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A highly efficient deep fully convolutional neural network (DFCN) for image quality assessment (IQA) is designed in this paper.
'e DFCN consists of two branches, one scoring local patches and the other estimating the weights of local patches to enhance
quality prediction. 'en, the DFCN outputs quality score of the whole image with aggregate weighted average pooling. 'ere are
no fully connected layers in the DFCN, resulting in far fewer parameters. In addition, the networkmodel utilizes multiscale images
as inputs to enrich the extracted distortion information. Furthermore, the parameters of the model are optimized in two steps to
reduce the requirement for computing power and the risk of overfitting. 'e parameters of the shared layers and the quality
module are optimized firstly, and then, the parameters of the weight module are optimized with the designed loss function. 'e
extensive experimental results show that the proposed DFCN outperforms other competing IQA methods and has strong
generalization ability.

1. Introduction

'e quality of digital images is degraded by noise or other
factors during acquisition, compression, storage, or trans-
mission. Only after correctly evaluating the quality of image
can the image postprocessing be executed effectively. In
addition, the performance comparison on digital image
processing algorithms requires IQA metrics.

'e IQA methods are generally classified into two cat-
egories: subjective quality evaluation and objective quality
evaluation [1]. Subjective evaluation is performed by the
observer. 'e quality of subjective evaluation is usually
tiered in five discrete levels: excellent, good, fair, poor, or
bad. Objective evaluation is usually executed by a mathe-
matical model that yields the numerical description of the
image quality. 'e objective IQA methods are commonly
divided into three types according to the availability of
reference images: full-reference image quality assessment
(FR-IQA), no-reference image quality assessment (NR-
IQA), and reduced-reference image quality assessment (RR-
IQA). FR-IQA evaluates the quality of the distorted image
using a source reference image, whereas NR-IQA evaluates

the quality of the distorted image without a source reference
image (NR-IQA is also called blind image quality assess-
ment, B-IQA). In contrast, RR-IQA evaluates the image
quality using limited information from a reference image.
IQA research started with FR-IQA, which is usually focused
on evaluating the difference between the distorted image and
the reference image based on the study of human vision. NR-
IQA is not easily utilized due to the lack of the reference
images. However, NR-IQA is of importance because it can
be used in some real-time applications. NR-IQA has grown
into a vigorous research topic in the past ten years.

In the past decade, deep learning technology has de-
veloped rapidly in the automation and artificial intelligence
fields. Deep learning usually contains three different types of
neural network structures: convolutional neural networks
(ConvNets), recurrent neural networks (RNNs), and gen-
erative adversarial networks (GANs). Deep neural network
models incorporate image feature extraction and classifi-
cation or regression into the unified optimizing framework
to implement a real end-to-end training process. In image
recognition, deep learning has performed better than tra-
ditional algorithms. Specifically, ConvNet-based deep
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learning has been widely applied to IQA metrics. Deep
learning-based IQA methods usually require strong com-
puting power and a large amount of training data. However,
IQA datasets are usually small. Some deep learning-based
IQA methods enhanced data by segmenting images into
patches, but the label noise was produced.

Motivated by Kang and Wang [2] and Ma et al. [3], we
proposed a simple and highly efficient deep fully convolu-
tional neural network model; one branch predicts primary
scores of local patches, and the other branch enhances the
predicted quality by estimating the weights for the local
patches. Converting fully connected layers into convolu-
tional layers at the end of the network enables our IQA
method to generate conveniently quality scores and weights
for the local patches with matrix format.

'is study and its features are summarized as follows.
First, multiscale images are used as inputs to acquire more
detailed distorted information. Second, the quality of the
entire image is predicted by weighted scoring local patches
of the image. 'ird, the weights of local patches (derived
from the learning stage) have adaptive characteristics.
Fourth, substituting convolutional layers for fully connected
layers in the network results in fewer parameters, which
mitigates overfitting. Fifth, the parameter optimization is
executed through two sequential stages using the designed
different loss functions, which reduces the requirements of
computing power and facilitates training.

Besides, we also included a review of IQA-related works
before we proposed the network model in detail with ex-
perimental results presented. Our conclusions are presented
at the end of this paper.

2. Related Works

'e conventional IQA approaches try to design elaborate
feature descriptors empirically which can efficiently depict
the image degradation [4]. 'e structural similarity index
(SSIM) [5] is such a classic FR-IQA algorithm that depends
heavily on hand-crafted features. 'e SSIM imitates the
human visual system’s evaluation of image quality by cal-
culating the similarity measure of two images in terms of
luminance, structure, and contrast features. Since the origin
of the SSIM, Lin Zhang et al. [6] have made subsequent
improvements to its performance.

