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Music education should pay attention to popular music that exists in students’ real life and deeply a�ects them. Moreover, it needs
to be combined with “popular classical music” to make them happily learn popular music, appreciate popular music artistically,
and feel popular music aesthetically. �is study combines the audio frame feature recognition technology to evaluate the e�ect of
multimedia popular music teaching and improve the quality of multimedia popular music teaching. Moreover, this study
adaptively revises the speech spectrum technology to construct a multimedia pop music system based on audio frame feature
recognition technology. Finally, this study veri�es the performance of this system through experimental research. According to
the results of experimental research, it can be seen that the e�ect of the system proposed in this study is very good.

1. Introduction

�e composition of music art should be diverse, including
both traditional music and modern music, and other
mainstream and nonmainstream forms of music. �erefore,
since we can attach importance to classical music and tra-
ditional music, we must also attach importance to modern
music and popular music. Most popular music is passionate,
full of emotions, sentimental, or happy and enmity, and it is
always based on the principle of depicting and adapting to
the public’s psychology to the maximum. In addition, it
should be noted that the appreciation of popular music also
requires some kind of artistic guidance and the artistic
imagination of the audience. �e need for spirit is the es-
sence of popular music. Although popular music is as vast as
a sea of smoke, it will always leave something shining after
the big waves wash the sand. It will become classic and
inspiration [1].

At present, our country is in a period of rapid devel-
opment, and our society is in a period of transformation.
Students living in such an era are facing heavy learning
pressure on the one hand and are in a psychologically
sensitive period on the other hand. �ey are in a special
growth stage of transition from immaturity to maturity.

Compared with the previous childhood and later adulthood,
the psychology of this period has the characteristics of poor
stability, high emotionality, high sentimentality, and strong
sensitivity [2]. Popular music has a distinctly popular
character. Most of its content is close to the lives of ordinary
people and expresses the feelings of ordinary people. Today,
popular music has become the mainstream music culture of
the society. For teenagers, it is obviously di�erent from
children’s songs, and it has the atmosphere of the times,
which can resonate with their own hearts. Moreover,
popular music occupies an important part in the lives of
college students [3].

�is study combines audio frame feature recognition
technology to evaluate the e�ect of multimedia popular
music teaching, improve the quality of multimedia popular
music teaching, improve the role of popular music in the
growth of students, and promote the healthy development of
students’ body and mind.

2. Related Work

Due to the rapid development of computer technology and
informatics, and people’s demand for fast and e�ective audio
recognition, audio recognition demonstrations using audio
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frame recognition have been widely used. Literature [4] laid
a theoretical basis for the audio frame recognition tech-
nology. Literature [5] found a speech spectrogram and can
automatically depict this spectrogram. People think that
everyone’s fingerprints are different from each other, and it
usually takes millions of people to find almost identical
fingerprints. +e same should be true for audio frames [6].
Literature [7] obtained a method based on pattern matching
and probability statistical analysis to support the develop-
ment of audio frame recognition technology. Many scholars
paid attention to this, which pushed the audio frame rec-
ognition to a peak. During this period, everyone focuses on
the feature extraction direction. Literature [8] proposed the
UBM-MAP (Universal Background Model-Maximum
Posterior Probability) structure in the speaker verification
task, which made the audio frame recognition from the
laboratory to the practical. Important contribution: UBM-
MAP reduces the dependence of the statistical model GMM
on the training set. When training the model, only a few
sentences of the speaker are needed, so it is relatively simple
and flexible to use, and its accuracy is relatively high.
Subsequently, the support-vector machine (SVM) technol-
ogy was introduced into the audio frame recognition and
achieved good results [9].

