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In order to improve the multisource data-driven fusion effect in the intelligent manufacturing process of complex products, based
on the proposed adaptive fog computing architecture, this paper takes into account the efficient processing of complex product
intelligent manufacturing services within the framework and the rational utilization of fog computing layer resources to establish a
fog computing resource scheduling model. Moreover, this paper proposes a fog computing architecture for intelligent
manufacturing services for complex products. )e architecture adopts a three-layer fog computing framework, which can
reasonably provide three types of services in the field of intelligent manufacturing. In addition, this study combines experimental
research to verify the intelligent model of this article and counts the experimental results. From the analysis of experimental data, it
can be seen that the complex product intelligent manufacturing system based on multisource data driven proposed in this paper
meets the data fusion requirements of complex product intelligent manufacturing.

1. Introduction

For traditional industries, it is undergoing technological
changes. Industry 4.0 deeply integrates information tech-
nology and manufacturing and envisages a “smart factory”
controlled by cyber-physical systems (CPS) [1]. Its main
feature is the intelligence of information and the intelligence
of production methods, including higher-level inter-
connectivity, smarter equipment, and more powerful data
processing capabilities [2]. )rough interconnected infor-
mation, statistical data, and dynamic analysis, production
can become smarter, leaner, more efficient, and more energy
efficient. In the context of intelligent manufacturing, more
and more objects are becoming intelligent, everything is
interconnected, and the Internet of)ings enters the factory.
)e Internet of )ings is essential for data perception,
collection, merging, transmission, and reverse control in
smart factories [3].

In the decades, since the reform and opening up, my
country has gradually formed a relatively complete indus-
trial system and successfully ranked among the largest
manufacturing countries in the world. However, under the

current wave of global manufacturing development, facto-
ries in my country’s manufacturing industry that realize
automated production still account for a small number of
factories, and most of the manufacturing enterprises have
weak infrastructure and backward automation technology.
In this “big but not strong” status quo, it is still a challenge to
use more advanced technologies to replace the traditional
production lines with low efficiency and high production
labor costs. Moreover, in recent years, due to rising labor
costs, social development transformation, and other needs,
the improvement of manufacturing production technology
has become increasingly urgent. In response to the urgent
need for transformation and upgrading of the
manufacturing industry, the Chinese government issued the
“Made in China 2025” plan. It has come to focus on the
development and promotion of the technological upgrading
of the domestic manufacturing industry.

)is study combines the multivariate data-driven
method to study the intelligent manufacturing method of
complex products and provides a theoretical reference for
the intelligent manufacturing in the era of big data of the
Internet of )ings.
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2. Related Work

In the five to six years, since Industry 4.0 and fog computing
were proposed, there have been some research studies on fog
computing in the Industrial Internet of )ings, most of
which have been concentrated in the past three years, and
theoretical research results are growing rapidly. Kuksa et al.
[4] proposed that the main features of the Industrial Internet
of )ings are the shortage of communication resources
caused by the growth of intelligently connected objects and
special IoT data such as video streams, as well as the key
implementation technologies related to fog computing. Fi-
nally, its performance is evaluated in a typical industrial
scene. Stavroulakis and Papadimitriou [5] proposed a new
SDN-based IoT architecture. Moradi and Zandi Paak [6]
investigated and studied the computing and communication
architecture in the Industrial Internet of )ings. )e In-
dustrial Internet of )ings architecture has three layers,
smart object layer, fog computing layer, and cloud com-
puting layer, and pointed out the computing and commu-
nication challenges faced in the Industrial Internet of )ings
which include unstructured data storage and computing
requirements under the limit of edge network communi-
cation and the reasonable scheduling of services and traffic at
the fog computing layer. Lazzeretti et al. [7] pointed out that
one of the major challenges in fog computing in the Internet
of)ings are the use and release of resources.)ey proposed
a fog computing architecture in the Internet of )ings,
including two layers of IoT and cloud computing, with
cloud-fog middleware between the two layers. For com-
munication, the fog computing belongs to the IoT layer. In
addition, it has also optimized the two-tier resource allo-
cation problem, reducing the delay by 39% and providing a
reasonable fog resource allocation scheme for delay-sensitive
applications. Akhmetshin et al. [8] proposed the best
workload distribution method between fog as well as cloud.
Constraint is with minimum power consumption as the
optimization goal. Ugalde Hernández [9] uses approximate
methods to solve the problem and reduces transmission
delay. Isaksen and Trippl [10] study the QoS-awar allocation
of the CFC, which meets the capacity demand at the same
time. Hou et al. [11] proposed a cloud computing infra-
structure, which includes the bottom layer, edge layer, and
core layer. )e bottom layer is the IoE (Internet of Every-
thing) layer, the edge layer is the fog service layer, and the
core layer is the cloud service layer [12]. Jones et al. [13]
analyze the characteristics and problems of fog computing in
Industry 4.0 and propose a fog computing framework based
on the MQTT communication model and a machine
learning algorithm for predicting the amount of data to
reduce the data transmitted in the Internet of)ings. Finally,
this article uses real data sets to simulate the proposed data
prediction algorithm, which has obvious effects compared to
the traditional MQTTscheme. Guowu and Bai [14] consider
the cloud and fog combination system in the Internet of
)ings, analyze the application characteristics of the IoT
environment, and conduct modeling analysis for power
consumption, service delay, carbon dioxide emissions, and
cost. Experiment was conducted with traffic generated by the

