
Retraction
Retracted: Detection and Analysis of Man-Machine Interactive
Software Vulnerabilities Based on Ultrasonic Data
Acquisition and Signal Processing Algorithms

Advances in Multimedia

Received 15 August 2023; Accepted 15 August 2023; Published 16 August 2023

Copyright © 2023 Advances in Multimedia. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

This article has been retracted by Hindawi following an inves-
tigation undertaken by the publisher [1]. This investigation has
uncovered evidence of one or more of the following indicators
of systematic manipulation of the publication process:

(1) Discrepancies in scope
(2) Discrepancies in the description of the research

reported
(3) Discrepancies between the availability of data and the

research described
(4) Inappropriate citations
(5) Incoherent, meaningless and/or irrelevant content

included in the article
(6) Peer-review manipulation

The presence of these indicators undermines our confi-
dence in the integrity of the article’s content and we cannot,
therefore, vouch for its reliability. Please note that this notice is
intended solely to alert readers that the content of this article is
unreliable. We have not investigated whether authors were
aware of or involved in the systematic manipulation of the
publication process.

Wiley andHindawi regrets that the usual quality checks did
not identify these issues before publication and have since put
additional measures in place to safeguard research integrity.

We wish to credit our own Research Integrity and Research
Publishing teams and anonymous and named external
researchers and research integrity experts for contributing to
this investigation.

The corresponding author, as the representative of all
authors, has been given the opportunity to register their

agreement or disagreement to this retraction. We have kept a
record of any response received.

References

[1] L. Zhao, “Detection and Analysis of Man-Machine Interactive
Software Vulnerabilities Based on Ultrasonic Data Acquisition
and Signal Processing Algorithms,” Advances in Multimedia,
vol. 2021, Article ID 7684146, 7 pages, 2021.

Hindawi
Advances in Multimedia
Volume 2023, Article ID 9893861, 1 page
https://doi.org/10.1155/2023/9893861

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2023/9893861

RE
TR
AC
TE
DResearch Article

Detection and Analysis of Man-Machine Interactive Software
Vulnerabilities Based on Ultrasonic Data Acquisition and Signal
Processing Algorithms

Lei Zhao

Shandong Vocational College of Science and Technology, Weifang 261053, Shandong, China

Correspondence should be addressed to Lei Zhao; hyy@zjnu.edu.cn

Received 27 August 2021; Accepted 22 October 2021; Published 30 November 2021

Academic Editor: Kang Song

Copyright © 2021 Lei Zhao. (is is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

With the gradual increase in the informatization, there is much software in various industries, such as data management,
business execution, public orientation, and company OA, which greatly facilitates the development of various tasks, but it
also brings many hidden dangers. (ere exist certain vulnerabilities in some software, which have become backdoors to be
attacked. In view of these needs and potential hazards, the ultrasonic data acquisition and signal processing algorithms are
introduced in this paper, analyzing and grasping the possibility of potentially dangerous paths by combining the in-
struction addresses and locations of software vulnerabilities, and avoid the existence of these software vulnerabilities
through corresponding constraint instructions. (e simulation experiment results prove that the ultrasonic data ac-
quisition and signal processing algorithms are effective and can support the detection and analysis of man-machine
interactive software vulnerabilities.

1. Introduction

With the continuous development of social economy,
informatization has gradually changed the business of
various industries, and the data management, business logic,
public maintenance, company operation OA, and other
software have gradually become variegated and diverse;
some run on the PC end, and others run on the mobile side
[1]. From the perspective of the running network, some are
included in related private networks, internet networks,
government affairs networks, and local area networks. (ese
pieces of software are relatively complex and complicated, so
the stability of software and the security of resources are
extremely important [2, 3]. (e existence of hidden loop-
holes will have an impact on social security, so the security of
information is very important, and conducting information
security detection is extremely effective [4, 5].

(erefore, during the running process of software, the
corresponding program operation needs to be monitored in
real time to determine which codes can be executed safely

and which codes can be executed directly without symbolic
execution [6, 7].