Although there have been many matching algorithms
such as GMM-SVM, the effect is not as good as GMM and
GMM-UBM [10]. Under the current development trend,
audio frame recognition has gradually moved from the
original laboratory stage to the practical stage. When in a
pure voice environment, the audio frame recognition rate
can reach a high accuracy rate, but when in a noisy envi-
ronment, it will reduce the accuracy rate a lot, so now noise
has become one of the main reasons that affect the recog-
nition performance. +erefore, the research on noise sup-
pression algorithms is urgent. Among them, the speech
enhancement technology is produced in this environment,
and its purpose is to extract pure speech signals from noisy
speech as much as possible [11]. Literature [12] proposed the
use of spectral subtraction to eliminate noise; literature [13]
studied Wiener filtering algorithms for noise removal. +ese
algorithms based on short-time spectrum estimation are
suitable for environments with relatively large signal-to-
noise ratios, and the algorithm is simple and easy to im-
plement, so it has always had a strong vitality, and many
people still use it.

Due to the vigorous development of very large-scale
integrated (VLSI) circuit technology, the possibility of real-
time implementation of voice enhancement is provided.
Literature [14] published an algorithm for soft decision noise
removal; literature [15] applied the Kalman filter to speech
denoising. However, these traditional various filters are
processed by spectrum analysis technology, which is a
method of using Fourier transform to map the signals one by
one into the frequency domain and then analyze them. +is
method will only work when the selected signal is stable and
the spectral characteristics are obviously different from the
noise, but in real life people often encounter unstable signals,
and the frequency band of the signal and the frequency band
of the noise tend to overlap together, so traditional methods

are becoming less and less satisfactory. +e rapid develop-
ment of mobile communication technology has given a
realistic impetus to the research of speech enhancement
technology. For example, wavelet decomposition technology
[16] is proposed for speech signals with noise.+is method is
formed with the mathematical analysis method of wavelet
decomposition. It is a time-domain and frequency-domain
analysis with multiresolution characteristics. Because of this,
the local characteristics of the signal can be combined with
the time domain and frequency domain. +is feature is
superior in the analysis of nonstationary signals. At the same
time, it also combines part of the theoretical basis of spectral
subtraction, which is now the focus of multidisciplinary
attention. But there is a weak point in wavelet denoising, that
is, the energy of noise needs to be estimated, but people often
do not know what noise is there. +erefore, the independent
component analysis method [17] has been developed. Its
central idea is to combine a set of observation signals linearly
mixed from source signals (such as pure speech and noise),
assuming that the source signals are independent of each
other in time. +e algorithm separates the source signal, and
the signal and noise meet this point. +is method does not
need to understand the noise characteristics.

3. Audio Frame Feature Recognition
Algorithm Model

Adaptive postfiltering is a technique that adaptively corrects
the speech spectrum according to the spectral characteristics
of the local speech in order to improve the quality of the
synthesized speech. In order to essentially understand the
principle of adaptive postfiltering in speech coding, it is
explained in terms ofWiener filtering and the hearing model
of the human ear.

A very important element of signal processing is to
extract the signal from the noise or to suppress the com-
panion noise to the maximum extent possible. One effective
way to achieve this is to design a filter with optimal linear
filtering characteristics.

+e classical Wiener filter describes how to design the
best filter for noise suppression: determine the system
function H(z) of the filter so that the mean square error
(MSE) between the filtered output signal and the original
signal is minimized. We assume that the energy spectral
density of the signal is S(w), the spectral density of the
independent additional noise is H(w), and the frequency
response of the optimal filter should be [18]

H(w) �
S(w)

(S(w) + N(w))
. (1)

From formula (1), it can be seen that the gain of the filter
is close to 1 at frequencies with a large signal-to-noise ratio
(SNR). At frequencies with smaller SNR, the gain of the filter
is correspondingly smaller.+e postfilter of the conventional
narrowband encoder is usually applied to the synthesized
speech at the decoding end, as shown in Figure 1.

