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Deep encoder-decoder networks have been adopted for saliency detection and achieved state-of-the-art performance. However,
most existing saliency models usually fail to detect very small salient objects. In this paper, we propose a multitask architecture,
M2Net, and a novel centerness-aware loss for salient object detection. The proposed M2Net aims to solve saliency prediction and
centerness prediction simultaneously. Specifically, the network architecture is composed of a bottom-up encoder module, top-
down decoder module, and centerness prediction module. In addition, different from binary cross entropy, the proposed
centerness-aware loss can guide the proposed M2Net to uniformly highlight the entire salient regions with well-defined object
boundaries. Experimental results on five benchmark saliency datasets demonstrate that M2Net outperforms state-of-the-art

methods on different evaluation metrics.

1. Introduction

Salient object detection (SOD) [1-3] aims to extract the most
visually distinctive objects in an image or video. During the
past decades, it has become a hotspot in the research field of
computer vision. Saliency detection results often serve as the
first step for a variety of downstream computer vision tasks,
including object recognition [4], visual tracking [5], image
retrieval [6], no-reference synthetic image quality assess-
ment [7], robot navigation [8] image and video compression
[9, 10], and object discovery [11-13].

Earlier SOD methods mostly rely on hand-crafted fea-
tures (e.g., color, brightness, and texture) to produce saliency
maps. However, these low-level features can hardly capture
high-level semantic information and are not robust enough
to various complex scenarios.

Recently, convolutional neural networks (CNNs), es-
pecially fully convolutional neural networks (FCNs) [14],
have pushed salient object detection to achieve very
promising results on many popular public benchmark
datasets. Encoder-decoder framework [3, 15-19] is fre-
quently used to extract and combine enriched feature blocks
and therefore can generate more accurate saliency maps.

More recently, many researchers further improved the sa-
liency model by incorporating domain-specific information
from other tasks such as contour/edge detection [18, 20, 21],
image classification [22, 23], and noise pattern modeling
[24].

These U-shape models [3, 21] have greatly refreshed the
leaderboards on all commonly used datasets. However,
existing saliency methods still hold many problems that are
not solved totally and are worthy of further research. First,
due to the repeated subsampling, a single-scale convolu-
tional kernel has difficulty in accurately segmenting size-
varying salient object. Two state-of-the-art methods cannot
uniformly highlight small foreground object with well-de-
fined boundaries, as is shown in Figures 1(d) and 1(e). This
motivates some efforts to characterize the multiscale in-
formation from a single layer. Second, most of the existing
saliency methods [15, 25] use binary cross entropy (BCE)
loss to train the saliency networks. But these models with
BCE loss usually have low confidence in making a distinction
between foreground and background, leading to blurred
boundaries. The recent survey [26] indicates that the elab-
orate design of loss function can help to train more effective
saliency detection models. Some training losses, such as PPA
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FIGUure 1: Sample results of our approach (M2Net) compared to GateNet and MINet. (a) and (b) show the input images with small
foreground object and the ground truth (GT), respectively. (c), (d), and (e) are saliency maps of ours (M2Net), GateNet, and MINet.

loss [19], Intersection over Union (IoU) loss [17, 27], and
F-measure loss [28], were proposed for improving model
performance. In consequence, it is essential to design a
mechanism to extract multiscale information from each
layer and develop a novel training loss.

To address the above challenges, we proposed a novel
multiscale and multitask network, named M2Net, which can
generate high-quality saliency maps with clear boundaries
(see Figure 1(c)). Firstly, in the bottom-up encoder module,
we use two branches to extract robust feature blocks. The
backbone branch is based on a common pretrained image
classification network, while the transformation branch is
based on the sequence of three operations, including con-
volution, batch normalization, and ReLU. Secondly, in the
decoder module, we develop two units, including multiscale
feature extraction unit and cross-layer feature block fusion
unit, to generate the saliency maps. Multiscale feature ex-
traction unit can extract multiscale contextual features, while
cross-layer feature block fusion unit can continually fuse
adjacent level feature blocks. Thirdly, to take full advantage
of ground truth, we design a centerness-aware loss, which
considers the location of salient objects. This loss can guide
the proposed network to generate high-quality saliency
maps.