Early NR-IQA methods first extracted the statistical
features of a distorted image and then predicted the quality
score of the image using regression. Kumar and Singh Bawa
[7] calculated the regional mutual information in the spatial
domain based on the loss information of the distortion and
then predicted the quality of the entire image. In addition,
Oszust [8] converted the RGB image into the YCbCr color
space, extracted the local features of key points, and then
used the kernel-based support vector regression to output
the image quality score. Bampis et al. [9] extracted detail loss
measure features in the spatial domain and then used
support vector regression to predict the quality of an image.
Mittal et al. [10] presented the natural image quality eval-
uator (NIQE), which utilized the distance between two
multivariate Gaussian models to quantify the score of a

distorted image after extracting the quality-aware features.
In 2012, Ye et al. [11] proposed COdebook Representation
for No-reference Image Assessment (CORNIA), which is
one of the first learning-based IQA methods. In CORNIA,
spatially normalized patches are clustered using k-means
based on which soft assignment encoding and maximal
pooling are executed for codebook representation. CORNIA
features have also been applied to dipIQ [12]. 'e deep
artificial neural network has subsequently arisen in some
IQA studies as the mainstream approach from conventional
methods.

'e deep neural network predicts image quality through
end-to-end optimization. For example, Kang et al. [13]
executed a deep neural network using one convolutional
layer and two fully connected layers as an end-to-end
version of CORNIA. Lin and Wang [14] designed a GAN
structure that generates simulated reference images for IQA.
However, the training process of the GAN model is very
complicated and prone to failure. Bosse et al. [15] proposed a
deep neural network-based IQA model (WaDIQaM) that
split the distorted images into many true patches as inputs,
which led to label noise. WaDIQaM regresses the quality
scores of the patches using a group of fully connected layers,
each of which was weighted by the other fully connected
layers to predict the final quality of a distorted image.

In recent years, the transformer has been executed firstly
in natural language processing, and it also attracts research
interests in the computer vision field. You and Korhonen
[16] applied the transformer to image quality assessment.
'e transformer encoder was used on the top of a feature
map extracted by convolution neural networks. 'e trans-
former has achieved success in some computer vision tasks,
but it has not exceeded convolutional neural networks for
IQA.

We designed the DFCN-IQA model without fully
connected layers, which used multiscale images as inputs. To
the best of our knowledge, the deep fully convolutional
neural network has not yet been applied to the IQA tasks.

3. DFCN for NR-IQA

'e developed DFCN-IQA approach employs a deep fully
convolutional neural network with multiscale images as
inputs and the adaptive weights for enhancing quality
prediction. Multiscale images have much more distorted
feature information. An image pyramid is used to represent
multiscale images.

3.1. Image Pyramid for Multiscale Input. Lindeberg [17] has
theoretically proved that the Gaussian function is the only
possible scale-space kernel and that the scale space generated
by the Gaussian kernel is closely related to visual cognition.
Accordingly, the scale space of an image is expressed as

L(x, y, σ) � I(x, y)⊗G(x, y, σ), (1)

where I represents the initial input image, x and y are the
coordinates of the pixels, and the symbol ⊗ represents the
convolution operation. Gaussian kernel is defined as
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G(x, y, σ) � Ae
− x2+y2( )/2σ2( ), (2)

where A is a constant coefficient and σ is the standard
deviation, which controls the shape of the function. In
practice, Gaussian convolution is executed with a sliding
window, the boundary of which is usually limited to 3σ.

Our image pyramid is composed of four scale images; the
first scale image is the original image. After the original
image is convoluted with a Gaussian function, it is down-
sampled sequentially by a factor of two to produce three
other coarser scale images.

As shown in Figure 1, both the normal clean image and the
distorted noisy image are decomposed into 2 scale images. 'e
5× 5 patches at the same relative coordinates in all four images
are displayed exaggeratedly. 'ere is a similarity between the
corresponding patches across the scales in the “clean” image;
however, there are significant differences between the corre-
sponding patches across the scales in the “noisy” image. 'us,
the distortion changes for different scales in the noisy image.
Multiscale distorted images contain rich feature information.
We use 4 scale images as inputs in the IQA model, which can
reach a good performance in the experiments. It can be seen
that there is little difference between the two far coarser scales
from Figure 1.

