monitoring is a noncontact fire detection way based on
machine vision, which was especially suitable for solving fire
detection problems in large space, outdoor, and other places
[4]. This kind of method not only has strong anti-inter-
ference ability and fast response speed but also has the
advantages of wide application range and low cost. It has
become an important interdisciplinary research field in fire
detection methods.

The traditional smoke identification methods usually use
physical signals for monitoring. For example, Yamada [5]
proposed a smoke sensor based on a layer-by-layer self-
assembled electrolyte membrane for smoke perception
recognition. Keller et al. [6] proposed the use of photo-
acoustic sensors for flame smoke monitoring. Cheon [7]
proposed the use of temperature sensors and smoke sensors
for flame smoke identification. However, this method has a
strong dependence on the environment. If the surrounding
environment changes, the recognition accuracy will decrease
sharply or even fail.

The detection method based on deep learning is to train
the fire detection model using the marked fire image and
then input the image to be tested into the model for rec-
ognition. The achievements of the image processing and
pattern recognition method in recent years provide a new
solution for smoke recognition. Yu et al. [8] used the video
smoke monitoring method on the basis of optical flow and
determined the moving pixels and areas in the video through
the background estimation method. The Lucas-Kanade
method is used to extract optical flow characteristics. Abadi
et al. [9] proposed the smoke recognition using the machine
vision. In this method, the Gaussian mixture model is used
to extract the preselected smoke region, and the dynamic
and static characteristics of smoke are obtained. Finally,
support vector machine was used to train and predict the
model. Compared with the existing smoke recognition
technology based on physical signal, this method effectively
reduces the cost and improves the accuracy and stability of
recognition.

To further improve the effectiveness and accuracy of the
smoke recognition method, we propose a smoke recognition
method based on fast R-CNN. That is, by reducing space
complexity and time complexity, the neural network
training process does not need to be graded, and the effi-
ciency and accuracy in the detection process are improved.

2. Related Work

The ever-changing shapes and colors of smoke and the
difficulty in controlling the movement rule bring great
challenges to the video smoke detection. Many researchers
have made full use of the various properties of smoke, such
as turbulence and fluttering, and devoted themselves to
analyzing the essential characteristics of smoke.

The movement pattern of the target provides important
information for smoke detection. Guillemant et al. [10] used
grayscale embedding and other methods to generate the
linked table, then extracted the moving characteristics of the
target based on the table to detect whether there is smoke,
and proposed a fire monitoring method. Kopilovic et al. [11]
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extracted the distribution entropy in the direction of moving
optical flow to explore the motion characteristics of smoke,
so as to realize smoke detection. The fuzziness and fluctu-
ation of smoke with time were studied by wavelet transform.
Tung et al. [12] studied a four-level video tracking and smoke
monitoring algorithm. Firstly, the approximate median
method is used to detect the moving area, and then, the fuzzy
c-means method is used to realize the clustering analysis of
the moving area to obtain the area where smoke may appear,
and then, the spatiotemporal characteristics of the area are
extracted. Finally, the support vector machine (SVM) is used
to analyze and judge and get the results. Yuan Feiniu et al.
[13] explored a rapid detection model of translucent
shielding with high-pass filtering. Through the study of
smoke motion law, a fast smoke detection method inte-
grating image and color saturation monitoring was put
forward. On this basis, the elimination technology of isolated
noise and chaotic motion interference is further studied.

How to extract the color and texture features of smoke in
the process of smoke detection is very important. In the RGB
model, the smoke gray values of the three channels are very
close, mainly distributed between 80 and 220. Krstini et al.
[14] compared the RGB, YCbCr, CIELab, and HSI color
model and put forward the characteristics which reflect the
smoke of the HSI model. Gubbi et al. [15] studied a smoke
detection method based on wavelet transform and support
vector machine. Geometric mean, inclination, arithmetic
mean, kurtosis, and entropy are extracted from the obtained
subimages to describe the variation characteristics of smoke.
The smoke detection method based on fused images by
means of image separation was proposed. The method re-
quires the fusion image of smoke and background to be
calculated, and the smoke opacity is solved by the optimi-
zation method. Yuan [16] studied a smoke monitoring
method based on pyramid multiscale feature fusion. It
adopted the method of regular partition of detection window
to reduce the shape dependence generated by the AdaBoost
method, so as to propose a robust video smoke feature.

