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Sports videomoving target detection and tracking play an important role in enhancing the popularity of sports and the promotion
of sports events. ,is paper combines the SIFT algorithm to carry out the research of sports video moving target detection and
tracking technology, to identify sports features, and to improve the sports feature detection algorithm. Moreover, this paper
divides the point cloud data into multiple cube grids under the coordinate system where it is located, and then finds the center of
gravity of the data points in each grid, and replaces the coordinates of all points in the grid with the coordinates of the center of
gravity. In addition, this paper combines data analysis to verify the algorithm and build a sports video moving target detection
system. ,e experimental research results verify that the sports video target detection and tracking technology based on the SIFT
algorithm proposed in this paper has good results.

1. Introduction

In recent years, sports behavior recognition technology has
been increasingly integrated into daily sports video analysis.
Moreover, there are more and more scientific researchers
engaged in sports behavior recognition, and the research on
behavior recognition technology is in full swing. In addition,
the emergence of various latest methods and theories and the
introduction of many new algorithms from other fields have
made great progress in behavior recognition [1]. ,e main
process of sports behavior recognition technology can be
roughly divided into these four steps: feature extraction,
feature representation, behavior modeling, and behavior
classification [2]. According to specific research goals and
needs, corresponding changes can be taken in these steps.
For example, some algorithms directly combine feature
extraction and representation into one step, and some
methods do not even require behavior modeling to send the
descriptors after feature extraction and representation di-
rectly into the classifier to recognize their classification. At
the same time, some methods incorporate iterative feedback
processes such as deep learning. In addition, some methods
also perform further processing (such as dimensionality

reduction, etc.) on the descriptors after the feature repre-
sentation to make these features more distinguishable, etc.
[3].

,emodels used in time series modeling can be regarded
as further expressions after feature representation. ,e time
series information extracted by these models is not pre-
sented in front of people in an intuitive form but through the
parameters of the model after modeling. Make an expres-
sion. Existing methods for time series modeling include
hidden Markov models, conditional random fields, linear
dynamic systems, and the recently popular recurrent neural
network models.

,is article combines the SIFTalgorithm to carry out the
research of sports video moving target detection and
tracking to identify sports features, which provides a the-
oretical reference for the application of dynamic recognition
technology in sports competitions and sports training.

2. Related Work

,e visual SLAM system completes the estimation of its
position in the environment (white positioning), mainly
relying on the visual odometer module [4]. ,e binocular

Hindawi
Advances in Multimedia
Volume 2022, Article ID 2743696, 12 pages
https://doi.org/10.1155/2022/2743696

mailto:meizhu@sjzu.edu.cn
https://orcid.org/0000-0001-7899-8649
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/2743696


visual odometer calculates the depth information by cal-
culating the parallax between the left and right cameras,
while the monocular visual odometer cannot obtain absolute
scale information and can only be obtained through other
sensors or environmental information [5]. Although the
current advanced visual odometer has been able to run in
real time and obtain high positioning accuracy, almost all
methods are assumed to operate in a static environment [6].
If there is interference from moving objects in the field of
view of the sports camera, the visual odometer will have a
large estimation error or even fail. Aiming at the problem of
moving objects in the scene interfering with the visual
odometer, the random sampling consensus algorithm is
currently the most mature and effective method [7]. ,is
method fits the model and eliminates the data points that are
inconsistent with the model as outliers. When the moving
object in the camera’s field of view only occupies a small part,
the RACSAC method can be used to filter the feature points,
and the feature points on the moving object can be removed
as external points, and combined with themotion estimation
in the visual odometer, thus get better positioning results [8].
But when the moving object occupies a large part of the
camera’s field of view, the RANSAC algorithmmay also treat
the characteristic points on the moving object as interior
points. At this time, relying on this method will not be able
to achieve the purpose of eliminating interference [9]. Lit-
erature [10] uses pretraining to segment the feature points in
the image into dynamic and static feature points, but this
method is difficult to implement in actual real-time appli-
cations. Literature [11] relies on the dense scene flow to
segment dynamic objects, but the scene flow calculation also
needs to use the visual mileage calculation method to
compensate for the posture. Literature [12] uses image
segmentation technology to segment the image into static
background and motion regions and uses the partitioned
regions to perform motion estimation separately and then
perform a global fusion. Although this algorithm has high
accuracy, it is difficult to meet real-time requirements.
Literature [13] uses the IMU information as a priori to
segment the dynamic feature points in the image and realize
the visual positioning of the dynamic environment by
combining the information of the inertial navigation system
and the depth visual odometer.