We conduct experiments on five benchmark saliency
datasets and demonstrate the better performance of the
proposed M2Net. In summary, our contributions are as
follows:

(i) We propose a multiscale and multitask deep
framework with a centerness-aware loss for salient
object detection. The M2Net consists of encode
module, decoder module, and centerness prediction
module.

(ii) We develop a centerness-aware loss, which can help
to generate high-quality saliency maps, and it can
push the proposed M2Net to uniformly highlight
the entire salient regions with clear boundaries.

(iii) Extensive experiments on five public SOD datasets
show that our model M2Net outperforms state-of-
the-art saliency methods on different evaluation
metrics. In particular, the proposed model (M2Net)
can achieve the best performance under different
challenging situations.

2. Related Work

2.1. Salient Object Detection. Early SOD methods [2, 29, 30]
are mainly based on hand-crafted features and some in-
trinsic cues, such as center prior, color contrast, and
background prior. Recently, convolutional neural net-
works (CNNs) have been used to extract multilevel fea-
tures from input images. CNNs-based methods treat
patches/superpixels [31-33] and generic object proposals
[34-37] as image processing units, and an MLP-classifier
is used to train the network. Wang et al. [35] trained two
different CNN models to generate a saliency map. DNN-L
and DNN-G are used to extract local and global features,
respectively. Particularly, fully convolutional networks
(FCN) show their advantage and refresh the state-of-the-
art records in saliency prediction task. The encoder-de-
coder framework is frequently used in the FCN-based
saliency models [3, 15-19, 38-40]. Liu et al. [16] proposed
a novel network to embed local and global pixelwise
contextual attention modules into a U-shape network.
Zhao et al. [3] proposed a simple and effective gated
network architecture to control the meaningful message
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passing from encoder to decoder feature blocks. Almost
all of the above methods try to develop more complicated
modules and strategies to fuse feature blocks of different
levels. Different from the methods mentioned above, we
propose a simple and effective multitask architecture,
which attempts to solve saliency tasks by adding an extra
centerness prediction branch.

2.2. Multiscale Feature Extraction. The atrous spatial pyra-
mid pooling (ASPP) module [41] is widely used in many
computer vision tasks. The atrous convolution can expand
the receptive field with fewer parameters to get large-scale
and more comprehensive features. The pyramid pooling
module (PPM) [42] is another choice for extracting mul-
tiscale features. Zhang et al. [43] insert five ASPP modules
into the encoder feature blocks of five levels. The larger the
atrous rate, the more the difficulty in capturing the changes
of image details. To alleviate the above problem, Zhao et al.
[3] designed a folded ASPP and achieved a local-in-local
effect. Besides, the pyramid attention module [44] can
generate multiscale attention maps to enhance saliency
features. The above methods can extract multiscale features
from images, but it is more sensitive to background noise. To
improve the recall rate of saliency objects under complex
background, we propose a multiscale feature extraction
module and insert it into decoder feature blocks.

2.3. Multitask Learning. Multitask learning (MTL) has led to
successes in many research fields, from computer vision and
speech recognition to drug discovery and natural language
processing. Multitask learning aims at simultaneous training
using two or more related tasks. It is found that learning
multiple tasks jointly can lead to better performance im-
provement compared with learning them individually. Re-
cent multitask learning-based saliency methods have shown
good results by jointly tackling multiple related tasks such as
image classification, fixation prediction, and edge detection.
Li et al. [23] and Wang et al. [22] proposed to apply image-
level tags to assist the detection of the foreground object.
Kruthiventi et al. [47] proposed a unified multitask learning
framework to jointly solve salient object detection and
fixation prediction. Zhao et al. [20] presented an edge
guidance network to extract two complementary features,
including salient object features and salient edge features. As
we all know, location is the important information of an
object. To the best of our knowledge, this information has
never been directly used in saliency prediction tasks. In this
paper, we investigate how to integrate the centerness pre-
diction task into saliency detection.