+e ideal short-time postfilter has a frequency response
that is similar to the spectral envelope of the speech signal. In
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the linear predictive encoder, the frequency response of the
LPC synthesis �lter is similar to the spectral envelope of the
input speech signal. �erefore, the expression of the transfer
function of the short-time post�lter is generally [19]

H(z) �
1 − A(z/β)
1 − A(z/c)

, 0< β< α< 1. (2)

Among them, A(z) � ∑pi�1 aiz− 1 is the transfer function
of LPC predictor coe�cients, ai is the LPC predictor co-
e�cients, p is the order of LPC predictor, and the corre-
sponding transfer function of the LPC synthesis �lter is 1/(1-
A(z)). �e scale factor c corrects the LPC synthesis �lter as
shown in Figure 2.

If 1 − A(z/β) is used only as a short-time post�lter, it
reduces noise, but it introduces a spectral skew with a low-
pass e�ect, which can lead to a “mu�ed” sound.�erefore, a
corresponding zero-point �lter 1 − A(z/β) is introduced to
reduce the spectral skew.

�us, the frequency response of the short-time post�lter
H(z) is as follows:

20lg H ejw( )
∣∣∣∣∣

∣∣∣∣∣ � 20lg
1

1 − A ejw/α( )
∣∣∣∣∣

∣∣∣∣∣
− 20lg

1
1 − A ejw/β( )
∣∣∣∣∣

∣∣∣∣∣
.

(3)

From formula (3), it can be seen that, in the logarithmic
domain, the frequency response of H(z) is the di�erence
between the frequency responses of the two weighted LPC
synthetic �lters so that some of the skews can be removed, as
shown in Figure 3.

Usually, in order to further reduce the low-pass e�ect, a
�rst-order �lter with a transfer function of 1 − μz− 1 can be
added to cascade with a short-time post�lter.

�e long-time post�lter is introduced to weaken the
staccato rate component between the fundamental tones
without introducing spectral skew. �e transfer function of
the long-time post�lter with zero and pole is [20]

H(z) � G
1 + cz− p

1 − cz− p
. (4)

Among them, G is the adaptive gain factor, p is the
fundamental period, and 0< λ< 1, 0< c< 1.

�e phases of the p poles of H(z) are 0, 2π/p,
4π/p, . . . , (p − 1)2π/p, corresponding to the peaks of the
harmonics of the fundamental tone in turn. �e phases of
the p zeros of H(z) are π/p, 3π/p, . . . , (2p − 1)π/p, corre-
sponding to the troughs between the harmonics of the
fundamental, respectively. c and λ vary with the clearness of
the speech, thus controlling the degree of long-time post-
�ltering according to the periodicity of the speech.

�e adaptive gain G is very important for the long-time
post�lter. For clear or most consonants, usually c and λ are
0, that is, there is no long-time post�lter. If G� 1, the energy
of the speech signal after long-time post�ltering is equal to
the energy before �ltering. For stable turbid tones, if G� 1,
the energy of the signal is ampli�ed after the long-time
post�lter. �is is because according to formula (5), each
current fundamental tone cycle waveform is superimposed
on the previous fundamental tone cycle waveform.
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Figure 1: Adaptive post�ltering object of the conventional narrowband encoder.
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Figure 2: 1/(1 − A(z/c)) frequency response for di�erent c values.
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Figure 3: Frequency response of the short-time post�lter.
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y(n) � x(n) + cx(n − T)

+c(y − T).
(5)

+is leads to different effects of the postfilter power gain
on the clear and turbid tones, making the volume of the clear
tones decrease relative to the turbid tones, and thus, the
speech quality is impaired. A derivation is given as follows:

G �
1 − λ/g
1 + η/g

. (6)

+e full polar part (denominator part) of the transfer
function in formula (3) corresponds to the recursive infinite
impact response (IIR) filtering operation. Its impact extends
to future frames, and the full-zero part (numerator part)
corresponds to the nonrecursive FR filtering operation, and
its impact basically stays in the current frame. +erefore, in
practical applications, a very small λ value is generally
chosen, or even λ � 0. In this postfilter design of the
wideband embedded speech encoder, the long-time post-
filter used is the filter with no poles.

For an analytic-synthetic encoder like the CELP-based
model, the optimal excitation parameters are searched in the
perceptually weighted domain, obtained by minimizing the
minimum mean square error between the input speech and
the synthesized speech.