(erefore, during the fixed detection process, setting
the corresponding breakpoints for detection can make it
clear that these signals are needed during the execution
process, but as for detection, the processing and execu-
tion of breakpoints are actually an iterative process. By
going through all the possibilities of the entire software
program, the breakpoint can be understood. However, it
should be noted that when the scale or size of software is
large enough, it is difficult to fully realize the experience
of all the paths, but for most of the paths, there are ac-
tually very few vulnerabilities. (erefore, the detection of
vulnerabilities can be carried out directly by constructing
corresponding test cases, such as stain testing and signal
processing, but there are low coverage rate of codes and
missing scans in most of these methods. (erefore, it is
necessary to increase the detection coverage rate of the
program to ensure that the scan of the vulnerability is the
safest [8, 9].

Hindawi
Advances in Multimedia
Volume 2021, Article ID 7684146, 7 pages
https://doi.org/10.1155/2021/7684146

mailto:hyy@zjnu.edu.cn
https://orcid.org/0000-0002-6276-5709
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/7684146

RE
TR
AC
TE
D

(erefore, some scholars replace the corresponding
symbolic execution with the corresponding abstract symbol
and perform equivalent semantic operations according to
the essence of the relevant program, so as to realize the
simulation of the program, but because the execution of the
abstract symbol is static, the corresponding source code is
required, which also caused a lot of misdeclaration of
software programs.

In view of the above limitations and requirements, based
on ultrasonic data acquisition and signal processing algo-
rithms, searching and analyzing are performed by collecting
the corresponding instructions of the dangerous functions
through combining and identifying the corresponding signal
processing dangerous addresses, meanwhile, constructing
the corresponding antitrigger mechanism to avoid further
expansion or existence of the corresponding vulnerabilities
or dangers, effectively reducing the possibility for triggering
of software or programs in a timely and effective manner,
aiming to explore the safety and perfection of human-
computer interactive software, and further ensuring the
effective and stable operation of software.

2. Ultrasonic Data Acquisition and Signal
Processing Algorithms

For software vulnerabilities, due to different methods and
processes during their generation, the corresponding de-
tection methods are also different. Of course, it should be
noted that no special method can completely detect all the
vulnerabilities. (e detection of specific vulnerabilities re-
quires several corresponding methods. For example, the
detection of vulnerabilities that are easily triggered by
overflow of values, divisors of 0, etc., needs to be identified
and analyzed [10–12].

For the vulnerability detection of software or programs
using corresponding signals, as shown in Figure 1, first, an
initial input is given. When the target program or software is
executed, the input data are first initialized in the symbolized
manner. During the execution of the program or software,
the constraints of the corresponding mandatory path shall
be collected. After the entire program is executed, a set will
be obtained for the constraints of the path; in view of the set
of mandatory constraints, all the conditions are negated, and
the input of corresponding constraints is performed.
(rough the construction of corresponding test cases,
continuous iterations are achieved, while the status of the
program or software execution is monitored simultaneously.
If the situation exists, it means there may be a problem, and a
detailed analysis and exploration of the cause of the
breakpoint or the place where the error is reported need to
be performed to determine whether it is a vulnerability and
related attributes.

If you need to detect a certain type of vulnerabilities, you
first need to identify the relevant patterns of this type of
vulnerabilities. (is requires the aggregation and classifi-
cation of existing vulnerabilities, and the related vulnera-
bilities can be obtained through summarization and
induction; meanwhile, they can have corresponding char-
acteristics in the form of expression [13, 14]. If there may be

function insecurity and data overflow (more than 256 or
overflow of memory), these functions can be classified as
dangerous functions, and the calls of these dangerous
functions can also be considered as the use of dangerous
paths.

In the process of signal denoising, the selection and
quantification of the threshold are very critical; it can be said
that it directly affects the effect of denoising. (erefore, in
the application, the selection method and quantification rule
of the threshold should be determined according to the
specific situation [15].

Commonly used threshold processing methods include
hard threshold and soft threshold.

􏽥x �
x, |x|≥ λ,

0, |x|< λ,
􏼨 􏽥x �

x − λ, x≥ λ,

0, |x|< λ,

x + λ, x≤ − λ.

⎧⎪⎪⎨

⎪⎪⎩
(1)

(e soft and hard threshold compromise method is

􏽥x �

x − αλ, x≥ λ,

0, |x|< λ,

x + αλ, x≤ − λ.