3.2. Network Architecture. 'e structure of the designed IQA
network model consists of the quality module g1, the weight
module g2, and shared convolutional layers as shown in Fig-
ure 2. In the “conv-1” layer, the input original image is con-
volved with 32 filters, and each filter generates a feature map.
'en, pooling is executed on each feature map to reduce the
filter responses to a lower dimension.'e second scale image is
sent to the “conv-2” layer. 'e second feature map generated
from the “conv-2” layer and the first feature map are sent to the
“conv-3” layer together. Likewise, the third scale and fourth
scale images are sent to the “conv-4” and “conv-6” layers, re-
spectively.'e “conv-7” layer produces the seventh featuremap.
Finally, the input image is mapped as 128-dimensional feature
maps. 'e feature learning process in the shared layers is
completed. 'e last aggregate average pooling operation yields
the quality score of the overall image.

On top of the shared layers, the quality module g1, which
implements subtask I, generates the primary quality scores
for the local patches. 'e normal region of interest (ROI) in
an image can be detected by the visual salience method [19],
but the saliency region and the distortion region may not be
the same location. 'us, the weight module g2, which im-
plements subtask II, learns the weights for the local patches.
Finally, the IQA model enhances the quality prediction
through the weighted scoring method. Compared to a neural
network containing fully connected layers with same depth,
a fully convolutional neural network reduces the number of
parameters because of the inductive bias of local connection
and parameter sharing, which simplifies the computational
complexity to a linear order.

'e configuration of the proposed model is shown in
Table 1. 'e stride of the convolution is fixed at 1 to extract the
refined feature information of the distorted image. 'e size of

the convolutional kernel, which determines the receptive field of
the filter, is 3× 3. Such a small convolutional kernel offers two
main advantages. First, it can capture more refined changes in
the image. Second, it can increase the depth of the network for
the same receptive field. 'e spatial padding of the convolu-
tional layer is structured such that the spatial resolution is
preserved after the convolution operation (i.e., the padding is
one pixel around the border for the 3× 3 filter). 'e spatial
pooling operation is performed after the convolutional layers
have been processed.'e spatial size was reduced by a factor of
four via eachmaxpooling over a 2× 2window,with a stride of 2.

3.3. Optimization of the Model. More parameters and less
training data can easily lead to overfitting. A distinct feature of
the proposed networkmodel is that there are no fully connected
layers, which results in far fewer parameters; however, the
number of parameters is still much larger than traditional IQA
methods. 'us, optimization of the parameters is executed in
two steps with the different designed loss functions. Such an
optimization method can reduce the requirements for com-
puting power and the risk of overfitting.

First, we optimize the shared layers and the quality module
g1. 'e primary quality scores matrix y can be defined as

y � g1 f I,w0( ,w1( , (3)

where the parameters of the shared layers are denoted by w0,
the parameters of module g1 are denoted by w1, I represents
the input image (which is sent as input to the shared layers),
and f (·,·), which is the input to module g1, represents the
output of shared layers. Module g2 outputs the weight
matrix a, which is defined as

a � g2 f I,w0( ,w2( , (4)

where the parameters of module g2 are denoted by w2 and f
(·,·) is the input of module g2.

'e quality score of the overall image is generated
through an aggregate weighted average pooling, and it is
computed via

s � 
i,j

sij � ⌈a × .y⌉ � 
i,j

aij · yij, (5)

where the symbol ×. denotes Hadamard product between
identically shaped primary quality score matrix and weight
matrix and the symbol ⌈ · ⌉ means to find the sum of all
matrix elements. sij represents the ultimate quality score of a
local patch, aij is an element of a, and yij is an element of
primary quality scores matrix y. 'e maximal values of
subscripts i and j are equal to the size of the final feature
maps, which is the same as the size of the fourth scale image.

In the first step, the parameters of the shared layers and the
quality module g1 are optimized, and the loss function is
designed as

L1 �
1

M


M

m�1
g1 f Im,w0( ,w1(  − lm

����
����1, (6)

where ‖ · ‖1 represents the norm of matrix and lm represents
label scores of local patches in an image with a matrix format.
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We supposed that the local patches are evenly assigned quality
labels from the whole annotated images. Im represents themth
image. Equation (6) describes the average error between the
predicted quality score and ground truth score. To mitigate
overfitting of the model, the regularization constraint item is
introduced as

L1 �
1

M


M

m�1
g1 f Im,w0( ,w1(  − lm

����
����1 + λ w1

����
����p

, (7)

where ‖ · ‖p represents p norm. p takes 0, 1, or 2.We set p� 2.
λ is a balance parameter between two items. 'e assumption
that local quality is uniformly assigned over the distorted
image causes a tremendous amount of label noise. So we
design the other branch, weight module, which learns the
weights for the local patches to enhance quality prediction.

