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By studying the muscle sound signal of biceps brachii and gastrocnemius muscle, we try to �nd out the relationship between
muscle force and load and the characteristic parameters of fatigue stage, so as to guide the exercise training well, ten healthy male
college students were selected to perform static contraction experiments under di�erent loads (0 lbs, 10 lbs....maximum load), and
weight-bearing heel-lifting fatigue experiment. e relationship between load andmuscle strength was analyzed by wavelet packet
weighting and the L-Z complexity was used to analyze the muscle acoustic signal in the fatigue process. It has been veri�ed that the
L-Z complexity of the gastrocnemius muscle acoustic signal gradually decreases from the maximum in the early stage, relatively
stable in the middle stage, and decreases again in the later stage of the weight-bearing heel-lifting exercise.  e wavelet packet
weighting algorithm makes the muscle strength and the weight-bearing well in line with the linear relationship, and the ap-
plication of muscle strength map can better re�ect the load of muscle.  e L-Z complexity re�ects the changes in muscle �ber
recruitment during muscle fatigue and contraction to a certain extent, and provides a scienti�c basis for judging the fatigue state.

1. Introduction

 e detection and evaluation of exercise-induced muscle
fatigue is of great signi�cance to clinical diagnosis, reha-
bilitation medicine and sports medicine. SEMG is a bio-
electrical signal recorded from the muscle surface during the
activity of the neuromuscular system. Because its amplitude
and frequency are closely related to the functional activities
of the neuromuscular system, sEMG has the advantages of
non-invasive, real-time and multi-target measurement, and
has a good application prospect and important research
signi�cance in the diagnosis of muscle fatigue. At present,
most studies on sEMG in fatigue process focus on static
shrinkage (isometric shrinkage). Median frequency MF and
average power frequency MPF based on Fourier transform
are the most widely used indicators at present. However,
because Fourier transform is the frequency domain analysis
of linear time-invariant signal, sEMG signal has the basic
characteristics of typical unsteady signal for the relative
displacement between the sEMG detection electrode and the
muscle under dynamic contraction condition, as well as the

changes of the length and thickness of the muscle during
contraction. Moreover, the localization contradiction be-
tween the resolution of Fourier transform in time domain
and frequency domain also limits the application of Fourier
transform.  erefore, using Fourier transform to analyze
sEMG has great limitations.

With the continuous progress and development of
medicine and technology, there is an inseparable connection
between the important values in human life and the human
muscle state. Muscle state analysis is mainly used in reha-
bilitation medicine, sports science, occupational disease
prevention and other �elds [1]. See Figure 1, with the gradual
development of sports, the training level of trainers needs to
be gradually improved and strictly required, but it is di�cult
to ensure scienti�c and reasonable training through human
subjective feelings. Excellent sports performance requires
the guidance and assistance of physiological science and
sports science theory. Nowadays, scienti�c training and
scienti�c diagnosis have become important means. Muscle
fatigue is one of the important indicators for assessing and
diagnosing muscle state, which is mainly manifested in the
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reduction or decrease of human muscles’ functional power
during muscle contraction [2]. At present, muscle fatigue
research based on biomedical signals has gradually been
applied. Among them, electromyographic (EMG) signals,
brain electrical signals and muscle acoustic signals are the
most widely used biomedical signals. EMG signal is the most
common biological signal in the current research on muscle
fatigue, which describes the electrophysiological character-
istics of muscle. )is method is guided by electrodes to
record the bioelectric signal of muscle contraction. )e
correlation between the EMG signal and the state and
function of the muscle has a high potential value for the
assessment and diagnosis of muscle fatigue in the field of
sports and rehabilitationmedicine [3].)ere are two types of
EMG signals. One type is needle EMG signals, which are
invasive. EMG signals are obtained by invading the needle
electrode into the muscle.)is method will cause discomfort
and muscle damage to the subject, which is only used in
clinical practice. )e other is surface EMG signal. As a one-
dimensional time series signal, it can also reflect the char-
acteristics of the neuromuscular system during muscle ac-
tivity, which has the advantages of non-damaging and good
locality [4].