+e perceptually weighted filter for a conventional
narrowband signal is [21]

W′(z) �
A′ z/c1( 

A′ z/c2( 
. 0< c2 < c1 ≤ 1. (7)

Among them, A′(z) is the linear prediction coefficient,
and c1 and c2 are the control factors. In this way, the
quantized noise (usually assumed to be white noise) is
weighted by 1/W′(z), which also shapes the noise spectrum
to have a resonant peak spectrum similar to the input speech
signal.

However, traditional perceptually weighted filters for
narrowband signals do not exhibit large spectral tilts. For
broadband signals, the dynamic range between low and high
frequencies is very large, and the spectral tilt is also very
large, which requires the perceptually weighted filter to
represent not only the resonant peak structure but also the
spectral tilt. +erefore, the perceptual weighting of the
broadband signal should be decomposed. First, the input
signal is pre-emphasized, that is, the high-frequency part is
raised by pre-emphasizing the filter P(z) � 1 − μz− 1. +en,
LPC prediction coefficients are calculated with the transfer
function A(z). Finally, the perceptually weighted filter is
obtained, as shown in the following formula:

W(z) �
A z/c1( 

1 + μz
− 1. (8)

A(z) is calculated on the basis of the pre-emphasized
signal, so the tilt of 1/A(z/c1) is smaller than the A(z) di-
rectly calculated on the input speech. At the same time, the
synthesized speech has to be de-emphasized at the decoding

end, that is, by 1/P(z). In this way, the spectral correction of
the quantization error is W− 1(z)P− 1(z), that is, 1/A(z/c1).

Although the noise spectrum is suppressed according to
1/A(z/c1) shaping, the experiments show that there is still
subtle noise in the synthesized speech, especially in the low
code rate case, so it is necessary to introduce the postfiltering
design at the decoding end.

+erefore, if the object of long-time postfiltering is the
prediction error signal, it is better than the object of the
speech signal. Moreover, the calculation of the control factor
in the long-time postfilter is related to the turbidity of the
speech, so the control factor can be calculated in the residual
signal domain to obtain more accurate values.

+e postfilter design in G729 proves the correctness of
this idea. +e synthesized speech is first passed through the
short-time predictor to obtain the residual signal; then, the
long-time postfilter is applied to this residual signal, and
finally, the short-time postfilter is applied.

Figure 4 shows the postprocessing flowchart of this
wideband embedded encoder, and the modules are de-
scribed in detail in the following.

+e antisparse processing is performed only at the rate of
8 kb/s, and it acts on the fixed codebook vector with the
purpose of improving the low bit rate perception quality.
+is is because if only 8kb/s streams are received at the
decoder, the fixed codebook vector has only three nonzero
sample points per subframe (called “sparse”), and this
sparsity causes subjective auditory unrealism. In order to
reduce the artificial perception of this sparsity, antisparse
processing is applied to the surrogate digital book vector.

+e smoothing of the fixed codebook gain is processed
based on two parameters, the turbidity and smoothness of
the speech. +e turbidity of the speech is estimated as
follows:

λ �
Ec

Ec + Ev

. (9)

Ev and Ec are the energy of adaptive codebook and fixed
codebook, respectively, Ev � gp

2 · v(n)2, and
Ec � gc

2 · c(n)2. +e closer λ is to 0, the closer the frame is to
pure turbid speech.+e closer λ is to 1, the closer the frame is
to pure clear speech.

+e stability factor θ is estimated by using the distance
Ds between the ISP coefficients of the current frame (ISP is
the frequency pair of the conduction spectrum, which is the
frequency-domain representation of the LPC coefficients)
and the ISP coefficients of the past frames [22]:

Ds � 

p− 1

i�1
isp

n
i − isp

(n− 1)
i 

2
,θ� 1.25 −

D

400000.0
, 0<θ<1.

(10)

Among them, p is the order of the line prediction co-
efficient, ispn is the ISP coefficient of the current frame, and
ispn-1 is the ISP coefficient of the previous frame. +e closer
Q is to 1, the more stable the frame is.