In the second step, the parameters of module g2 are
optimized with a unified loss function after w0 and w1 are
fixed, which is described as

Clean Image

The clean image
at 1/3 the scale

(a)

Noisy Image

The noisy image
at 1/3 the scale

(b)

Figure 1: 'e 5× 5 patches at the same relative coordinates in all four images (from [18]).
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Figure 2: Network structure of the IQA model.
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L2 �
1

M

M

m�1
⌈g2 f Im,w0( ,w2(  × .g1 f Im,w0( ,w1( ⌉ − lm


, (8)

where lm represents the ground score of the distorted image
(which satisfies lm � lm). 'e symbols ⌈ · ⌉ and ×. have the
same meanings as in equation (5).'e symbol | · | represents
absolute value. 'e norm regularization term constraint is
introduced to mitigate overfitting, and then the unified loss
function is rewritten as

L2 �
1

M


M

m�1
⌈g2 · ,w2(  × .g1 ·,w1( ⌉ − ym


 + λ w2

����
����p

. (9)

Data enhancement, norm regularization, and dropout
technology are employed during training to reduce the risk
of overfitting. 'e training process is outlined as follows:

Input: distorted image I
Output: predicted quality score
Step 1. Given the original image, obtain four different
scale images using an image pyramid method
Step 2. Input the four scale images into the network,
and optimize the parameters of the shared layers and
module g1 using equation (7)
Step 3. Optimize the parameters of module g2
according to equation (9)

Our network model can predict the quality score from
coarse-to-fine grains with the dual-branch structure after
training. Four scale images are generated with the image
pyramid. 'e primary quality scores and the weights for the
local patches are obtained through trained modules g1 and
g2, respectively.'en, themore accurate quality scores of the
local patches are computed via the Hadamard product.
Finally, the quality score of the whole image is computed by
summing all the elements of this matrix.

4. Experimental Results and Analysis

In this section, we first describe the IQA datasets and the
evaluation metrics. We then conduct ablation experiments
to identify the contributing factors in DFCN-IQA model.

Finally, we compare the DFCN to classic and state-of-the-art
IQA metrics. 'ese results are computed through source
code released by authors or come from existing papers.

4.1. Datasets and 1eir Enhancement Processing. LIVE [20]
and TID2013 [21], adopted in our experiments, are popular
IQA datasets. 'e KonIQ-10k dataset is not chosen because
it is not used by most of the compared IQA algorithms. 'e
main differences between the datasets are the numbers of
reference images and distorted images, the types and levels
of distortions, and the scoring standards. LIVE contains 29
source reference images, five distortion types, and 779
distorted images. 'e difference mean opinion score
(DMOS) was used for subjective scoring in LIVE [22].
TID2013 dataset contains 25 source reference images, 24
distortions, and 3000 distorted images. 'e mean opinion
score (MOS) was used for subjective scoring in TID2013. A
reference image and its associated distorted images are
shown in Figure 3.

It is challenging to train a deep learning model on LIVE
and TID because the number of distorted images is scarce.
To prevent overfitting, data enhancement is performed by
rotating and mirroring distorted images. We then divide the
training and test sets according to the reference images to
ensure content independence regarding synthetic datasets
LIVE and TID2013. We take 80% random images from each
dataset to construct the training set. 'en, we leave the
remaining 20% for the testing. Different from the literature
[15, 23], the training images were not normalized to reserve
the distortion information such as original size, contrast, and
luminance change.

4.2. Evaluation Criteria. 'e Spearman rank-order corre-
lation coefficient (SROCC) and the Pearson linear correla-
tion coefficient (PLCC) are standard evaluation criteria used
by the Video Quality Experts Group (VQEG) [24]. 'e
SROCC measures prediction monotonicity and the PLCC
quantifies prediction accuracy. Both are correlation metric
criteria, and their values close to 1 indicate good perfor-
mance. 'e SROCC is defined as

Table 1: Configurations of the proposed deep ConvNet model.

Module Layer name Receptive field size Channel dim. Stride Pad

Shared layer

conv-1 3× 3 32 1 1
pool 2× 2 2 0
conv-2 3× 3 32 1 1
conv-3 3× 3 64 1 1
pool 2× 2 2 0
conv-4 3× 3 64 1 1
conv-5 3× 3 128 1 1
pool 2× 2 2 0
conv-6 3× 3 64 1 1
conv-7 3× 3 128 1 1

g1
conv-8 3× 3 128 1 1
conv-9 3× 3 1 1 1

g2
conv-10 3× 3 128 1 1
conv-11 3× 3 1 1 1
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PSROCC � 1 −
6

N
k�1 rxk

− ryk
 

2

N N
2

− 1 
, (10)

where N refers to the size of the sample data, xk represents
the subjective evaluating score, yk represents the predicted
scores of the model, and rxk and ryk describe the rankings of
xk and yk, respectively, in their own sample data. 'e PLCC
is defined as

PPLCC �
1

N − 1


N

k�1

xk − x

δx

 
yk − y

δy

 , (11)

where x and y are the average values of the two sets of data
and δx and δy are their corresponding standard deviations.