2. Literature Review

Kim et al. initially explored the connection between the
generation method of muscle sound signal and muscle
movement mechanism in the research based on muscle
sound signal, laying a good foundation for subsequent re-
searchers to study muscle sound signal [5]. Filli et al.

conducted a passive stretch reflex test in 10 patients with
brain injury in a study based on muscle sound signals to
assess spasticity in patients with brain injury, and recorded
muscle sound signal and EMG signal of the lateral femoral
muscle (stimulant) and half of the leg muscle (Antagonist),
and proposed a new method for evaluating spasticity by
muscle sound signal combined with EMG signal. )e MMG
ratio expressed in fractional form of myogenic oscillation
shows that the degree of myogenic spasm increases as the
value approaches 0 [6]. Sun et al. studied lower limb muscle
atrophy based on muscle sound signals and EMG signals.
)e subjects were 20 healthy adults, 10 were elderly (average
age 65± 5 years), and 10 were young people (average age
23± 4 years). )e test method is to perform different in-
tensities of thigh movements, record muscle sound signals
and EMG signals at the same time, and process and analyze
the data obtained [7]. Aslani et al. found in a study based on
muscle sound signals that the frequency of muscle sound
signals is in the range [2,100] Hz, and its energy is mainly
concentrated in the frequency range [5,50] Hz, showing the
connection between muscle strength and the muscle sound
signal. As the load increases, the peak value of the muscle
sound signal increases. )ere is a certain correspondence
between the muscle sound signal and the muscle action
characteristics. [8]. Kurosawa et al. used algorithms such as
singular value decomposition and wavelet decomposition to
recognize four action modes in pattern recognition based on
muscle sound signals, and the recognition accuracy rate was
89.7% [9]. In the research of pattern recognition based on
muscle sound signals, Das et al recorded the muscle sound
signals at different positions of wrist flexor on the flexor side
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Figure 1: Muscle strength stratification. (a) Single decomposition, (b) Coefficient structure and (c) Wavelet decomposition tree.
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of forearm, and matched them with the recognition rate of
hand movements. )e research results showed that the
muscle sound signal is different in different acquisition
positions of the same muscle, and the sensor recognition
effect affects the accuracy of the collection position error of
1-2 cm [10]. In the study of upper limb muscle fatigue based
on EMG signal, Moosavi et al. collected EMG signals of
athletes’ upper limb muscles. )e results showed that the
average power frequency and center of the surface EMG
signals of wrist flexors and extensors decreased significantly
with the increase of time under different loads [11]. Zhao
and other studies have shown that EMG signals can monitor
muscle fatigue during isometric contraction [12].Do et al.
proposed that wavelet packet analysis is a more detailed
signal analysis and reconstruction method extended from
wavelet analysis. Using the time-frequency localization
characteristic of wavelet packet transform, the time-varying
spectrum analysis of signal can be realized, and the signal
can be analyzed in any detail, and it is not sensitive to noise.
)e wavelet packet analysis is more suitable for the analysis
of athletes’ non-stable EMG signals. With appropriate
wavelet packet transform, emG signals in different func-
tional states can be observed in different scales for their
frequency changes and time characteristics [13]. Schimmack
and Mercorelli Artificial neural network is a signal pro-
cessing method that has received widespread attention at
present, which imitates the structure of biological neurons
and the mechanism of neural information transmission [14].
It is composed of many neurons with nonlinear mapping
ability, which are connected with each other by weight
coefficient to form an adaptive nonlinear dynamic system. It
has the characteristics of parallel computing, distributed
storage and adaptive learning. Artificial neural network
shows great advantages in dealing with highly nonlinear
problems because of its self-organization, self-adaptive
learning and excellent fault tolerance, and is widely used in
sEMG analysis and processing. )e rectus femoris muscle is
one of the most important muscles used in alternating
centripetal contractions of the lower extremities during full
pedal cycling. Hasan et al.; )e sEMG of the right rectus
femoris muscle was pedal with full force at 8% of the body
weight of the subjects during the 60 s, and the recorded
sEMG was processed, analyzed and studied by combining
wavelet packet analysis and artificial neural network. In
order to explore the change law of sEMG and its relationship
with output power in the process of rectus femoris fatigue
caused by full pedal bicycle in the 1960s, explore the
quantitative evaluation method of sEMG for sports muscle
fatigue [15].