3. Proposed Method

In this paper, we propose a multitask and multiscale deep
network for salient object detection. The overview of the
proposed network consists of three related modules, as
shown in Figure 2. To guide the saliency network to uni-
formly highlight the entire object with different size, we
propose a multiscale feature extraction approach. To further

improve the detection accuracy, we introduce centerness-
aware loss, which helps to reduce the impact of complex
background.

3.1. Network Overview. The encoder-decoder architecture
has been widely used in the salient object detection task, and
it has a strong ability to combine features from different
network layers. Our method is built on the feature pyramid
networks (FPN) [48] with the pretrained ResNeXt-101 [46]
or ResNet-50 [45] as the backbone network, both of which
can extract meaningful saliency features to build high-
quality U-shape networks. To reduce network parameters,
we discard all the fully connected layer of the pretrained
backbone [45, 46]. The proposed M2Net consists of a bot-
tom-up encoder module, top-down decoder module, and
centerness prediction module. In the encoder, we use the
pretrained backbone to extract multilevel saliency features
from preprocessed images. To obtain robust saliency fea-
tures, each feature block is processed by 1 x 1 convolutional
layers followed by batch norm and ReLU (Figure 2). Next, in
the decoder, we use a skip/concatenation connection
scheme. To generate the final saliency maps, a novel mul-
tiscale feature extraction approach is proposed (Figure 3).
Lastly, we design a centerness prediction module (Figure 2),
which can help to generate high-quality saliency maps. We
describe the structures of the three modules and explain
their transformation in the following sections.

3.2. Encoder Module. In our M2Net, the encoder module is
composed of a backbone branch and a transformation
branch. The backbone branch is based on a common pre-
trained image classification network, for example, the VGG,
ResNet-50 [45] or ResNeXt-101 [46]. In order to fit the
saliency prediction task, similar to most previous saliency
methods [3, 16, 20], we remove the last pooling layer and
cast away all the fully connected layers of the ResNet or
ResNeXt. Let I € R*2°*329%€ denote the input training image
with ground truth labels YeR**°*?*°*! a5 is shown in
Figure 2, where C denotes the channel of the input image.
For a given input image with size Hx W, the pretrained
image classification network will extract its saliency features
at five different levels, denoted as {E'€ RF*"*|i=1, .., 5}
with resolutions [H/(2'~ "), W/(2'~")], where C denotes the
channel of the feature blocks. H and W are the height and
width of different level feature blocks. In the transformation
branch, the sequence of three operations is used to generate
robust and meaningful saliency features, as is shown in
Figure 2. The detailed parameters of the three different
operators can be found in Table 1. After the processes above,
we obtain five different feature blocks {T' € RF* WXC|1' =1,

.., 5}, which are to be used in the decoder part of the
network.

3.3. Decoder Module. In the encoder, different levels of
feature blocks contain different information. The high-layer
feature blocks encode the semantic information for category,
and these layers do not care about local detail for image.
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F1GURE 2: The overall framework of our proposed multiscale deep network (M2Net). M2Net is based on ResNet-50 [45] or ResNeXt-101 [46]
with supervision from saliency map and object position. M2Net consists of the backbone branch, transformation branch, decoder branch,
and centerness prediction branch. The backbone network is used to extract some important saliency features, the transformation part is used
to generate robust saliency features, the decoder part is used to generate the final saliency maps, and the last part is used to predict object
position in an image.
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FIGURE 3: Multiscale feature extraction unit; CBR is composed of convolution, batch normalization, and ReLU operation; AP denotes
average pooling.

The low-layer feature blocks contain more detailed in-  designed to integrate these different feature blocks. The
formation about the image, and these layers suffer from the =~ combination of these different level feature blocks can en-
problem of semantic ambiguity. The decoder module is  hance the representation ability to complete the saliency
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TaBLE 1: Detailed parameters of three different operators, including convolutional operator, batch normalization operator, and ReLU
operator, respectively. The left two parameters of Conv2d are the number of input and output channels, and the right two parameters are the
kernel size. The parameter of the BatchNorm2d operator is the number of feature channels, and the parameter of the ReLU operator is in

place.