4.3. Ablation Study. A series of ablation experiments were
conducted to identify the influences of the core factors.
'e DFCN model enhances the quality prediction of the
local patches by estimating the weights. To verify the
effect of the weight module g2, comparative experiments
were conducted with multiple distortion types in
TID2013: additive Gaussian noise (#1), spatially corre-
lated noise (#3), quantization noise (#7), JPEG com-
pression (#11), local block-wise distortions of different
intensity (#15), change of color saturation (#18), and
image color quantization with dither (#22). If the weight
module g2 does not work, it means that all the elements in
matrix a are 1 in equation (5). It can be seen from Figure 4
that the weight module improves the performance of the
model.

'e performance of the SROCC was compared between
a single input and multiscale inputs. As shown in Figure 5,
the multiscale images as inputs enhance the quality pre-
diction performance. Although the size of the distorted
image is not fixed, we find that the four scale inputs can get
excellent experimental performance.

Gaussian convolution is indispensable in generating the
image pyramid.We investigated how different σ values affect
the quality prediction performance, as illustrated in Figure 6.
'e value of σ was set to 1.65.

4.4. Evaluation on Datasets. Our approach outperforms
state-of-the-art NR-IQA methods, even some FR-IQA
methods, and competes with other deep learning-based IQA
methods.

4.4.1. Performance Comparison on LIVE. We compare the
proposed DFCN with 16 IQAs (8 traditional and 8 deep
learning-based) on the LIVE dataset. Experimental results
are displayed in Tables 2 and 3, respectively. 'e best
performance for each column is in bold.'e distortion types
include JPEG2000 compression distortion (JP2K), JPEG
compression distortion (JPEG), white noise distortion
(WN), and Gaussian blur distortion (BLUR). “ALL4” in the
last column is a comprehensive value for the four distortions
to the left.

'e 8 traditional competing methods are SSIM [5],
CORNIA [11], BIQI (Blind Image Quality Index) [25], SOM
(semantic obviousness metric) [26], DIIVINE (distortion
identification-based image verity and integrity evaluation)
[27], SNP-NIQE (Structure, Naturalness, and Perception
quality-driven Natural Image Quality Evaluator) [28],
BRISQUE (Blind/Referenceless Image Spatial QUality
Evaluator) [29], and FSI (Free-energy principle and Sparse
representation-based Index) [30].

'e 8 state-of-art deep learning-based methods are CNN
(convolutional neural network for image quality assessment)
[13], WaDIQaM-NR [15], SGDNet (Saliency-Guided Deep
neural network) [31], DLIQA (Deep Learning-based Image
Quality Assessment) [32], BIECON (Blind Image Evaluator
based on a CONvolutional neural Network) [33], MS-C
(Multiple Scale Concat) [34], UNIQUE (UnifiedNo-reference
Image Quality and Uncertainty Evaluator based on a deep
neural network) [35], and IQT (Image Quality assessment
with Transformers) [36].

In the compared algorithms, CORNIA [11] is a classic
learning-based method, and it was subsequently refined to
SOM [26]. DLIQA [32] classified a distorted image into five
levels and then estimated the quality score. DIIVINE [27] is
an improved version of BIQI [25] with more advanced
natural scene statistics. SNP-NIQE [28] was extended from
NIQE, which extracted features of the structure, naturalness,

(a) (b) (c) (d) (e)

(f ) (g) (h)

Figure 3: Examples of different types of distortions. (a) Reference image. (b) Spatially correlated noise. (c) Local block-wise distortions.
(d) Comfort noise. (e) Quantization noise. (f ) Chromatic aberrations. (g) Contrast change. (h) Change of color saturation.
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and perception attributes. BRISQUE [29] extracted natural
scene statistics features from locally normalized luminance
coefficients. UNIQUE [35] used complex ResNet-34 as its
backbone, and its parameters were initialized with the
weights pretrained on ImageNet [37]. IQT [36] applied
successfully a transformer architecture to a perceptual full-
reference IQA task. Our DFCN-IQA demonstrates a state-

of-the-art performance with LIVE compared to UNIQUE
and IQT, despite a slight weak performance on JP2K. 'e
excellent performance is mainly due to enhanced dual-task
learning.