⎧⎪⎪⎨

⎪⎪⎩
(2)

In order to compare the noise reduction effects of dif-
ferent threshold noise reduction methods, the signal-to-
noise ratio is used as the evaluation criterion. (e formula
for the signal-to-noise ratio is

SNR � 10 × log
􏽐

N
i�1 f

2
(i)

􏽐
N
i�1 (s(i) − f(i))

2. (3)

In the formula, f(i) is the original signal; s(i) is the noisy
signal; N is the signal length.

(e processing of all signals is mainly to use the cor-
responding signal for searching the program until the
dangerous function and the corresponding dangerous path
are found. After the dangerous path is found, the corre-
sponding test and detection can be carried out. No detailed
instructions are required for other paths. In this way, the
calculation amount of the test is reduced, and the scope of
the test is reduced, therefore further improving the efficiency
of the test. (e specific execution workflow is shown in
Figure 2. First of all, the specific pattern of the vulnerability
needs to be clarified by sorting out and determining the
existence of the dangerous function by means of the cor-
responding pattern, and then the ultrasonic data collection is

Seed input Execute program

Exception monitoring Anomaly analysis

Constraint collection

Test case Constraint solving

Figure 1: (e general process of detecting software vulnerabilities
using signal processing.

2 Advances in Multimedia

RE
TR
AC
TE
D

used to identify and locate the instructional address of the
corresponding dangerous function to determine the dan-
gerous function according to the corresponding constraint
dataset. Finally, until the program is executed, the corre-
sponding constraints of the dangerous path corresponding
to the dangerous function can be summarized.

(e input signal is used to initialize the corresponding
input file, analyze the branch quality, and run the target
program, while the corresponding type analysis technique is
used to obtain more type information, specifically as shown
in Figure 3.

(rough programming, the loopholes in the integer are
identified to determine whether there are any conflicts in the
existing data types.

3. Binary Program Ultrasonic Data Acquisition

Ultrasonic data acquisition refers to the analysis of the
source code or binary code of the program without running
the program [16–18]. (rough ultrasonic data acquisition,
a clear framework understanding of the program can be
realized, and the combination of dynamic and static is
realized according to the corresponding ultrasonic data
acquisition, focusing on solving the problem of false alarm
rate [19, 20].

(e specific process is shown in Figure 4. First, the list
of dangerous functions is sorted out, and corresponding
initialization is performed. (ose functions listed as dan-
gerous are the objects of focus; secondly, each dangerous
function in the list is analyzed and extracted; for each
function, the corresponding call address is obtained by
calling the corresponding tool. If the address used is rea-
sonable and legal, the call points to the corresponding code
list, and finally, the instructional address is printed and
marked in red directly.

4. FormalDescriptionof IntegerVulnerabilities

Integer vulnerabilities may appear in operations related
to integer variables, assignment operations, etc., but not
these two types of instructions are integer vulnerabilities.
It is also necessary to determine whether the value of the
integer variable is within the range that its type can
represent and whether the value is related to the external
input.

4.1. Type Indication. (e corresponding types can be ef-
fectively classified, which can be divided into two types:
width information and symbol information.

Establish a vulnerability model

Static analysis hazard function

Dynamic symbolic execution

Collection of dangerous path constraints

Figure 2: (e execution workflow of guided signal processing.

Dyeing analysis
components

Dynamic plugin

Type analysis component

Decompiler

Dynamic detection
component

Figure 3: Structural diagram of the detection tool.

Initialize the list of dangerous functions

Take the value from the list

Call function return address

Print the address and mark it in red

End

Figure 4: Flowchart of the ultrasonic data acquisition algorithm.

Advances in Multimedia 3

RE
TR
AC
TE
D

Definition 1. Use T to represent the integer type, C2
4 indi-

cates the width type, and Ts represents the length type.

Definition 2. Assuming t ∈T, two-tuple C4
4 records the range

of values that t can represent. C0
4 + C1

4 + C3
4 � 8 represents

the minimum value that t can represent, and mint represents
the maximum value.

4.2.Modeling Integer Vulnerabilities. For the operations and
assignment operations mentioned in the previous article, we
restrict them to check whether they constitute integer
vulnerabilities. (is restriction is our modeling of integer
vulnerabilities. We construct the following constraints:

Rule 1
operation (addr)⟶
minresut≤ result-value≤maxresult
result_value� loperand opcode roperand
Rule 2
assignment (addr)⟶
mindestination≤ source− value≤maxdestination
Rule 3
operand’s type is bot⟶operand_value≥ 0

5. Ultrasonic Data Collection and Analysis

For the binary program, the ultrasonic data acquisition
method is used to extract the type information from the
binary program and construct the suspicious set.