Considering the comprehensive turbidity and stability,
the smoothing control factor Sm can be defined as follows:
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sm � λθ. (11)

�at is, if Sm is close to 1 then it indicates a smooth
nonturbulent signal, such as smooth background noise.
�e smoothing process for a �xed codebook gain is as
follows:

(1) If the �xed codebook gain ĝc < ĝc thres, the algorithm
calculates tmp � 1.19ĝc and then compares tmp with
ĝc thres. If tmp> ĝc thres, the algorithm sets tmp to
ĝc thres. Its initial value of ĝc thres is 0.

(2) If the �xed codebook gain ĝc ≥ ĝc thres, the algorithm
calculates tmp� 0.84 ĝc and then compares tmp with
ĝc thres. If tmp< ĝc thres, the algorithm sets tmp to
ĝc thres.

(3) �e algorithm updates ĝc thres, that is, the algorithm
sets up ĝc thres � tmp.

(4) Finally, the smoothed �xed codebook gain is ob-
tained: ĝc � Sm · tmp + (1 − Sm)ĝc.

�e �xed codebook describes the details of speech, and
the energy is mainly concentrated in the high-frequency
part, and the low-frequency part has less energy. For pure
turbid speech, adjusting the energy of the �xed codebook in
low and high frequencies within a reasonable range can
improve the perception of speech. �e encoder uses high-
frequency enhancement �lters to enhance the �rst and
second layers, as shown in Figure 5.

�e high-frequency enhancement �lter is a high-pass
�lter whose coe�cients cpe can be adaptively adjusted
according to the turbidity of speech. cpe � 0.125(1 + rv),
rv � (Ev + Ec), and EV and EC are the energy of adaptive
codebook and �xed codebook, respectively. When the
turbidity is larger (that is, Cpe � 0.25), the higher frequency
is enhanced and the lower frequency is weakened. �e
high-frequency enhancement �lter expression is shown as
follows:

Finn0(z) � − cpez + 1 − cpez
− 1. (12)

�e �xed codebook is passed through this �lter to get a
new �xed codebook:

c′(n) � c(n) − cpe(c(n + 1) + c(n − 1)). (13)

In turn, the total synthetic excitation exc2(n) is calcu-
lated according to formula (14), and among them, v(n)
adaptive codebook, for ĝp that is the adaptive codebook
gain, ĝc is the �xed codebook, and Liang is the �xed
codebook gain.

exc2(n) � ĝpv(n) + ĝcc′(n). (14)

�e long-time post�lter of this encoder is designed using
the idea of a conventional long-time post�lter. �e purpose
of applying it to the excitation is to eliminate the noise
between the excitation harmonics. Figure 6 shows an ex-
ample of a long-time post�lter with the following expression:

H(z) �
1

1 + rg
1 + rgz− T( ). (15)

T is the integer fundamental delay of the current sub-
frame. r� 0.5. G is the adaptive control factor, and 0<g< 1,
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which allows adaptive control of the long-time post�lter,
which is expressed as follows: if the current subframe ex-
citation is strongly correlated with past excitations (for
example, a clear tone), g tends to 1. Conversely, if the current
subframe excitation is weakly correlated with past excita-
tions (for example, a clear tone), g tends to 0, that is, it does
not pass the long-time post�lter. �e values of T and g are
calculated by the following procedure.

Here, the selection of T is very important because it
determines the harmonic period of the long-time �lter, so it
has to be re�ned. First, the best integer fundamental delay T1
is selected in the range [(T0 − 1), (T0 + 1)], where T0 is the
integer fundamental delay of the current subframe. By
calculating the autocorrelation R(k) of the current subframe
excitation r(n) and the delayed excitation r(n − k) (as in
formula (16)), the one with the maximum R(k) is the best
integer fundamental delay T1.