As shown in Tables 2 and 3, the overall performance of
our approach is superior to that of the competing methods.
In particular, it performed the best for the JPEG, WN, and

0.8 1 1.2 1.4 1.6 1.8 2
0.94

0.945

0.95
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0.96

0.965
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value of Gaussian standard deviation
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O
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Figure 6: Effect of different σ (in the Gaussian function) on SROCC performance with the LIVE dataset.
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Figure 4: Influence of weight module on performance.
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GBLUR distortions. 'e network architecture of WaDI-
QaM-NR [15] is composed of 10 convolutional layers and
five pooling layers. MS-C was proposed in 2020, and its basic
modes are composed of parallel convolutional networks with
fully connected layers.'e experimental results demonstrate
that our DFCN-IQA outperforms almost all other IQA
methods for the four distortion types in LIVE. 'e com-
prehensive SROCC and PLCC values (“ALL4”) for the
proposed DFCN-IQA method are superior to other main-
stream methods on the LIVE.

4.4.2. Performance Comparison on TID2013. 'e level and
number of distortions in TID2013 far exceed those in
LIVE. Accordingly, the IQAmethod was further tested on
TID2013. 'e experimental results are shown in Figure 7.
'e compared methods include CaHDC [4], SSIM [5],
WaDIQaM-NR [15], SGDNet [31], BIQI [25], BIECON

[33], HOSA (high order statistics aggregation) [38], MS-
C [34], and FSI [30]. HOSA [38] utilizes improved
CORNIA feature sets; its SROCC value is about 11%
lower than that of DFCN-IQA. Here, CaHDC [4],
WaDIQaM-NR [15], BIECON [33], MS-C [34], and our
DFCN-IQA are deep learning-based IQA methods. 'e
DFCN-IQA outperforms other IQA methods, including
the four deep learning-based methods just mentioned, on
TID2013. CaHDC [4] and SNP-NIQE [28] (published in
2020) are the latest IQA methods, which are an end-to-
end blind image quality predictor with the cascaded deep
neural network. CaHDC jointly optimized the multilevel
feature extraction, hierarchical degradation concatenation,
and quality score prediction; its SROCC performance is also
slightly lower than that of our approach.

To further test the performance of our approach, the
DFCN was compared to IL-NIQE [39], HOSA [38], SNP-
NIQE [28], RankIQA [40], Pseudo [41], VRPON [42],

Table 2: Comparison of SROCC on LIVE.

Models JP2K JPEG WN BLUR ALL4
SSIM 0.95 0.94 0.97 0.91 0.95
CORNIA 0.91 0.95 0.95 0.90 0.92
DIIVINE 0.84 0.82 0.88 0.88 0.84
SOM 0.94 0.95 0.98 0.97 0.96
BIQI 0.78 0.88 0.92 0.83 0.91
SNP-NIQE 0.92 0.97 0.97 0.96 0.96
BRISQUE 0.91 0.91 0.95 0.94 0.93
CNN 0.95 0.97 0.97 0.96 0.96
WaDIQaM 0.94 0.96 0.97 0.94 0.95
BIECON 0.95 0.97 0.98 0.96 0.97
DLIQA 0.93 0.92 0.97 0.95 0.95
MS-C 0.97 0.97 0.98 0.98 0.96
FSI 0.90 0.96 0.92 0.96 0.88
SGDNet 0.96 0.96 0.97 0.98 0.98
UNIQUE 0.96 0.97 0.98 0.96 0.98
IQT 0.96 0.97 0.97 0.97 0.98
DFCN 0.95 0.97 0.99 0.99 0.98
'e top result is highlighted in boldface in each column.

Table 3: Comparison of PLCC on LIVE.

Models JP2K JPEG WN BLUR ALL4
SSIM 0.95 0.98 0.98 0.92 0.96
CORNIA 0.91 0.95 0.95 0.90 0.92
DIIVINE 0.90 0.82 0.90 0.91 0.86
SOM 0.95 0.99 0.99 0.97 0.96
BIQI 0.78 0.93 0.93 0.83 0.92
SNP-NIQE 0.94 0.98 0.97 0.97 0.96
BRISQUE 0.93 0.95 0.95 0.93 0.94
CNN 0.95 0.98 0.98 0.95 0.96
WaDIQaM 0.96 0.94 0.94 0.94 0.96
BIECON 0.96 0.94 0.94 0.94 0.95
DLIQA 0.95 0.96 0.96 0.95 0.95
MS-C 0.96 0.96 0.96 0.97 0.96
FSI 0.91 0.93 0.93 0.97 0.89
SGDNet 0.96 0.96 0.96 0.97 0.97
UNIQUE 0.96 0.98 0.97 0.98 0.97
IQT 0.97 0.98 0.98 0.97 0.97
DFCN 0.95 0.99 0.99 0.98 0.97
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MSDD [43], NSSI [44], and DIQA (deep image quality
assessor) [45] for each individual distortion in TID2013.