No. Feature Conv2d BatchNorm2d ReLU Result
1 F! 2048, 512, 1x 1 512 True T
2 P 1024, 256, 1x 1 256 True T
3 P 512, 128, 1 x 1 128 True I
4 F 256, 64, 1x 1 64 True T
5 P 128, 32, 1x1 32 True T°

prediction task. The decoder network comprises two main
computing units: (i) Multiscale feature extraction unit,
which can extract multiscale contextual features to facilitate
saliency prediction models to extract discriminative features.
(ii) Cross-layer feature block fusion unit, which continually
fuses adjacent level feature blocks from {T'|i=1, ..., 5}.

Figure 3 shows the details of the multiscale feature ex-
traction unit. Given a feature block Fi € RFXWXC  we first
use average pooling to perform a downsampling operation.
After that, we can obtain F, € RH?*W2xC To obtain
robust saliency features, the two branches are processed by
combination operation, which is composed of convolution,
batch normalization, and ReLU operation. After a series of
above-mentioned processing, we ~ obtain
F, = CBR(CBR(F}))) and F,, = CBR(CBR(F,)). The
output of the bottom branch F_, is upsampled to match the
output of top branch F! . To extract the multiscale features,
we integrate the two branches by using multiplication and
addition operations. The multiscale feature extraction unit is
formulated as follows:

Fipa = 0.5 % Fi +0.5 Up<Fgm) +FL % Up<1"~“;m), (1)
where U (-) denote upsampling operation.

Figure 4 shows the details of the cross-layer feature block
fusion unit. This transformation unit is composed of four
different kinds of operators, including convolution,
upsampling, concatenation, and combinator. The first
convolution layer can halve the number of channels for
high-level feature block. To adapt to the low-level feature
block, the transformed high-level feature block is processed
by the second upsampling operator, which can increase the
size of feature blocks by 2 times. Then, the concatenation
operator is used to build one larger feature block. Finally, the
combinator is composed of the two repeated cascaded
structures of convolution operators, each of them followed
by a batch normalization layer and a ReLU layer. After a
series of above-mentioned processing, we can obtain four
different feature blocks {M’e RFWXCli=1,... 4}, as
shown in Figure 2.

The cross-layer feature block fusion unit is formulated as
follows:

M' = CBR(Cat(T',U(D™))), (2)

where CBR(-) and U (-) represent the combined operation as
mentioned above and the upsampling operation,

respectively. D' denote the output of the decoder, and it is
formulated as follows:

, MSF(TS), i=5,
D = ’ (3)
MSF(M’), i=1,234,

where MSF(-) denote multiscale feature extraction opera-
tion, which is defined in equation (1).

3.4. Centerness Prediction Module. Object location infor-
mation can be very useful to improve the image classification
task but seldom used in the saliency detection task.

In this paper, we introduce the centerness to the saliency
detection. We define centerness as a ratio between EO and
EC, as is shown in Figure 5. The location of node O rep-
resents the center of ground truth or saliency map, and it can
be calculated as follows:

(0.0~ (SZR I, g
Yict Zj:l fij it ijl fij

where f;; € [0,1] denotes the gray value of ground truth or
predicted saliency map.

Centerness prediction module comprised two main
components: (i) FCL (two fully connected layers), which
directly maps high-dimensional feature space to 1-dimen-
sional feature space; (ii) logistic function, which applies a
sigmoid function to restrict the number from a large scale to
within the range 0-1. Figure 6 shows the details of the FCL.
This component contains three fully connected layers, and
each layer contains a different number of neural nodes.

3.5. Deep Supervision. An effective loss function plays an
important role in training more effective saliency models
[26]. When the image contains complex background, the
deep network with BCE loss will probably generate poor
saliency results. To generate high-quality saliency maps with
clear boundaries, we propose a centerness-aware loss, which
is defined as follows:

LCAL = Lbce + Lloc +A X% Liou’ (5)

where Ly, L., and L, denote BCE loss [49], location loss,
and IoU loss [17, 27], respectively. The parameter A is a

hyperparameter which is set to 0.5 in this paper.
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F1GURE 4: Cross-layer feature block fusion unit, which continually fuses adjacent level feature blocks.