R(k) � ∑
64

n�0
r(n)r(n − k), k � T0 − 1､T0､T0 + 1. (16)

�e best fractional fundamental delay T is then selected. t
is chosen around T1 with an accuracy of 1/8. �e algorithm
then calculates R′(k) (as in formula (17)) so that the
maximum is the best fundamental delay T.

R′(k) �
∑64
n�0r(n)rk(n)������������
∑64
n�0r(n)rk(n)

√ . (17)

Among them, r(n) is the current subframe excitation and
rk(n) is the excitation code vector obtained by interpolating
around T1. rk(n) is �rst obtained by an interpolation �lter of
length 33, and after �nding the optimal fractional funda-
mental delay T, rk(n) is then rederived by an interpolation
�lter of length 129. When the R(k) calculated by the �lter of
length 129 is larger than the Z obtained by the �lter of length
33, the �lter of length 129 is chosen.

When the optimal fundamental delay T is found, the
normalized autocorrelation is obtained by dividing R(T) by
the sum of the squares of r(n). If the normalized autocor-
relation is less than 0.5, as in formula (18), then g � 0, which
is equivalent to the excitation not passing through the long-
time �lter. �at is, when the correlation between the exci-
tation of the frame and the past excitation is small, the long-
time �lter is not passed.

R′(T)
∑64
n�0r(n)r(n)

< 0.5. (18)

�e gain coe�cient g is calculated by the following
equation:

g �
∑64
n�0r(n)rk(n)

∑64
n�0rk(n)rk(n)

. (19)

�e core layer of this embedded encoder is the CELP
model. At the same time, it is necessary to be able to handle
both wideband speech (bandwidth 50–7000Hz) and nar-
rowband speech (bandwidth 300–4000Hz). In order to
improve the quality of synthesized speech for these two types
of input speech, this study tries to introduce the traditional
short-time post�lter.

�e purpose of applying the short-time post�lter to the
synthesized speech is to attenuate the noise between the
resonance peaks. �e expressions are as follows:

Hs(z) �
1
gs

Â z/r1( )
Â z/r2( )

�
1
gs

1 +∑16
i�1r

i
1âiz

− i

1 +∑16
i�1r

i
2âiz

− i .

(20)

Among them, Â(z) is the quantized linear prediction
�lter. It is experimentally concluded that the short-time
post�ltering performs best when the control factors r1� 0.6
and r2� 0.7. �e control factor also shows that the short-
time post�ltering for wideband speech cannot be too strong
(usually, the control factors of short-time post�ltering in
narrowband speech encoders are r� 0.5 and r� 0.8). If it is
assumed that hf(n) is the impulse response of
Â(z/r1)/Â(z/r2), the gain gf is calculated from h(n) as in
formula (21):

gf � ∑
32

n�0
hf(n)
∣∣∣∣∣

∣∣∣∣∣. (21)

Figure 7(a) shows the frequency response of the synthesis
�lter 1/Â(z) for one-frame speech and (b) shows the fre-
quency response of Â(z/r1)/Â(z/r2). It can be seen from the
�gure that (b) can track the resonance peaks of the speech
spectrum and weaken the energy between the resonance
peaks, but this �lter introduces a spectral tilt. By adding the
spectral tilt compensation �lter, the spectral tilt of the �lter
after a short time is reduced, as shown in Figure (c). So the
synthesized speech has to undergo spectral tilt compensation
and adaptive gain control after entering the short-time �lter,
and these three modules are one and the same.
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�e �lter Ht(z) is used to compensate for the skew of the
short-time post�lter, and the expression is as follows:

Ht(z) �
1
gt

1 + rik1′z
− 1( ),

k1′ � −
rk(1)
rk(0)

,

rh(i) � ∑
32− i

j�0
hf(j)hf(j + i).

(22)

Here, rik1′ is the skew factor and gi � 1 − |rik1′|. r is a
constant, r,� 0.9 when k1′ ≤ 0, and ri� 0.2 when k1′ > 0.