)is paper aims to collect muscle sound signals through
advanced acquisition and analysis equipment, and digitally
display the size of muscle force, and analyze the charac-
teristics of muscle changes in the process of fatigue exercise,
infer the fatigue stage, in order to guide the relevant exercise
practice, make sports training digital, visual, more efficient.
At present, the analysis of muscle contraction characteristics
using muscle acoustic signals is mainly focused on frequency
domain and time domain, such as energy, root mean square,
integral value, spectrum, and power spectrum.)ere are also

studies of statistical analysis in time domain and frequency
domain, such as short-term energy, median frequency,
center frequency, etc.

3. Muscle Acoustic Signal Analysis Theory

3.1. Wavelet Packet. Apply the wavelet packet algorithm to
first perform wavelet packet decomposition on the signal,
then weight a certain part of the wavelet packet node, then
perform wavelet packet reconstruction on the weighted
wavelet signal, and finally calculate the short-term signal
energy of the reconstructed signal as the output of muscle
strength. It is very useful for analyzing instantaneous time-
varying signals. It effectively extracts information from the
signal, performs multi-scale refinement analysis on the
function or signal through the operation functions such as
scaling and translation, and solves many difficult problems
that cannot be solved by Fourier transform.

)e wavelet packet was proposed by Coifman, Meyer,
Quaker and Wickerhauser (CMQW). )e following first
introduces the concept of wavelet packet basis. If hg􏽮 􏽯

k∈z and
gg􏽮 􏽯

k∈z are a set of conjugate mirror filter (QMF), namely:

􏽘
n∈Z

hn−2khn−2i � δH,

􏽘
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√
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(1)

)en it can be defined that the series of functions
un(t)􏼈 􏼉 (n � 0, 1, 2, . . .) satisfies the following equations:
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�
2

√
􏽘
k∈Z

hkun(2t − k),

u2n+1(t) �
�
2

√
􏽘
k∈Z

gkun(2t − k).
(2)

Wavelet packet transform not only decomposes the low-
frequency part, but also the high-frequency part, which is a
more refined decomposition method than wavelet decom-
position. Figure 2 is a schematic diagram of the wavelet
packet decomposition of the signal. )e decomposition
coefficients have a reconstruction relationship:
So� S30 + S31+. . .+S37, whichmeans that the original signal
So can be reconstructed by the sum of all the decomposition
coefficients of the third layer.

3.2. L-Z Complexity. It is generally believed that complexity
reflects the rate at which new patterns appear in a time series
as the length of the series increases. )e greater the com-
plexity, the more new patterns appear in the data within the
window length, and the faster the rate of new changes,
indicating that the data changes during this period are
disorderly and complex. Conversely, the smaller the com-
plexity, the slower the rate of new changes, and the stronger
the periodicity of data changes. )erefore, the complexity of
the time series can be calculated to describe the changes in
the state of the system.

For the study of the complexity of nonlinear time series,
the methods of coarse-grained time series generally include
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the mean method, the first-order difference method, the
moving average, and the moving-order difference method.
)e symbolization method is to convert the signal into a
sequence of binary symbols by comparing with a certain
reference value. When the signal is less than the reference
value, it is symbolized as “0,” otherwise it is symbolized as
“1.”

)e reference value of the mean value method is the
mean value of this time series, that is, for a certain time series
x(i) , i � 1, 2, . . . , n, let

Xave �
1
n

􏽘

n

i�1
x(i), (3)

Xave is the average value of this time series, S � (S1S2 · · · Sn)

is an empty symbol string with the same length as the time
series i � 1, 2, . . . , n. When there is an element in the time
series Xi <Xave, the symbol s is taken as “1,” otherwise “0.”
)e expression is as (4).

s(i) �
0, x(i)≤Xave

1, x(i)≤Xave
􏼨 􏼩. (4)

)e established symbol sequence is S. )is method is not
sensitive to noise in dynamic structure analysis because only
two states greater than the average value and less than or
equal to the average value are considered. And it can only
reflect the overall characteristics of the sequence, not the
local characteristics [16].