Binary cross entropy (BCE) is a widely used loss in
saliency detection tasks, and it is defined as follows:

=~
]

1 Bi=M

BxM

Lbce ==
ard

T
(=]

where x; and y; € {0, 1} denote the prediction of the pixel i
and ground truth. B is the batch size and M is the product of
the height and width of a given image.

The position of salient objects is very important infor-
mation. Hence, we introduced it into our training loss; L, is
defined as follows:

1k:B k k2
:EZ(Cg_CP)’

k=0

Lloc (7)

where Ck denotes the ground truth of the k-th image and C’;
is the result of centerness prediction.

To uniformly highlight the whole salient region, we
integrated IoU [17, 27] into our training loss. It is defined as

B M k_k
L =1Z<1_ 2icoSi Vi >
iou M [ k k k k :
B 5 2ico [Si tYVi =S )i

where sf € {0,1} is the predicted probability of being the
foreground object and y* is the ground truth of the pixel i.

(8)

4. Experiments

4.1. Implementation Details. We train our saliency model on
the DUTS-TR [22] dataset with 10553 images as followed by
[3, 16]. For a fair comparison, we use ResNet and ResNeXt as
backbone networks, respectively. For convenience, all the
training and testing images are resized to 320 x 320. Our
saliency model is implemented in PyTorch. The parameters
of backbone networks are initialized with the models pre-
trained on the classification dataset. All the other parameters
of M2Net are set by the default setting of PyTorch 1.2.0. The
hyperparameters are set as follows: weight decay=0.0005

[yi(k) x log xi(k) +(1 - yi(k)) X log(l - xi(k))],

(6)

and momentum = 0.9, and the initial learning rate is set to
0.005 for pretrained backbone networks [45, 46] and 0.05 for
the rest parts. In this paper, we use the warm-up and linear
decay methods to dynamically adjust the learning rate.
During the training stage, random flip, random contrast,
random saturation, and random brightness act as data
augmentation techniques to avoid the overfitting problem.
We apply a stochastic gradient descent algorithm to update
all the parameters of the proposed M2Net. To ensure model
convergence, M2Net is trained for 32 epochs with a mini-
batch of 15 on an NVIDIA GTX 2080 Ti GPU.

4.2. Datasets. 'The performance of M2Net is evaluated on five
benchmark saliency datasets, including ECSSD [50], PAS-
CAL-S [51], DUTS [22], DUT-OMRON [30], and HKU-IS
[34]. ECSSD [50] contains 1000 meaningful semantic images
with pixel-accurate annotations. The PASCAL-S [51] dataset
is composed of 850 challenging images, which are carefully
selected from the PASCAL VOC segmentation dataset. DUTS
is the largest salient object detection (SOD) dataset. It con-
tains 10553 images for training and the remaining 5019
images for testing. DUT-OMRON ([30] is composed of 5168
high-quality but challenging images. Images in this dataset
contain one or more salient objects with complex back-
ground. The HKU-IS [34] contains 4447 challenging images
which have multiple disconnected salient objects.

4.3. Evaluation Criteria. To quantitatively evaluate the
performance, four measurements, including Precision-Re-
call (PR) curve, F-measure, and Mean Absolute Error
(MAE), and S-measure, are adopted in our experiments.
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Precision-Recall curve is a widely used graphical tool to
evaluate the robustness of saliency maps. It can demonstrate
the relation of precision and recall by thresholding the final
saliency results from 0 to 255. The larger the area under the
PR curve, the better the performance.

The F-measure is a weighted combination of precision
and recall, which is defined as

(1 + [32) x precision x recall

Fg= 2 - )
B° x precision + recall

where 8 is set to 0.3 as done in most recent state-of-the-art

saliency methods [3, 16, 19, 52-56] to emphasize the pre-

cision. The mean F-measure (F,,) of each benchmark dataset

is reported in the paper.

Mean Absolute Error (MAE) is a metric, which measures
the pixelwise average absolute difference between saliency
map and its corresponding ground truth. The MAE score is
defined as follows:

1 M
MAE = — mZ:1|xm = Yl (10)

where x and y are the prediction result and ground truth,
respectively, and M indicates the total number of image
pixels.