100 most populous cities in eight geographically distributed
data centers. )e results show that, as the number of real-
time service applications increases, the fog computing model
is better than the traditional cloud computing model. For an
environment, where 50% of applications request real-time
services, the overall service delay time of fog computing can
be reduced by 50.09%. Liu et al. [15] studied the NP-hard
problem of nondeterministic polynomials in the allocation
of service requests. Taking the energy consumption and
completion time of resource scheduling as the dual opti-
mization goals, a heuristic-based resource allocation
framework was proposed. )e framework uses three heu-
ristics. Formula algorithm, namely, particle swarm opti-
mization, binary particle swarm optimization, and Bat
algorithm.

3. Multidata-Driven Fusion Algorithm for
Intelligent Manufacturing of
Complex Products

Figure 1 is a block diagram of target state information fusion.
)e parameter data obtained from the multisensor output
may be the azimuth angle (or pitch angle) of the target, the
position and distance of the target in the observed platform,
the speed of the target, etc. )e fusion system performs
effective data registration on the data from the sensor,
converts it into a unified data expression form, then per-
forms data association, and then obtains the estimation of
the state vector. )e literature has conducted strict math-
ematical evaluation and limitation analysis on the tracking
fusion performance.

Data association is to assign the measurement of each
sensor to its corresponding observation object. Once the
observations of the same target are correctly associated, the
estimation technology can get the target state. At present, the
specific mathematical methods used for this level of fusion
include Kalman filtering, sequential estimation method,
joint probability data association (JPGA), multiple hy-
pothesis method (MHT), and interactive multiple model
method (IMM).

)e target characteristic information fusion can be at-
tributed to the problem of pattern recognition in essence. It
is mainly used to extract more useful information about
target characteristics from the observation information of
multisensor than that of single sensor, so as to achieve more
accurate classification and recognition of multitargets. )e
specific extraction process can use the same method for
feature extraction and connect each group of feature vectors
into a higher-dimensional feature vector. Moreover, it can
also combine different methods to extract feature sets that
cover more information and combine them into a new type
of the feature vector. )e fusion system fuses the target
feature vector provided by each sensor and finally obtains
the joint recognition result of the target identity. )e specific
process is shown in Figure 2.

)e technologies for fusion recognition of targets mainly
include feature compression and clustering algorithms, K-
nearest neighbors, and neural network methods.)e sensors
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participating in the fusion can be either a homogeneous
sensor or a heterogeneous sensor so that it has greater
flexibility.

)e basic content of decision-making fusion is shown in
Figure 3. )e main process includes data preprocessing
(such as unified data format), extracting relevant features,
and identifying targets. After each sensor establishes a
preliminary conclusion on the observed target locally, the
central fusion module associates the previous conclusion
and fuses the recognition results of each sensor to obtain the
final joint inference result.

Decision-level fusion is a high-level fusion. Each sensor
first makes intermediate decisions, and then, the fusion
center completes the fusion processing of each intermediate
decision. It can not only fuse information from heteroge-
neous sensors but also process asynchronous information
with high flexibility. At present, expert system methods,
Bayesian inference, Dempster–Shafer evidence theory, and
other methods are often used in this level of fusion.