According to the Lempel-Ziv complexity algorithm, it
can be seen that the greater the complexity of a symbol
sequence, the more operations it adds, the more new pat-
terns it has, the more number of the least mutually different
“substrings” required to describe a given symbol sequence,
the weaker the periodicity of a given symbol sequence, and
the faster the rate of new patterns. Conversely, the more
repeated operations, the fewer the new patterns, the stronger
the periodicity, and the slower the rate of new patterns
appearing [16].

4. Experimental Analysis

4.1. Subject. In order to obtain the muscle acoustic signal of
muscle contraction, male volunteer subjects with good
mental state and physical health are selected to perform
muscle contraction exercises. In this experiment, 10 young

males were selected, aged 22.9 + 0.7 years old, height
172.1± 3.9 cm, weight 64.4± 8.3 kg. No strenuous exercise
was performed within 24 hours before the test. Before the
test, the subjects were told about the essentials, the process,
and the requirements of the experiment, and the training
was carried out before the formal experiment. )e subject
information table is shown in Table 1.

4.2. Experimental Method

4.2.1. Experiment 1 the Biceps Brachii

(1) Static Load. Action description: Stand up straight with
feet shoulder-width apart, straighten chest and close ab-
domen. Grip the handle tightly with right hand, straighten
arm and bend forearm and upper armmore than 90 degrees,
with palm facing forward. Inhale, raise right arm at the same
time, and quickly lift to the horizontal position. )e forearm
is at a right angle to the upper arm, the palm is facing the
biceps, and the elbow is close to the side of the body. Hold
for 5 to 6 seconds. )en slowly put down the dumbbells and
inhale at the same time. Change the size of the load and
repeat the above actions.

(2) Experiment Procedure. )e muscle acoustic signal ac-
quisition experiment was carried out in a quiet room. Before
the experiment, first, the test system should be preliminarily
tested and set up, and the action essentials should be told to
the subjects. )e subjects stand upright on a level ground,
exert their arms autonomously to find the biceps muscle
[17], and determine the maximum vibration position of the
biceps: muscle abdomen. Fix the muscle acoustic sensor on
the epidermis where the vibration of the two arms is greatest.

4.2.2. Experiment 2 Weight-Bearing Heel-Lifting Fatigue
Experiment. Action Description

(1) Sit with your feet shoulder width apart, with the load
above your knees and your heels drooping.

(2) Exhale and slowly stand on toes until the highest.
(3) Hold for 1 second, and then slowly lower heels to the

lowest point, and inhale at the same time.
(4) Repeat the above action.

The original
signal
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Figure 2: Schematic diagram of wavelet packet decomposition.
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Experimental procedure: A weight of 20 kg is placed on
the front of the thigh, collect the muscle acoustic signal from
gastrocnemius muscle movement to fatigue during heel
lifting in weight-bearing sitting posture [17]. )e muscle
acoustic sensor should be attached to the gastrocnemius
muscle abdomen.

4.3. Muscle Acoustic Signal Acquisition System. SEMG sig-
nals were collected using an EMG recording and analysis
system with a sampling frequency of 1 000Hz. After the
experiment, the video frame of the flashmoment was used as
the synchronization point with the surface EMG zero mo-
ment, and the data were synchronized according to the
relative delay time of the video and the surface EMG tester.

)e frequency of the muscle acoustic signal is generally
less than 100Hz, so the signal acquisition card fully meets
the requirements of muscle acoustic signal acquisition. In
the signal acquisition process, we choose the sampling rate to
be 5000Hz. In the digital-to-analog conversion process, the
5000Hz sampling rate is completely satisfied with the
muscle acoustic sampling rate, and the signal information
loss is very small. After the muscle acoustic signal is am-
plified and digital-to-analog converted, it is directly input to
the terminal computer [18], and the self-developed data
acquisition system is used to configure the acquisition card
and display and save the data. )e flow chart is shown in
Figure 3.

In the experiment, there will be noise in signal acqui-
sition, but through computer-recorded signal and spectrum
analysis, it is found that the amplitude of the noise relative to
the muscle acoustic signal is very small. Before signal
processing, the noise is filtered through high-pass and low-
pass filters to obtain a large signal-to-noise ratio.