S-measure is more sensitive to foreground structural
information of saliency maps, which is closer to the
human visual system. It considers the object-aware
structural similarity S, and the region-aware structural
similarity S,:

S=ypxS,+(1-y)xS, (11)

where y is set to 0.5 as suggested in [3, 20, 53, 57].

4.4. Comparison with State of the Art. In this section, we
compare our method with seventeen previous state-of-the-
art saliency models, including NLDF [58], Amulet [15],
R3Net [59], RAS [60], DGRL [61], C2SNet [54], PiCANet
[16], BMPM [43], BASNet [17], AFNet [62], SCRN [63],
CPD [64], EGNet [20], PoolNet [18], F3Net [19], MINet
[53], and GateNet [3]. Note that all the saliency maps of
above saliency methods are produced by running source
codes or precomputed by the authors.

4.4.1. Quantitative Evaluation. To fully compare the pro-
posed saliency model with these state-of-the-art methods,
the detailed experimental results in terms of three metrics
are listed in Table 2. For better comparison, we use the
ResNet-50 and ResNeXt-101 as backbone networks for
training our proposed M2Net. Specifically, our method
achieves a great improvement in terms of the F,, compared
to the most recent saliency model GateNet [3] on the
challenging DUT-TE [22] (0.857 versus 0.816), DUT-
OMRON [30] (0.791 versus 0.762), and PASCAL-S [51]
(0.858 versus 0.827). In addition, we demonstrate the
standard PR curves in Figures 7 and 8. Our method achieves
the best performance on the ECSSD, HKU-IS, PASCAL-S,
DUT-OMRON, and DUT-TE datasets.

4.4.2. Qualitative Evaluation. Some prediction results of the
proposed M2Net and ten state-of-the-art saliency methods
have been shown in Figure 9. We observe that the proposed
method M2Net not only uniformly highlights the correct
salient object region clearly but also well suppresses the
background clutter effectively. It excels in dealing with
various challenging scenarios, including small objects (rows
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TaBLE 2: Performance comparison with state-of-the-art methods on five popular saliency datasets. MAE (smaller is better), max F-measure
(larger is better), and E-measure (larger is better) are used to measure the model performance.