Kalman filter is suitable for linear systems with Gaussian
noise distribution and can obtain the recursive minimum
mean square error estimation of this type of system in the
time domain. It has better filtering performance, and its
iterative calculation is suitable for computer realization. )e
outstanding contribution of Kalman filtering lies in its
successful introduction of the state space ideas in modern
control theory into the optimal filtering theory, and the
filtering is completed by constructing a dynamic model of
the system. Moreover, it can not only handle stationary
systems but also shows good filtering performance for time-
varying systems and multidimensional, nonstationary sig-
nals. For decades, this classic filtering theory has been
continuously deepened and developed in many research
fields, and fruitful results have been achieved. In particular, it

has been successfully applied in the field of target tracking
and derived algorithms based on classical Kalman, such as
extended Kalman filtering and insensitive Kalman. Since the
standard Kalman filtering algorithm is the basis for solving
the tracking problem and other extended or improved al-
gorithms, the filtering process is briefly given here.

)e state equation of the discrete-time system is

x(k + 1) � F(k)x(k) + G(k)u(k) + v(k). (1)

)emeasurement equation of the discrete-time system is

z(k + 1) � H(k + 1)x(k + 1) + w(k + 1), (2)

w(k + 1) ∼ N(0, R(k + 1)). Moreover, it is assumed that the
sequence of process noise and measurement noise has
nothing to do with the initial state, and they are independent
of each other.

In a filtering cycle, the initial state estimation and initial
state covariance matrix x(0|0) and P(0|0) are given [16].

)e flowchart is shown in Figure 4 [17]:
We assume that the posterior probability density of the

target state vector x(k) at time k is p(x(k)|Z(k)):

p(x(k)|Z(k)) ≈
1
N



N

i�1
δ x(k) − x(k)i( . (3)

)e expectation of xk can be expressed as

E[x(k)] ≈  p(x(k)|Z(k))dx(k) ≈
1
N



N

i�1
x(k)i. (4)

In fact, the posterior probability density p(x(k)|Z(k)) is
unknown, so it is not easy to directly sample particle samples
from p(x(k)|Z(k)). )e particles need to be sampled from a
known importance density q(x(k)|Z(k)) that is convenient
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Figure 1: Block diagram of target state information fusion.

Joint identification results

Feature
extraction

Association

Feature fusion

Sensor 1

Sensor 2

Sensor N

Figure 2: Block diagram of target characteristic information fusion.
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for sampling. )erefore, equation (12) is substituted as
follows [18]:

E[x(k)] � 
p(x(k)|z(k))

q(x(k)|z(k))
q(x(k)|z(k))dx(k). (5)

Equation (5) is used to substitute equation (4) as follows:

E[x(k)] � 
wk(x(k))

p(Z(k))
· q(x(k)|Z(k))dx(k). (6)

Among them, the importance weight wk(x(k)) is cal-
culated as follows [19]:

wk(x(k)) �
p(x(k)|x(k)) · p(x(k))

q(x(k)|Z(k))
. (7)

By approximating the importance of equation [7], the
following estimates are obtained [20]:

x(k) ≈
1
N



N

i�1
wk x(k)i(  · x(k)i. (8)

wk(x(k)) can be estimated recursively as follows:

wk(x(k)) � wk−1(x(k − 1))
p(z(k)|x(k)) · p(x(k)|x(k − 1))

q(x(k)X(k − 1), Z(k))
.

(9)

We assume that the state estimate x(k) of the target at
time k and the particle state effect x(k)i is known, as well as
the particle filter algorithm to recursively solve the estimated
value x(k + 1) of the target state vector when time is k+ 1, is
as follows:

(1) For i� 1, 2, . . ., N
Algorithm to extract particles:
x(k + 1)i ∼ q(x(k + 1|x(k)i, zk))

According to formula (9), the algorithm calculates
the particle weight value wk

i+1(x(k + 1)i)

End
(2) )e algorithm calculates the total weight:

SUM(wi
k+1(x(k + 1)i))

N

i�1

(3) Regularized particle weight value: wi
k+1(x(k + 1)i) �

wi
k+1(x(k + 1)i)/SUM(wi

k+1(x(k + 1)i))
N

i�1

(4) )e algorithm calculates the estimated value x(k +

1) of target state vector when time is k+ 1 according
to formula (8);

(5) )e algorithm performs resampling.