(e extended type analysis is as follows: (1) a decompiler
is used to convert the binary program into an intermediary
language. (2) On the intermediary language, according to the
order of decompilation, some specific functions and state-
ments are used to extract information, including arithmetic/
logical operations, judgment statements, array subscripts,
memory allocation functions, and memory copy functions.

6. Simulation Experiment

(e simulation experiment is selected to use the normal
operating system; firstly, the program is used to test to
determine whether the dangerous path can be identified, and
secondly, the real program is used to test.

6.1. Simple Program Test. (e test program is a binary
program test_strcpy in the ELF format, and part of the
source code is as follows:

void function (char∗ str){
char buffer [6];
strcpy (buffer, str);
}
int main (int argc, char∗ argv[]){

char buf [5]� {0};
int fd, i, num� 0;
fd� open (argv [1], O_RDONLY);
for (i� 0; i≤ 3; i++)
read (fd,&buf [i], sizeof (char));
if (buf [0]� � “g”) num++;
if (buf [1]� � “o”) num++;
if (buf [2]� � “o”) num++;
if (buf [3]� � “d”) num++;
if (num� � 2) return 2;
if (num� � 4) {function (buf); return 4; }
return 0;
}

First, the corresponding string is obtained from the input
file to see if it is similar or the same as the dangerous
character of the corresponding dangerous function. If the
output result of the same number of characters is different,
then the dangerous function needs to be called in the
corresponding list.

Given the content of the corresponding initialization
input file, the dangerous function is used for the test to
generate the corresponding test case. (e specific calls are
shown in Table 1.

(e accuracy of this result is analyzed mainly from two
aspects as follows: one is whether the total number of paths
should be 15, and the other is whether the no. 14 test case will
take a dangerous path.

(1) Integer overflow: in view of the integer overflow, the
integer overflow is detected through the EFLAGS register.
(2) Error in sign: if it is a sign error, it is necessary to check
which conflicting operations exist to determine whether the
value is a negative number. (3) Assignment truncation:
through the detection of assignment statements, the judg-
ment of the operating range is realized.

7. Real Application Testing

(e corresponding program is used to test. (e specific test
results are shown in Figure 5. First, input and initialize a file,
and constrain by finding the corresponding dangerous path.
Meanwhile, save these constraints, specifically as shown in
Figure 5. It can be seen from the results that the restriction of
the dangerous path is relatively more complicated than other
programs. Meanwhile, it shows that the ultrasonic data
acquisition and signal processing algorithm can effectively
realize the identification and analysis of the dangerous
function and the dangerous path.

(rough ultrasonic data acquisition and signal pro-
cessing algorithms, the dangerous function and dangerous
path can be effectively identified, and the corresponding
constraint collection is realized. After summary and analysis,
the corresponding test case detection and analysis can be

4 Advances in Multimedia

RE
TR
AC
TE
D

realized. On this basis, the dangerous path can be further
tested until the vulnerabilities are discovered.

8. Suspicious Instruction Set

(e static analysis and construction of the instruction set can
be realized through the corresponding tools. (is is the first
step to detect vulnerabilities. Depending on the difference of
the program, the results of static analysis are also different.
From the results, it can be seen that the static analysis by the
ultrasonic data acquisition and signal processing algorithms

greatly reduces the amount of computation required by the
number of instructions.

9. Accuracy of Type Information Extraction

By comparing the doubtful instructional type information with
the corresponding type of the program, it can be found that the
matching degree between the two is relatively high, reaching
more than 92%.(e specific experimental results are shown in
Table 2. (e main manifestations of the inconsistent types are
in the following: (1) it is difficult to ensure consistency between
pointer variables and integer variables; (2) it is also difficult to

Table 1: Test results.

Test case number 1 2 3 4 5

Content gaaa “NUL”oaa
“NULL”
“NULL”

Ob

“NUL”
“NUL”
“NUL”d

“NUL”“NUL”od

Test case number 6 7 8 9 10

Content “NUL” ooa “NULL”o
“NULL”d Goaa g“NUL”

oa
g“NUL”
“NUL”d

Test case number 11 12 13 14 15

Content G“NUL”
od Good go

“NUL”d Good “NUL” ood

0

500

1000

1500

2000

2500

3000

3500

4000

jpeg png swf

Input file size
Software executable file size

Figure 5: Test results of the real application.