Method DUT-OMRON DUTS ECSSD PASCAL-S HKU-IS

etho  MAE S, F, MAE S, F, MAE S, F, MAE S, F, MAE S,
VGG backbone
Amulet,, 0.647 0.098 0.781 0.678 0.085 0.804 0.868 0.059 0.894 0.769 0.099 0.819 0.841 0.051 0.886
NLDF,, 0.684 0.080 0.770 — — — 0.878 0.063 0.875 0.780 0.101 0.801 0.874 0.048 0.879
BMPM 5 0.692 0.064 0.809 0.745 0.049 0862 0.868 0.045 0.911 0.771 0.075 0.845 0.871 0.039 0.907
C2SNet;g 0.683 0.072 0.798 0.716 0.063 0.828 0.864 0.055 0.893 0.769 0.083 0.835 0.851 0.048 0.883
RASg 0.713 0.062 0.814 0.751 0.059 0.839 0.889 0.056 0.893 0.785 0.106 0.793 0.871 0.045 0.887
PiCANet;gs 0.710 0.068 0.826 0.749 0.054 0.861 0.885 0.046 0914 0.801 0.079 0.849 0.870 0.042 0.906
CPDyy 0.745 0.057 0.818 0.813 0.043 0.867 0.915 0.040 0.910 0.830 0.075 0.841 0.896 0.033 0.904
MINet,, 0.741 0.057 0.821 0.823 0.039 0.875 0.922 0.036 0919 0.840 0.066 0.852 0.904 0.031 0912
ResNet backbone
DGRLg 0.733 0.062 0.806 0.794 0.050 0.842 0.906 0.041 0.903 0.827 0.073 0.837 0.890 0.036 0.894
PiCANet;g 0.717 0.065 0.832 0.759 0.051 0.869 0.886 0.046 0917 0.802 0.078 0.852 0.870 0.043 0.904
BASNeto 0.756 0.057 0.836 0.791 0.048 0.866 0.880 0.037 0.916 0.777 0.079 0.834 0.896 0.032 0.909
EGNet,q 0.756 0.053 0.841 0.815 0.039 0.887 0.920 0.037 0.925 0.829 0.076 0.850 0.901 0.031 0.918
PoolNet, 0.747 0.056 0.836 0.809 0.040 0.883 0.915 0.039 0.921 0.828 0.076 0.849 0.899 0.032 0.917
CPDyy 0.747 0.056 0.825 0.805 0.043 0.869 0.917 0.037 0.918 0.829 0.074 0.844 0.891 0.034 0.906
SCRNg 0.746 0.056 0.837 0.809 0.040 0.885 0.918 0.038 0.927 0.837 0.066 0.865 0.897 0.034 0.916
MINet,, 0755 0.055 0.833 0.828 0.037 0.884 0925 0.034 0925 0.840 0066 0.854 0909 0.029 0.919
GateNet,, 0.746 0.055 0.838 0.807 0.040 0.885 0916 0.040 0.920 0.830 0.071 0.854 0.899 0.033 0.915
Ours 0.774 0.054 0.846 0.837 0.038 0.889 0.926 0.033 0927 0.847 0.064 0.863 0.913 0.029 0.922
ResNeXt backbone
R3Net;g 0.747 0.062 0.815 — — — 0914 0.040 0.910 0.803 0.095 0.803 0.894 0.036 0.895
GateNety, 0.762 0.051 0.849 0.816 0.035 0.897 0917 0.035 0929 0.827 0.065 0.865 0.903 0.030 0.925
Ours 0.791 0.049 0.860 0.857 0.034 0900 0.934 0.032 0.933 0.858 0.061 0.870 0.923 0.025 0.929

Bold, italics, and underline indicate the best, second best, and third best performance. “—

maps.

2, 8, and 9), cluttered backgrounds (rows 1, 3, and 5), low
contrast between the salient object and background region
(rows 4 and 7), and image boundary (row 6). Compared with
other state-of-the-art methods, the detected object bound-
aries of our saliency map are clear and sharper. Most im-
portantly, the proposed saliency model M2Net achieves
these results without any postprocessing.

4.5. Ablation Analysis. Before analyzing the influence of
each saliency module, there is one hyperparameter A to
be determined. A is used in CAL loss to balance different
losses. Table 3 lists the scores of F,,,, MAE, and S,,, when A
gives four discrete values. As can be seen, when A equals
0.50, these indicators reach the best results. To investi-
gate the importance of different components in our
proposed M2Net, we will conduct a detailed analysis
next.

4.5.1. Effectiveness of Backbones. In the saliency detection,
VGG [65], ResNet [45], and ResNeXt [46] are widely used as
the pretrained backbone. Table 2 demonstrates that ResNet-
50 and ResNeXt-101 can achieve better performance com-
pared with VGG in most cases. To demonstrate the

>

> means that the author has not provided corresponding saliency

effectiveness of ResNet-50 and ResNeXt-101, we also se-
lected two widely used datasets for evaluation, and the
comparison results are shown in Table 4. From Table 4, we
can see that M2Net with ResNeXt-101 [46] can get better
performance compared with ResNet-50 [45].

4.5.2. Effectiveness of Components. We take an FPN-like
network as our baseline network. Then, we install the
multiscale feature unit on the baseline network and
evaluate its performance. The comparison results are
shown in Table 4. It can be seen that a multiscale feature
unit can achieve significant improvement over the FPN-
like network. We also quantitatively evaluate the effect of
the centerness-aware loss in Table 4. Compared to “+B,”
the proposed M2Net with the CAL achieves consistent
performance enhancements in terms of three metrics.
Visual comparison of saliency maps generated by BCE loss
and our centerness-aware loss are shown in Figures 10(c),
10(d), and 10(e). To fully compare CAL and three other
losses, including FLoss, PPA, and IoU loss, the detailed
experimental results are listed in Table 5. As it can be seen,
our proposed CAL loss can get the best results on two
challenge saliency datasets.
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FIGURE 7: Precision-Recall curves on three saliency datasets, including DUT-OMRON, DUTS, and PASCAL-S.
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FIGURE 9: Visual comparison of our method with ten state-of-the-art methods.