At that time, only the main ideas of JTC were initially
explained. )e joint target tracking and classification
technology hopes to effectively and classification perfor-
mance of the target through interaction between the target
tracker and the target classifier.)e basic idea is that the state
estimator of the target (such as the target’s motion char-
acteristics and maneuverability reflected by the target’s
speed, acceleration, motion trajectory, etc.) can be used as
the target’s attribute characteristics to improve the target’s
classification performance. Correspondingly, the target at-
tribute knowledge, such as target category information,
helps to establish a more accurate target motion model,
thereby improving target tracking performance. )e basic
principle of JTC is shown in Figure 5.

Since the introduction of JTC technology, a variety of
related technical theories, such as Bayesian theory, D-S
evidence theory, and fuzzy set theory, have been combined
with the JTC technical framework to achieve target tracking
and solve target recognition problems.

)e state estimate of the target is

E[ X(k)] � 
n

i�1


X(k)

p X(k), ci|Z(k)(  · X(k) · dX(k). (10)

Traditional classic filtering algorithms are mostly based
on a single model. Once the application scenario becomes
more complex and the uncertainty increases, the dynamic
characteristics of the target will change. Filters based on a
single model often cannot match the changes in the target
motion state in real time with a single model established in
advance, which affects the effectiveness of tracking and even
leads to divergence of the filter. As a result, the research
proposed a multimodel tracking algorithm.

)e multimodel tracking algorithm introduces the idea
of self-adaptation into the target tracking algorithm. By
establishing a set of possible motionmodes of an object, each
model in the model set represents a different motion mode.
)en, each model is equipped with appropriate filters to
perform parallel work, and the final state estimation output
is the fusion result of the state estimation of each filter based
on Bayesian inference. For example, the same target may run
in the form of one or several combinations of uniform
motion, uniform acceleration, and uniform turning motion
during the entire movement. Using the multimodel tracking
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Figure 3: Block diagram of decision-making layer fusion implementation.
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algorithm, the three models of CV, CA, and CT can be
combined into multiple target operating modes to track
them.

)e implementation of the multimodel algorithm in-
cludes the following sections.

3.1. Design Target Motion Model Set. In order to apply the
multimodel algorithm, it is necessary to design a model set
consisting of a finite number of models based on certain
prior knowledge in advance:

M � m
(j)

 
j�1,2,...,r

. (11)

Among them, each mode m(j) corresponds to one or
more of the target motion modes under study. In the case of
non-one-to-one correspondence, the model set is relatively
simplified. In this case, the matching relationship can also be
described as the system pattern at time k is matched by the
model m(j), that is,

m
(j)

k � sj � m
(j)

 , k ∈ N, j � 1, 2, . . . , r. (12)

)e determination of the model set M is an important
basic work of the multimodel algorithm. From now on, we
assume that all the systemmodes of the target motion can be
combined and represented by the members in M.

3.2. Design of Filter. )e algorithm selects some recursive
filters suitable for each system mode in advance to complete
the hybrid estimation. )ey can be linear filters or nonlinear
filters as needed.

3.3. Estimated Fusion. )e main task of estimation fusion is
to process the results of each individual filter to complete the
overall estimation. Commonly used estimation fusion
methods include soft decision, hard decision, and random
decision. Among them, soft decision (or no decision) is the
mainstream method of multimodel estimation fusion. )e
overall estimate is the weighted sum of the probability of all
filter estimates in the sense of least mean square:

xk|k � E xk|Z
k

  � 
i

x
k|k
(i) P m

(i)
k |Z

k
 . (13)

3.4. Reinitialization of the Filter. Two basic multimodel al-
gorithms are briefly given as follows: static multiple model
(SMM) and deneralized pseudo-Bayesian estimator of n
order (GPBn).

In the SMM algorithm, multiple filters based on different
models work independently and in parallel, regardless of the
transition between models. )e filters based on each model
have no interaction with each other, and the target state
estimation is the weight of the state estimation of each filter.
)e structure of the SMM algorithm is shown in Figure 6.

)e so-called generalized pseudo-Bayesian method is
that, at time k, only the history of the target model in the past
finite sampling time interval of the system is considered
when the system state is estimated.

)e first-order GPB algorithm (GPB1) uses the simplest
reinitialization method and only takes the overall state es-
timation xk−1|k−1 at the previous moment and the covariance
matrix Pk−1|k−1 of the estimation error as the most common
initial conditions.)e respective state estimates are obtained
through parallel filtering, and finally, the overall state
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Figure 4: Flowchart of Kalman filter algorithm.
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estimate at the current moment and the covariance matrix
Pk|k of the estimation error are obtained by the weighted
sum method. )e algorithm structure is shown in Figure 7.