As illustrated in Table 4, our DFCN is superior to the
other methods. RankIQA [40] trains networks using ranking
quality data and then trains deeper networks through
transfer learning; its performance is 7% worse than that of
our approach. DIQA [45] combined additionally two
handcrafted features with a deep convolutional neural
network model. In particular, VRPON [42], MSDD [43],
NSSI [44], and DIQA [45] are the latest methods, but their
performance is worse than that of our approach. In short,
our approach exhibited the higher accuracy on most dis-
tortions of TID2013, and its quality prediction was highly
consistent with human subjective evaluation scores.

'e proposed DFCN significantly outperforms the other
methods in Table 4. In particular, it exhibited a relatively
high performance for masked noise (#4), mean shift noise
(#16), and change of color saturation (#18). 'is indicates
that our approach can effectively address visual linear dis-
tortion. 'e relatively high performances for impulse noise
(#6), quantization noise (#7), and local block-wise distor-
tions (#15) show that our approach can also manage visual
nonlinear distortion. It has only a slight performance bias for
four distortion types.

To summarize, the validation results indicate that the
predicted quality of our approach is consistent with human
subjective evaluation. According to the current literature,
there is no IQA index that is superior to others in terms of all
the individual distortion types in TID2013, but our exper-
imental results demonstrate that the proposed DFCN out-
performs other IQA metrics on the two benchmark
databases: LIVE and TID2013.

4.4.3. Generalizability Evaluation. 'e most commonly
encountered distortion types in TID2013 are shared with
LIVE, which are JP2K, JPEG, WN, and BLUR. 'e SROCC
and PLCC values of the cross-dataset evaluation with
comparable results are displayed in Tables 5 and 6. All
models are trained on LIVE and tested on TID2013.

'e competing methods were selected to cover a di-
versity of design philosophies, containing five classic ones
(CORNIA [11], IL-NIQE [39], DIIVINE [27], HOSA [38],
and BRISQUE [29]) and three state-of-the-art deep learning-
based ones (MEON [3], dipIQ [12], and WaDIQaM [15]).
DFCN-IQA approach exhibits more powerful generalization
ability compared to the deep neural network-based methods
(i.e., MEON [3] and WaDIQaM-NR [15]). Unlike early deep
neural networks, MEON [3] uses generalized divisive
normalization (GDN) as the activation function, which is
followed by four convolutional layers and two fully con-
nected layers.'e validation results indicate that the simple
and highly efficient DFCN-IQA is superior to comparable
methods, as it features excellent accuracy as well as strong
generalization ability.

Similar to other deep learning-based IQA methods, our
approach has common features such as purely data-driven
processes and end-to-end optimization. Moreover, we be-
lieve that the reasons for the superior performance of
DFCN-IQA are as follows: first, the whole images, instead of
the segments, are utilized as the inputs to reduce the label
noise; second, the dual-branch learning framework en-
hances the quality score prediction regularized by the
weights of the local patches; third, the staged optimization
enables the network to decrease the risk of overfitting,
resulting in a more robust model.
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Figure 7: Comparison of performances on TID2013.
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Table 4: Comparison of SROCC on 24 distortions of TID2013.
Models #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12
HOSA 0.85 0.62 0.78 0.36 0.90 0.77 0.81 0.89 0.87 0.89 0.93 0.74
RankIQA 0.67 0.62 0.82 0.36 0.76 0.73 0.78 0.80 0.76 0.86 0.87 0.70
IL-NIQE 0.87 0.81 0.92 0.51 0.86 0.75 0.87 0.81 0.75 0.83 0.85 0.28
SNP-NIQE 0.88 0.73 0.65 0.74 0.87 0.80 0.86 0.86 0.61 0.88 0.88 0.29
FSI 0.71 0.72 0.70 0.72 0.77 0.70 0.26 0.95 0.83 0.86 0.90 0.36
Pseudo 0.92 0.86 0.53 0.75 0.92 0.46 0.49 0.86 0.42 0.91 0.87 0.79
BIQI 0.34 0.20 0.70 0.18 0.61 0.02 0.67 0.89 0.79 0.78 0.88 0.55
VRPON 0.83 0.73 0.90 0.56 0.88 0.91 0.88 0.92 0.83 0.89 0.92 0.71
MSDD 0.65 0.48 0.78 0.37 0.78 0.68 0.80 0.90 0.82 0.84 0.92 0.60
NSSI 0.92 0.86 0.93 0.83 0.94 0.89 0.83 0.92 0.84 0.90 0.92 0.68
DIQA 0.91 0.75 0.87 0.73 0.94 0.84 0.86 0.92 0.79 0.89 0.91 0.86
DFCN 0.96 0.96 0.98 0.91 0.96 0.96 0.95 0.93 0.88 0.89 0.93 0.93
Models #13 #14 #15 #16 #17 #18 #19 #20 #21 #22 #23 #24
HOSA 0.70 0.19 0.32 0.23 0.29 0.11 0.78 0.53 0.83 0.85 0.80 0.90
RankIQA 0.81 0.51 0.62 0.26 0.61 0.66 0.61 0.64 0.80 0.77 0.62 0.85
IL-NIQE 0.52 0.08 0.13 0.18 0.01 0.16 0.69 0.36 0.83 0.76 0.68 0.86
SNP-NIQE 0.60 0.02 0.03 0.10 0.26 0.11 0.74 0.21 0.84 0.79 0.64 0.53
FSI 0.63 0.44 0.56 0.62 0.57 0.26 0.64 0.53 0.36 0.76 0.75 0.88
Pseudo 0.49 0.01 0.23 0.11 0.18 0.38 0.86 0.07 0.60 0.68 0.73 0.79
BIQI 0.55 0.16 0.10 0.01 0.42 0.06 0.26 0.61 0.55 0.59 0.76 0.90
VRPON 0.80 0.60 0.52 0.36 0.47 0.69 0.84 0.54 0.83 0.80 0.79 0.86
MSDD 0.64 0.21 0.15 0.21 0.42 0.12 0.38 0.62 0.60 0.68 0.78 0.90
NSSI 0.68 0.18 0.65 0.09 0.76 0.45 0.89 0.42 0.76 0.86 0.89 0.91
DIQA 0.81 0.66 0.41 0.30 0.69 −0.15 0.90 0.66 0.93 0.94 0.75 0.91
DFCN 0.82 0.33 0.76 0.76 0.90 0.93 0.96 0.78 0.96 0.93 0.82 0.93