�e purpose of an adaptive gain control is to compensate
for the energy di�erence between the synthesized speech s(n)
before �ltering and the �ltered speech sf(n). �e gain ad-
justment factor is calculated as follows:

G � ∑63
n�0 |̂s(n)|

∑63
n�0|sf(n)|

. (23)

�e gain-adjusted speech sf’(n) is as follows:

sf′(n) � g
(n)sf(n), n � 0, . . . , 64. (24)

�e initial value of g(n) is g(− 1) � 1, and then, it is
updated point by point:

g(n) � 0.85g(n− 1) + 0.15G. (25)

For a given input signal x(n), if we want to obtain an
output with a sampling rate of LM times, the method is to
interpolate x(eight) by L times, pass it through a low-pass
�lter h(n), and then extract it by M times. �e frequency
response of the low-pass �lter h(n) is expressed as follows:

H ejwK1,2( ) �
C, wx
∣∣∣∣
∣∣∣∣≤min

π
M
,
π
L

( ),

0, other.




(26)

Among them, ωx is the normalized cuto� frequency, and
C is a constant in the equation, which is the calibration factor
and should be taken as C-L. �e LM time sampling rate
conversion equation is as follows:

xout(n) � ∑
K− 1

i�0
hdecum iL +〈nM〉L( )xin ⌊

nM

L
⌋ − i( ). (27)

Among them, K�N/L, N is the length of the �lter h(n),
〈nM〉L denotes the remainder of nML, and �nM/L� denotes
rounding to nM/L.

(1) Algorithm performs downsampling from 16 kHz to
12.8 kHz. We set L� 4, M� 5, that is, 4/5 down-
sampling, and after conversion, the sampling rate is
12.8 kHz, that is, each frameof speech from320 sample
points to 256 sample points. �e normalized cuto�
frequency o for h(n) is 0.2 n, the length isN� 120, and
the amplitude response is shown in Figure 8.

(2) Algorithm performs upsampling from 8 kHz to
12.8 kHz. We set up L� 8, M� 5, that is, 8/5
upsampling, and the converted sampling rate is
12.8 kHz, that is, each frame of speech changes from
160 sample points to 256 sample points. �e nor-
malized cuto� frequency ωx of h(n) is 0.125π, the
length is N� 256, and the amplitude-frequency re-
sponse is shown in Figure 9.

(3) Algorithm performs upsampling from 12.8 kHz to
16 kHz. �e 4/5 upsampling is performed, and the
converted sampling rate is 16 kHz, which means that
each frame of speech changes from 256 sample
points to 320 sample points. �e amplitude response
is shown in Figure 10, where L� 5, M� 4, h(n)
normalized cuto� frequency ωx is 0.2π, and the
length is N-120.

(4) Algorithm performs downsampling from 12.8 kHz to
8 kHz. �e 5/8 downsampling is performed on the
speech signal with a 12.8 kHz sampling rate, and the
converted sampling rate is 8 kHz, which means that
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Figure 7: Example of frequency response of short time post�lter. (a) 1/Â(z) frequency response. (b) Â(z/r1)/Â(z/r2) frequency response.
(c) Frequency response of spectral tilt compensation. (d) Frequency of short-time �ltering.
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each frame of speech changes from 256 sample points
to 160 sample points. Among them, L� 5,M� 8, h(n)
normalized cuto� frequency ωx is 0.125π, the length
is N� 240, and amplitude-frequency response nor-
malized cuto� frequency is shown in Figure 11.

4. Evaluation of Multimedia Popular Music
Teaching Effect Based on Audio Frame
Feature Recognition

�e music teaching system provides a variety of music
learning services, online guidance, virtual environment
learning, and intelligent evaluation. In order to realize its

functions, the entire platform adopts a �ve-layer architec-
ture, and from bottom to top, they are as follows: access
layer, data processing layer, data storage layer, scene
management layer, and application layer, as shown in
Figure 12.