)e GPB1 algorithm assumes that the switching of the
system mode between the elements of the model set satisfies
the Markov property. )e GPBn algorithm considers the
model sequence of the most recent n moments. )e larger n
is, the more historical conditions that need to be considered,
the larger the amount of memory occupied, and the more
complex the algorithm is.

On the basis of GPB, an interactive multimodel algo-
rithm (IMM) with Markov switching coefficient and a
variable structure multimodel algorithm (VSMM) which is
not limited to a priori model set were proposed in the later
stage, which will not be introduced in detail here.

4. Intelligent Manufacturing Method of
Complex Products Driven by
Multisource Data

In the above section, this paper studies the multivariate data-
driven algorithm and applies it to the research of intelligent
manufacturing methods for complex products. )e fog

computing architecture of intelligent manufacturing services
is shown in Figure 8.

MQTT is a message protocol based on the publish/
subscribe model of binary messages, which connects net-
works and devices with applications through middleware.
)e communication mode is divided into machine and
server machine. MQTT has a lightweight, open, simple,
standardized, and easy-to-implement design idea. It is very
suitable for IoT scenarios and Industry 4.0. )e application
of MQTT in the Internet of )ings is shown in Figure 9.

On this basis, this paper studies the multisource data-
driven intelligent manufacturing system for complex
products proposed in this paper, combines simulation re-
search to verify the effect of multidata-driven fusion, and
counts multiple sets of experimental data. )e results are
shown in Table 1.

From the above research, it can be seen that the system
model proposed in this paper has a good multivariate
data-driven fusion effect. On this basis, the effect of in-
telligent manufacturing management in this paper is
evaluated, and the results shown in Table 2 are obtained.

From the above statistical results, the complex
product intelligent manufacturing system based on
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Figure 5: Schematic diagram of JTC algorithm framework.
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Table 1: Multivariate data-driven fusion effect.

No. Data fusion
1 90.81
2 90.64
3 86.45
4 91.97
5 90.78
6 92.46
7 89.35
8 89.20
9 90.04
10 93.82
11 87.71
12 90.77
13 92.00
14 92.97
15 93.37
16 88.67
17 87.82
18 90.61
19 88.51
20 90.60
21 87.98
22 89.34
23 90.05
24 91.46
25 93.96
26 89.82
27 87.10
28 89.62
29 92.23
30 90.24
31 87.35
32 93.59
33 93.41
34 93.54
35 88.00
36 87.10
37 86.77
38 86.53
39 92.44
40 89.62
41 89.43
42 88.00
43 87.36
44 92.67
45 86.61
46 93.52
47 90.43
48 91.14
49 91.62
50 86.84
51 88.29
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multisource data-driven proposed in this paper can play
an important role in the intelligent manufacturing of
complex products.

5. Conclusion

In the traditional way, the efficient processing of massive
data can be realized by cloud computing. However, the

networking situation is generally more complicated, the
computing power of the underlying equipment is limited,
and its transmission bandwidth and reliability have certain
constraints. In addition, the Industrial Internet of )ings
also has the characteristics of large-scale connections and a
large amount of communication data, and the application of
intelligent manufacturing services is time sensitive. Because
the devices in the Industrial Internet of )ings require a lot
of network and physical resources (in this paper, called fog
resources) in order to perform different tasks in real time, at
the same time, the ability of these fog resources to handle
tasks is uneven. )erefore, how to effectively allocate these
fog resources and how to efficiently cooperate with each
other to obtain high efficiency and stability are the current
challenges of the Industrial Internet of )ings. )is study
combines multiple data-driven methods to study the in-
telligent manufacturing methods of complex products,
which provide a theoretical reference for intelligent
manufacturing in the era of big data in the Internet of
)ings.

Data Availability

)e labeled dataset used to support the findings of this study
are available from the corresponding author upon request.

Conflicts of Interest

)e author declares no conflicts of interest.

Acknowledgments

)e study was supported by “Key Natural Science Research
Project of Anhui Universities in 2020” Research on Key
Technologies of Large-sized THREE-DIMENSIONAL Pre-
cise Measurement Based on Multi-sensor Fusion (Grant no.
KJ2020A0963), 2021 Excellent Youth Support Project in
Anhui Universities (gxyqZD2021153).

References
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