According to different applications, the existing smoke
monitoring methods based on video images are mainly
divided into two categories. One type of smoke detection
algorithm is combined with flame detection, which focuses
more on the framework suitable for both flame detection
and smoke detection. The other type focuses on smoke
detection and puts forward more revealing methods to
improve detection accuracy and reduce false positive rate.
No matter which of the two algorithms is used, the basic
detection framework can be summarized, which is divided
into video image preprocessing, extraction of suspected
smoke area, description of smoke characteristics, and smoke
recognition.

3. Algorithm Implementation

Deep learning theory has also gained extensive attention in
the research field of fire recognition. Convolution neural
network (CNN) extracts image features, uses multiple
convolution cores to realize the construction of low to high
and local to global features, fuses feature information in the



Advances in Multimedia

final full connection layer, and recognizes fire images with
the help of Softmax algorithm [17]. Compared with the
traditional flame recognition algorithm of artificially
selecting image features, this method can obtain more di-
verse and comprehensive features, improve the accuracy of
fire recognition, and reduce the false alarm rate of the al-
gorithm model [17, 18].

It is known from the existing research that smoke
identification provides an important basis for fire early
warning. Traditional machine learning and deep learning
methods require more data and cannot be directly applied to
smoke recognition. The delay data of smoke recognition
based on fixed scene is relatively single and the model
generalization ability is weak when the environment such as
smoke scene is changed. Therefore, in this paper, the feature
extraction layer in the pretrained VGG-16 model on the
ImageNet dataset, which was also image data, is migrated to
the classification task of the target dataset. The feature ex-
traction capability of the model is migrated, so as to expand
the application scope of the smoke recognition method. The
feature extraction capability is contains edge feature ex-
traction capability, texture feature extraction capability,
shape, and other high-level abstract feature extraction
capability.

Although there is a certain difference between ImageNet
data and target smoke recognition data, there are some
invariable universal features at the feature level. High-level
abstract features are edges, textures, and shapes. These
features are common to both ImageNet datasets and target
smoke datasets. Therefore, feature transfer based on iso-
morphism space can be carried out.

3.1. The Model Flowchart of Transfer Learning. The definition
of transfer learning is very broad. There are many aliases of
transfer learning technology in relevant research, such as
learning to learn, life-long learning, multitask learning,
knowledge transfer, and metalearning. Multitask learning
technology is most closely related to transfer learning. This
technology attempts to train multiple unrelated tasks at the
same time, so as to find the similarities between tasks and
guide the learning of a single task according to the same
characteristics. Since 2005, transfer learning has given a new
connotation transfer learning to learn knowledge from one
or more source tasks and then use knowledge to guide the
learning of target tasks [19]. This definition further defines
the purpose of transfer learning. Different from multitask
learning, transfer learning only trains the source task and
learns knowledge from it, rather than training the source
task and target task at the same time. The following figure
shows the difference between traditional machine learning
and transfer learning. For different tasks, traditional ma-
chine learning needs separate training models, while transfer
learning only needs training source task models, as shown in
Figure 1.

Deep learning has requirements for the amount of data.
In the field of fire alarm, the source of image annotation data
is very limited, resulting in easy overfitting of the model and
reducing the recognition effect, while transfer learning can

effectively avoid the problem of overfitting and improve the
recognition accuracy when there are few datasets [20, 21].
Traditional machine learning needs a large amount of la-
beled training data. Without these labeled data, the trained
model will perform poorly, and labeling a large amount of
data requires a lot of time and manpower. The transfer
learning does not need too much annotation data. It can use
the knowledge or model learned in the source domain to be
applied to the target domain to complete specific tasks.

The construction of a new discrimination model using
transfer learning mainly includes the following aspects.
Firstly, we cut the original image, enhance the data, and
normalize it as the initial dataset. Secondly, divide the
dataset into training set, verification set, and test set, then
load the pretrained model on the ImageNet dataset, reset the
full connection layer, and then put the training set in the
pretrained model for training, respectively. In the training
process, the model is finetuned and a new model is trained.
Then, the model is evaluated and tested through the veri-
fication set and test set, and the optimal model with mi-
gration ability is selected for smoke image detection at the
fire scene.

Figure 2 indicates the flowchart of transfer learning,
which mainly includes four parts. First, the data are pre-
processed. In the preprocessing stage, all image data are
resized according to corresponding categories (unified into
three channels). The size of the image is 3*150*150 after
random transformation such as random rotation, cutting,
flipping, and normalization. Secondly, a network based on
deep transfer learning is constructed. In this process, a fully
connected network was pretrained using VGG-16 network
within smoke dataset. The specific procession is to take the
smoke dataset as the input to obtain the convolution part
output in the VGG-16 network trained in ImageNet. This
output is then used to train a fully connected network. Then,
the reserved parameters of convolution part in the VGG
network trained in ImageNet are transferred. The fully
connected network of the previous pretraining is connected
to obtain the learning model based on deep migration. Then,
the model is trained and the parameters are adjusted, and
finally, the model is predicted.