Table 2: (e number of suspicious instructions and the accuracy of their type information.

Program name Size Integer overflow Symbol error Assignment truncation Total Accuracy of type information (%)
slocate-2.7 46.3 K 5/6 1/1 1/1 8/8 100
zgv-5.8 284.4 K 22/24 18/18 16/16 58/59 98.3
Python-2.5.2 3.1M 94/96 22/22 61/67 177/184 96.2
ngiRCd-0.8.1 329.5 K 13/17 13/13 18/19 46/49 93.9
OpenSSH-2.2.1 150.2 K 13/15 1/1 9/9 24/25 96
mpg123-1.7.1 1.02M 6/8 4/4 1/1 12/13 92.3
rdesktop-1.5.0 562.7 K 2/2 1/1 0/0 3/3 100
Note. x/y: y represents the number of suspicious instructions, and x represents the number of instructions with correct type information.

Advances in Multimedia 5

RE
TR
AC
TE
D

ensure consistency between pointers and specific arrays, which
are easily regarded as unsigned.

Corresponding tools have been tested for effectiveness.
Specifically as shown in Table 3, the ultrasonic data ac-
quisition and signal processing algorithms are effective,
achieving more than 94% of the detection of vulnerabilities,
and only one is underreported.

(rough the dynamic performance test, the result is
shown in Figure 6. It can be seen from the result that the
dynamic detection component is suitable for monitoring the
program at runtime. (e performance overhead of the dye
analysis component is also tested by us, and its performance
overhead is about 50 times. Since the dye analysis compo-
nent can reduce the false alarm rate of detecting integer
vulnerabilities, but will introduce a large performance
overhead, we provide an interface to provide users with the
choice of whether to use the dye analysis component.

10. Conclusions

With the continuous deepening of informatization, for all
walks of life, security and stability of software have become the

emphasis and difficulty of attention. (e algorithms of ultra-
sonic data acquisition and symbol processing are introduced in
this paper, and the dangerous functions are obtained within the
program by sorting out the ultrasonic data acquisition
methods. On this basis, the signal processing is used to identify
and analyze the dangerous path, and continuous iterative
analysis to the traversal of the program is performed com-
pletely, the corresponding full path efficiency is tested, the full
detection of dangerous paths is realized, and the software
vulnerabilities are detected. (e simulation experiment proves
that the algorithms of ultrasonic data acquisition and symbol
processing are effective, can effectively identify dangerous
paths, and support the detection and analysis of man-machine
interactive software vulnerabilities.

Data Availability

(e data used to support the findings of this study are
available upon request to the author.

Conflicts of Interest

(e author declares no conflicts of interest.

References

[1] S. Kim, R. Y. C. Kim, and Y. B. Park, “Software vulnerability
detection methodology combined with static and dynamic
analysis,” Wireless Personal Communications, vol. 89, no. 3,
pp. 777–793, 2016.

[2] Y. A. Han, A. Sl, and A. Lp, “HAN-BSVD: a hierarchical
attention network for binary software vulnerability detec-
tion,” Computers & Security, vol. 5, no. 4, pp. 1–9, 2021.

[3] I.-S. Jeon, K.-H. Han, D.-W. Kim, and J.-Y. Choi, “Using the
SIEM Software vulnerability detection model proposed,”
Journal of the Korea Institute of Information Security and
Cryptology, vol. 25, no. 4, pp. 961–974, 2015.

[4] C. Chen, H. Xu, and B. Cui, “PSOFuzzer: a target-oriented
software vulnerability detection technology based on particle
swarm optimization,” Applied Sciences, vol. 11, no. 3,
pp. 1095–1103, 2021.

[5] X. Li, L. Wang, Y. Xin, Y. Yang, Q. Tang, and Y. Chen,
“Automated software vulnerability detection based on hybrid
neural network,” Applied Sciences, vol. 11, no. 7,
pp. 3201–3209, 2021.

[6] B. Wang and B. Cui, “Ontology-based services for software
vulnerability detection: a survey,” Service Oriented Computing
and Applications, vol. 13, no. 4, pp. 333–339, 2019.

Table 3: Integer vulnerability detection.