4.4.Analysis ofMuscleAcoustic Signal. Each group of muscle
acoustic signals collects 10 complete movements. Figure 4
shows the original muscle acoustic signals of 10 complete
movements. It can be roughly seen from the figure that the
amplitude of the muscle acoustic signal gradually decreases
as the movement continues.

For the convenience of research, 3 out of 10 complete
movements are intercepted for analysis. Figure 5 shows part
of the muscle acoustic signals collected during the biceps
curl exercise [19].

Perform wavelet packet weighting on the muscle
acoustic signal of each subject under each load condition and
calculate the value of relative muscle strength. )e calcu-
lation results are shown in Table 2.

It can be seen from Table 2 that the relative muscle
strength and load have a tendency to increase at the same

Table 1: Subject information.

Number Age Height (cm) Weight (kg) Upper arm circumference, resting/maximum (cm) Calf circumference (cm)
1 24 170 62.3 27.3 30.2
1 23 172 61.3 26.0 29.3
3 21 173 60.3 24.3 26.1
4 23 175 61.9 23.5 27.0
5 20 174 62.6 27.0 30.6

Myoacoustic
sensor

Terminal
computer

Data acquisition
cardSignal amplifier

Figure 3: Flow chart of the test system.
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time. In order to show the relationship between muscle
strength and load more clearly [20], the relative muscle
strength is normalized to the maximum load. For example:
For object 5, normalize to 70, and then perform linear fitting
on the normalized data. )e result of object 5 is shown in
Figure 6.

)e calf heel lift test is used to obtain the spectrogram of
the gastrocnemius muscle from exercise to fatigue. )rough
the measurement and statistics of the width of the muscle
acoustic spectrum, the law of the change of the spectrum
width of the muscle sound signal with the exercise time is
obtained. It is found that in the early stage of exercise, the
acoustic spectrum bandwidth of gastrocnemius muscle is
wide [21–23], indicating that the muscle fibers participating
in exercise are in the process of adapting to exercise load and
rhythm, and various types of muscle fibers are mobilized to
participate in exercise. In the middle of exercise, the muscle
enters the adaptation period, the number of muscle fibers
participating in exercise remain in a certain range, and the
vibration spectrum is relatively stable. At this time, the
spectrum bandwidth remains in a relatively stable range. In
the later stage of exercise, with the gradual emergence of
exercise fatigue, the ability of participating in exercise
muscles gradually weakens, showing that the number of
muscle fiber vibration is reduced and the spectrum

components are reduced, so the muscle acoustic spectrum
bandwidth is further reduced [24]. )e LZ complexity is
applied to verify the characteristics of the muscle acoustic
signal changes, the results show that the complexity of the
muscle acoustic signal is directly related to the frequency
component of the signal, and the amount of frequency
component produced is completely equivalent to the type of
muscle fiber participating in the exercise. )e more types of
muscle fibers involved in exercise, the more abundant the
frequency components of the spectrum and vice versa.

5. Conclusion

In this paper, the signal which reflects the muscle stress in
the collected muscle acoustic signal is weighted by the
method of wavelet packet weighting, and then the output of
muscle force is calculated by the short-term energy. Wavelet
packet weighting can not only provide the fine output state
of muscle force at eachmoment, but also check the change of
muscle force in the process of long-term exercise training by
calculating the muscle force for a long time. )rough the
above analysis, the following conclusions can be drawn: in
the early stage of exercise, the muscle responds to the load
and prepares for it, and themuscle fibers need to be recruited
in large quantities to deal with the sudden load exercise,
which is quite complicated. With the extension of exercise
time, muscles gradually adapt to the load state, and the speed
of complexity gradually decreases, enter, and maintain. It
remained in a relatively stable state, reflecting that the types
of muscle fibers recruited during the adaptation period were
relatively stable. At the late stage of exercise, the complexity
gradually decreases again, indicating that the muscles have
entered the fatigue state, and some types of muscle fibers can
no longer participate in exercise, resulting in a continuous
decrease in recruited muscle fibers.

Data Availability

)e data used to support the findings of this study are
available from the corresponding author upon request.
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