Table 5: Cross-dataset evaluation on SROCC with comparable results from [3].

Models JP2K JPEG WN BLUR ALL4
IL-NIQE 0.91 0.87 0.89 0.82 0.88
DIIVINE 0.86 0.68 0.88 0.86 0.80
BRISQUE 0.91 0.89 0.89 0.89 0.88
CORNIA 0.91 0.92 0.80 0.93 0.89
HOSA 0.93 0.92 0.84 0.92 0.90
dipIQ 0.93 0.93 0.90 0.92 0.88
WaDIQaM 0.95 0.92 0.94 0.91 0.89
MEON 0.91 0.92 0.91 0.89 0.91
DFCN 0.96 0.93 0.96 0.94 0.92

Table 6: Cross-dataset evaluations on PLCC with comparable results from [3].

Models JP2K JPEG WN BLUR ALL4
IL-NIQE 0.93 0.94 0.90 0.82 0.89
DIIVINE 0.90 0.70 0.88 0.86 0.79
BRISQUE 0.92 0.95 0.88 0.88 0.90
CORNIA 0.93 0.96 0.78 0.94 0.90
HOSA 0.95 0.95 0.84 0.92 0.92
dipIQ 0.95 0.97 0.91 0.93 0.89
WaDIQaM 0.95 0.92 0.94 0.91 0.89
MEON 0.96 0.96 0.94 0.90 0.91
DFCN 0.95 0.94 0.96 0.94 0.93
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5. Conclusions

'is study established a simple and highly efficient blind
image quality predictor that exhibited the superior perfor-
mance and generalization capability compared to other
existing state-of-the-art IQA methods. 'e multiscale image
inputs enrich the extracted distortion feature. A weighted
scoring method enhances the mapping from the distorted
image to the quality score.

'e experimental results verify that ourmodel is effective
for both linear and nonlinear distortions, and the test results
are highly consistent with human subjective evaluation.
However, there are still challenges for deep learning-based
IQA with purely data-driven processes. 'e deep learning
model is easy to overfit due to its high complexity. To
prevent data overfitting and reduce the parameters, we
implemented a series of measures, such as enhancing the
data, introducing constraints to the loss functions, and
adopting full convolution. Our DFCN can estimate image
quality from coarse-to-fine grains, using two-stage method
which makes the training easy.

Deep neural networks with far more parameters than
training data can also be reliably trained [46], but it is a long
way from the current artificial neural network to produce
human-like intelligence [47]. 'e big IQA datasets will
contain more types of distortions in the future, which makes
it difficult for the existing IQA metrics without retraining to
achieve good performance on the specific distortion types.
'e types of distorted images in the real world are more
complicated. Deep learning model needs big data. However,
how to use big data is a research topic worth exploring [48].
We did not propose a full-fledged solution but believe that
deep learning-based IQA methods will still have lots of
potential in the future.
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