3.2. The Core Process of Fast R-CNN. In the new fast R-CNN
structure, feature extraction, candidate box extraction,
bounding box regression, and classification are all integrated
into one network, which improves the model performance,
especially the detection speed to a great extent. Fast R-CNN
is mainly composed of Conv layers, Region Proposal Net-
works (RPN), Roi Pooling, and Classification [21].

The input objects of Fast R-CNN mainly include image
samples and calibration parameters [22]. By calculating the
coverage of the calibration box and object proposals for each
sample image, a set of regions of interest (Rol) relative to
each sample image can be known. Table 1 lists the specific
composition of ROI for each image. Convolution neural
network mainly uses partial convolution layer and maxi-
mum pool layer to obtain the convolution attribute of
samples, which is shown in Figure 2. Then, the ROI pool
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FIGURE 2: The model flowchart of transfer learning.

layer obtains the normalized feature vector through the
convolution features in the region of interest.

When these eigenvectors are processed in fully con-
nected layers, the results can be shared and enter different
layers, respectively. For softmax regression calculation, the
probability estimation value of class objects is calculated by
one layer, and the other layer completes the data output to
obtain the detection frame coordinate value of class objects
on the image.

3.3. Rol Pool Layer Calculation. ROI pool layer mainly
converts the ROI characteristic matrix into usable nor-
malized characteristic matrix through the largest pool layer
in fixed spatial amplitude H x W. The Rol coordinates are
represented by quaternions (r,c,h,w) representing the
corner (r,c) and (h,w) of Rol, respectively. The Rol pool
layer segments the Rol window of i x w with the subwindow
of H x W size and gets the subwindow of h/H x w/W ap-
proximately. The corresponding grid output is obtained by
calculating each subwindow by using pooling. With this
layer, the input images that will no longer constrain the

training process must be consistent in specifications. The Rol
pool layer integrates and manages Rol characteristic ma-
trices of different sizes.

3.4. Proposed Algorithm. As shown in Figure 3, two output
layers are finally obtained, and the classification results and
the coordinate values of the detection box can be calculated,
respectively.

The first part of the output layer is to solve the probability
P of each Rol in class K, which is mainly calculated by the
softmax regression method. The other part of the output
layer calculates the coordinate value of the K-type detection
frame. Finally, the multitask loss function is used for re-
gression calculation of each calibrated Rol type and de-
tection frame coordinate value as follows:

L(p,u,t“,v) = Lys (p,u) + A[u>1]L, (t*,v),

(1)
Lcls (p’ u) = —IOg Pu

where [u > 1] means that when u is greater than or equal to 1,
the value of the brackets is 1, and the other values are 0. ;.
indicates the logarithmic loss value of a certain type of
probability. The other L, is detection frame coordinate loss.
They are obtained according to the actual detection frame
result v = (v,,v,,v,,v,) of class u and the predicted co-
ordinate value t = (tz,t;,l%, ty) of class u, which can be
expressed as follows:

Ly, (tv) = Z s (8 =),
i€|x, y,w,h|
2
0.5x" x| <1 2)
S (X) =
x| - 0.5 |x|>1.

In the training process, a random descent small batch is
defined, which consists of N sample images as well as R Rols.
In the paper, we assume that R = 128 and N = 2. There are 2
images per batch and 64 Rols per image.
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TaBLE 1: Rols sources.

Category Proportion (%) Mode
1 25 IoU in the [0.5, 1] area, as a background
2 75 IoU is in the larger area of [0.1, 0.5), as the foreground

CN softmax
N regression
.# Rols ‘ ’»
‘ ﬂ Rol.
regression
Input image Rol pooling layer
convolution characteristic full connection layer output
FIGURE 3: The constitution of fast R-CNN.
When passing through the Rol pool layer during the P,
process of reverse propagation, the calculation of reverse DR = Q, x 100%,
propagation is carried out by the following formula: r
oL . oL N,
ZoYYNi=it ()] — 3 FAR = —2 x 100%, (4)
0x; Z ; 0yr; ©) Q,
where [] indicates that the residual is propagated backwards P,+N,
. . . . R =——x100%,
in the Rol layer. It is necessary to judge whether the residual Q,+Q,

node i is connected to the maximum value of the input value
of the Rol. If it is true, it accumulates the residual and the
bracket value of is 1. Otherwise, the bracket value is 0.