CVE# Program
name Name of vulnerabilities Type Whether

detect
Reported

vulnerabilities
Real

vulnerabilities
2013-0326 slocate Parse-decode-path bug Integer overflow √ 2 2
2014-1095 zgv Multiple integer overflow Integer overflow √ 22 22
2018-1721 Python Zlib extension module bug Symbol error √ 2 2
2015-0199 ngiRCd List-MakeMask bug Integer overflow √ 2 2

2011-0144 OpenSSH Detect-attack bug Assignment
truncation √ 2 2

2019-1301 mpg (estore-id3-text bug Symbol error √ 4 3

2018-1801 rdesktop Iso-recv-msg function ()
bug Integer overflow √ 2 2

0

1

2

3

4

5

PIN Tool

slocate

zgv

python

ngircd

mpg

Figure 6: Performance overhead of dynamic detection
components.

6 Advances in Multimedia

RE
TR
AC
TE
D

[7] L. Wang, X. Li, R. Wang, Y. Xin, M. Gao, and Y. Chen,
“PreNNsem: a heterogeneous ensemble learning framework
for vulnerability detection in software,” Applied Sciences,
vol. 10, no. 22, pp. 7954–7965, 2020.

[8] S. Liu, G. Lin, and Q. L. Han, “DeepBalance: deep-learning
and fuzzy oversampling for vulnerability detection,” IEEE
Transactions on Fuzzy Systems, vol. 28, no. 7, pp. 1329–1343,
2020.

[9] J. Hu, J. Chen, L. Zhang et al., “A memory-related vulnera-
bility detection approach based on vulnerability features,”
Tsinghua Science and Technology, vol. 25, no. 5, pp. 604–613,
2020.

[10] R. Amankwah, P. Kwaku, and S. Yeboah, “Evaluation of
software vulnerability detection methods and tools: a review,”
International Journal of Computer Applications, vol. 169,
no. 8, pp. 22–27, 2017.

[11] M. Kumar and A. Sharma, “An integrated framework for
software vulnerability detection, analysis and mitigation: an
autonomic system,” S�adhan�a, vol. 42, no. 9, pp. 1481–1493,
2017.

[12] G. Tang, L. Yang, S. Ren, L. Meng, F. Yang, and H.Wang, “An
automatic source code vulnerability detection approach based
on KELM,” Security and Communication Networks, vol. 2021,
no. 1, 12 pages, Article ID 5566423, 2021.

[13] H. Hanif, M. Nasir, and M. Razak, “(e rise of software
vulnerability: taxonomy of software vulnerabilities detection
and machine learning approaches,” Journal of Network and
Computer Applications, vol. 179, no. 9, pp. 103–110, 2021.

[14] “A novel deep learning-based feature selection model for
improving the static analysis of vulnerability detection,”
Neural Computing and Applications, vol. 5, no. 4, pp. 190–198,
2021.

[15] T. Given-Wilson, N. Jafri, and A. Legay, “Combined software
and hardware fault injection vulnerability detection,” Inno-
vations in Systems and Software Engineering, vol. 16, no. 2,
pp. 101–120, 2020.

[16] A. Qasem, P. Shirani, M. Debbabi, L. Wang, B. Lebel, and
B. L. Agba, “Automatic vulnerability detection in embedded
devices and firmware,” ACM Computing Surveys, vol. 54,
no. 2, pp. 1–42, 2021.

[17] Ch Suryanarayana, “A novel approach using fuzzy sets for
detection of vulnerability and imprecision in software esti-
mation and particle swarm optimization for tuning param-
eters,” International Journal of Applied Engineering Research,
vol. 13, no. 9, pp. 8431–8435, 2018.

[18] W. Qiang, Y. Liao, and G. Sun, “Patch-related vulnerability
detection based on symbolic execution,” IEEE Access, vol. 3,
no. 9, pp. 1–10, 2017.

[19] Y. Li, L. Ma, and L. Shen, “Open source software security
vulnerability detection based on dynamic behavior features,”
PLoS One, vol. 14, no. 8, pp. 221–230, 2019.

[20] J. Hu, J. Chen, S. Ali et al., “A detection approach for vul-
nerability exploiter based on the features of the exploiter,”
Security and Communication Networks, vol. 2021, no. 1,
14 pages, Article ID 5581274, 2021.

Advances in Multimedia 7