Advances in Multimedia 11

TaBLE 3: Comparison with different . When A =0.50, the proposed model achieves the best results.

DUT-OMRON DUTS ECSSD PASCAL-S HKU-IS

F, MAE S, F, MAE S, F, MAE S, F, MAE S, F, MAE "
1=025 0761 0.054 0.846 0.825 0.038 0.892 0918 0.036 0928 0.837 0067 0862 0907 0030 0923
1=0.50 0791 0.049 0.860 0.857 0.034 0900 0934 0.032 0933 0858 0061 0870 0923 0.025 0.929
A=075 0777 0051 0.847 0839 0.038 0887 0926 0034 0926 0849 0065 0861 0913 0.029 0.920
1=1.00 0778 0.051 0.845 0.844 0036 0.887 0927 0.035 0924 0845 0.069 0853 0917 0.028 0919

2]

TaBLE 4: Ablation analysis on two challenge datasets. FPN-1: FPN [48] with ResNet-50 backbone; FPN-2: FPN [48] with ResNeXt-101
backbone; M2N-1: the proposed M2Net with ResNet-based backbone; M2N-2: the proposed M2Net with ResNeXt-based backbone B:
binary cross entropy; C: centerness; I: Intersection over Union.

DUT-OMRON PASCAL-S
Model Loss
F,, MAE S E,, MAE S

FPN-1 +B 0.711 0.064 0.815 0.814 0.074 0.849
M2N-1 +B 0.742 0.055 0.840 0.830 0.069 0.861
M2N-1 +B+C 0.748 0.055 0.842 0.836 0.067 0.862
M2N-1 +B+C+1 0.774 0.054 0.846 0.847 0.064 0.863
FPN-2 +B 0.745 0.056 0.842 0.835 0.067 0.861
M2N-2 +B 0.761 0.051 0.851 0.845 0.063 0.864
M2N-2 +B+C 0.768 0.050 0.855 0.852 0.061 0.866
M2N-2 +B+C+1 0.791 0.049 0.860 0.858 0.061 0.870

(b) () (d) (e)

FIGURE 10: Visual comparisons for showing the proposed modules. M: the proposed M2Net with binary cross entropy loss; C: centerness; I:
Intersection over Union. (a) Image. (b) GT. (c) M. (d) M+C. (e) M+C+L
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TaBLE 5: Comparison of the proposed loss and three other methods on two challenge datasets. M2N: the proposed M2Net with ResNeXt-
based backbone CAL: centerness-aware loss; I: Intersection over Union loss [17, 27]; FLoss: F-measure based loss [28]; PPA: pixel position

aware loss [19].

DUT-OMRON PASCAL-S
Model
F, MAE Sm F, MAE S
M2N +1 0.750 0.048 0.802 0.813 0.078 0.813
M2N + FLoss 0.781 0.051 0.817 0.850 0.074 0.829
M2N + PPA 0.770 0.054 0.841 0.845 0.066 0.857
M2N + CAL 0.791 0.049 0.860 0.858 0.061 0.870

5. Conclusion

In this paper, we proposed a multiscale deep network with a
centerness-aware loss for salient object detection. The
proposed M2Net aims to solve saliency prediction and
centerness prediction simultaneously. Our model consists of
a bottom-up encoder module, top-down decoder module,
and centerness prediction module. In the encoder, we use
the pretrained backbone to extract multilevel saliency fea-
tures from preprocessed images. Next, in the decoder
module, we use a skip/concatenation connection scheme. To
generate the final saliency maps, we proposed a novel
multiscale feature extraction method. Lastly, we design a
centerness prediction module, which can help to uniformly
highlight the entire salient object. Extensive experimental
results on five widely used datasets demonstrate that our
method outperforms 17 state-of-the-art approaches under
different evaluation metrics.
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