�e system builds a corresponding database for students.
Based on the traditional teaching experience, this study does
a quantitative analysis of the teaching content at all levels.
�e statistical analysis and results of a large number of data
can provide more powerful reference data for the teaching
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Figure 8: FIR low-pass �lter tonnage response with a normalized
cuto� frequency of $0.2.
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Figure 11: Frequency response of FIR low-pass �lter with a
normalized cuto� frequency 0.125π.
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Figure 9: Frequency response of FIR low-pass �lter with a nor-
malized cuto� frequency 0.125π.
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Figure 10: Frequency response of FIR low-pass �lter with a
normalized cuto� frequency 0.2π.
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and training of teachers and students. �e framework of the
external facilities and equipment of the system is shown in
Figure 13.

�e audio frame feature recognition e�ect and teaching
e�ect of the system proposed in this study are evaluated, and
the results shown in Tables 1 and 2 below are obtained.

It can be seen from the above research that the multi-
media popular music system based on audio frame feature
recognition technology proposed in this study has good
results, so the multimedia popular music system based on
audio frame feature recognition technology can be practiced
in actual teaching later.

One

Application layer

Two

Three

Four

Five

Intelligent
evaluation Online guidance Virtual environment

learning

Scene
management

Reality scene Virtual scene

Data
storage layer

Video storage Audio and processing
data storage

Data 
processing layer Teacher guidance Audio processing

Access layer Video access Audio access

Figure 12: Music teaching system architecture.
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Three
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Sound recording
equipment

Sound recording
equipment

MIDI
equipment

Keyboard,sound
source and other

devices

Respiratory mechanics
detection system

Vital signs detection
instrument

Video recorder and
other equipment

Recording
microphone and

professional sound
card, etc

Computer

Physiologic
monitoring data

Sequencer
software MIDI
music library

Recording software
spectrum analysis

software

Recording editing
and image analysis

software

Figure 13: External facilities and equipment framework.
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5. Conclusions

Popular music is diversified, some are suitable for college
students to appreciate, and some should really be kept away
from college students. It is precisely because of this uneven
development of popular music that as educators always
worry that young students will be harmed, so they have an
attitude of rejecting popular music. However, in the context
of the entire society, this kind of educational rejection will
not reduce the impact of popular music on college students.
In the past, the theoretical circles’ rejection and criticism of
popular music were somewhat influenced by the opposition
between Eastern and Western ideologies. +ey subcon-
sciously think that as long as they are imported from the
West, they are corrupt and bad. Popular music is purely
westernized regardless of its origin or its own content and
form.+erefore, as a socialist country, we should resist it and
protect young people from this decadent culture. Before the
reform and opening up, this recognition lasted for a long
time. +is study combines audio frame feature recognition
technology to evaluate the effect of multimedia popular
music teaching, improve the quality of multimedia popular
music teaching, improve the role of popular music in the
growth of students, and promote the healthy development of
students’ body and mind.
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Table 2: Multimedia popular music teaching effect.

No. Teaching effect
1 88.07
2 85.26
3 89.39
4 89.74
5 87.39
6 82.90
7 84.06
8 89.92
9 94.00
10 85.92
11 90.00
12 91.31
13 85.73
14 92.34
15 89.48
16 82.45
17 89.44
18 89.01
19 83.84
20 89.57

Table 1: Audio frame feature recognition effect.

No. Audio frame recognition
1 92.44
2 93.31
3 94.62
4 94.72
5 90.97
6 91.16
7 95.15
8 91.18
9 93.39
10 89.98
11 95.92
12 89.06
13 90.93
14 94.99
15 94.61
16 95.25
17 95.39
18 95.00
19 94.88
20 93.30
21 92.34
22 91.24
23 90.44
24 90.26
25 94.89
26 90.11
27 95.04
28 92.59
29 91.64
30 94.67
31 94.68
32 93.94
33 95.77
34 94.49
35 95.73
36 89.39

Table 2: Continued.

No. Teaching effect
21 92.83
22 89.29
23 84.02
24 86.10
25 91.00
26 90.01
27 88.85
28 83.34
29 91.33
30 92.88
31 91.33
32 85.89
33 83.57
34 89.03
35 89.03
36 85.95
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