4. Experiment and Analysis

In the paper, the common dataset and network acquisition
from flame and flue gas are used as the dataset for the
experiment. The experimental data mainly include the
training set for model construction and the test set for model
testing. The specific experimental data are listed in Table 2,
while Figure 4 shows the experimental data example.

From Table 2 and Figure 4, it can be seen that the dataset
used in this paper belongs to the small dataset. The ImageNet
classification dataset contains 1000 categories of image data.
The large amount and variety of data provide strong support
for the model construction based on deep migration learning.

The methods of Tensorflow [9] and Keras [23] are used
to train the fast R-CNN proposed in the paper. For com-
parison, we use Tensorflow and Keras to realize deep CNN.
Training data are mainly completed on Intel Xeon computer
and NVIDIA gtx1060 GPU.

The evaluation methods of detection rate (DR), false
alarm rate (FAR), and accuracy rate (AR) are used to
compare the proposed algorithm with others, which can be
expressed as follows:

where Q,, denotes the positive samples, P,, indicates true
positive samples detected correctly, and Q,, expresses neg-
ative samples, whereas N, is negative samples misclassified
as positive. When the recognize algorithm performs good, it
will get larger AR and DR and smaller FAR.

The proposed algorithm is compared with several tra-
ditional smoke detection methods, such as HLTPMC [24]
and MCLBP [25]. At the same time, it is also compared with
some typical deep CNNs, including AlexNet [26] and ZF-
Net [27]. The comparison results obtained through the
experiment are shown in Table 3.

Compared to traditional algorithms and several classical
deep CNNs, the algorithm based on deep learning (fast
R-CNN) is improved in detection rate and false positive
rate. According to the comparison results of various indi-
cators in Table 3, under the same test set, the algorithm in
this paper is improved compared with HLTPMC, MCLBP,
AlexNet, and ZF-Net. As a typical fire detection algorithm
based on candidate areas, fast R-CNN will consume a lot of
time when recommending candidate areas by RPN (region
proposal networks). Although the overall performance of the
algorithm is good, it takes a long time to detect a fire image.
Although the detection time of Fast R-CNN is much shorter
than that of other algorithms, it is still insufficient in the real-
time requirements of fire detection.
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TaBLE 2: Experimental data.

Datasets No. of smoke image No. of no-smoke image Total number Purpose

Setl 350 350 700 Training

Set2 150 150 300 Test

FIGURE 4: The experimental data examples. (a) Smoke images. (b) Nonsmoke images.

TaBLE 3: The experimental results are compared with other
methods.

Algorithm AR DR FAR
HLTPMC [24] 95.35 96.21 4.68
MCLBP [25] 96.24 95.38 1.93
AlexNet [26] 97.37 93.91 0.52
ZF-Net [27] 96.98 92.85 0.48
This paper 97.83 96.78 0.23

AR, accuracy rate; DR, detection rate; FAR, false alarm rate. Compared with
other smoke detection methods, the AR, DR, and FAR obtained by this
method are 97.83, 96.78, and 0.23, respectively.

The experimental results show that this algorithm not
only has good detection results in the images of large fire
areas but also can effectively detect small fire areas. When
detecting fire-like objects, it can effectively distinguish street
lamps, firefighters, and sanitation workers. The missed de-
tection rate and false detection rate are low, and it has a good
performance in fire detection.

5. Conclusion

In view of the shortcomings of existing methods in the
application of fire detection, for improving the low smoke
recognition rate, we proposed a Fast R-CNN smoke de-
tection method. In this paper, a deep convolution neural
network is used to extract the convolution features of visual
task example images. Fast R-CNN normalization and par-
allel regression methods are used for calculation. Finally, the
visual task-related smoke detection model was obtained. The
experimental results show that the fast R-CNN smoke de-
tection method proposed in this paper can effectively im-
prove the detection rate and reduce the false alarm rate.
Compared with similar fire detection algorithms, the im-
proved method in this paper has better robustness to fire

detection and has good performance in both accuracy and
speed. In the following work, the network will be optimized
and improved to further improve the detection effect and
algorithm speed. At the same time, the existing fire dataset
will be expanded to increase the diversity of samples in the
dataset and improve the sample quality of the training set
[18-20].
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