Literature [14] uses a single-chip microcomputer as the
controller to design a high-speed positioning control system
for image monitoring dynamic brackets and dynamically
calculates the rotation angle of the pan/tilt based on the
control motor; Literature [15] analyzes the sports trajectory
tracking strategy to design a dynamic Fuzzy PID controller
for point-line calculation trajectory tracking, research on the
visual pan-tilt pose calculation and dynamic trajectory
tracking system control technology.

,e vigorous development of machine vision under the
compatibility of various devices also marks the beginning of
vision requirements. Literature [16] analyzes the research on
the coordination strategy of the multimovement sports
system to capture the moving target and uses the stereo
vision motion detection to complete the motion parameter
estimation of the moving target. At present, the three-

dimensional object positioning technology based on bin-
ocular stereo vision has become one of the hot spots in the
research of vision measurement [17]. Compared with the
monocular camera motion measurement technology in the
large tank discharge hole visual positioning control system,
stereo vision can calculate more information when the
parallax is obtained. It is not only compatible with the
characteristics of the monocular camera but also can be used
to construct three-dimensional objects. ,e accuracy and
applicability of the model are high [18].

3. Moving Target Detection Based on
SIFT Algorithm

,is article analyzes the moving target detection algorithm,
and this part mainly combines the SIFTalgorithm to identify
and track the moving target.

,e essence of the Nonmaximum Suppression (NMS)
algorithm is to retain the most significant or least significant
key points within a certain range from the key points initially
extracted by the algorithm and discard other key points.

,e specific steps are as follows.
For a point kpi in the key point set KP, (1) the algorithm

first takes its neighborhood nbhd(kpi) and judges whether
its saliency value is the largest or smallest in the neigh-
borhood. If the maximum or minimum value is taken, it is
marked as the true key point; otherwise, it is marked as the
rest key point. (2) ,e algorithm traverses the entire set of
key points KP and removes all the key points marked as
surplus points.

,e saliency in the above process can be determined
according to the algorithm or requirements, and features
such as curvature, the interval length of the normal vector
distribution of the neighborhood points, and the shape index
value can also be used.

According to the above method, if the neighborhood of
size k� 3 is taken, it is determined whether the curvature of
each key point in the graph is the maximum value in the
neighborhood, and the nonmaximum points are removed,
as shown in Figure 1. ,is example uses curvature as the
saliency, which not only retains the high-quality key points
but also greatly reduces the redundancy.

,e Intrinsic Shape Signatures (ISS) algorithm was
proposed by Zhong et al. ,e ISS algorithm uses the dis-
persion difference degree between the three main direc-
tions of the p point neighborhood nbhd(p) local reference
coordinate system as the evaluation index of the signifi-
cance of the p point and extracts the points with a large
dispersion difference degree by comparing with the preset
threshold.

First, we use the PCA algorithm to calculate the three
eigenvalues λ1, λ2, λ3 of the nbhd(p) covariance matrix
cov(p) in descending order. ,e three eigenvalues obtained
after the eigenvalue decomposition of the covariance matrix
of nbhd(p), respectively, represent the degree of dispersion
along the three eigendirections v1, v2, and v3. ,erefore, the
ratio of the two eigenvalues can be used to express the degree
of difference in the dispersion of the two main axis
directions.
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λ2
λ1
<Th12 ∩

λ3
λ2
<Th23. (1)

Formula (1) shows the criterion for extracting key points,
where Th12 and Th23 are preset thresholds, and the size of
the threshold determines howmany key points are extracted.
,e smaller the threshold value is, the more key points are
extracted.

For any point pi in the point cloud, according to formula
(2), it calculates the centroid pi of the neighborhood
nbhd(pi) of the pi point and transforms it to the centroid
system, calculates the covariance matrix cov(pi), and then
decomposes the eigenvalue of the covariance matrix cov(pi),
as shown in the following formula [19]:

covV � ΛV. (2)

,en, the Hotelling transform is performed on the
neighborhood point qj ∈ nbhd(pi), and the neighborhood
coordinates of the point pi are projected onto the three
principal axes, as shown in the following formula:

qj
′ � V qj − pc . (3)

qj is the coordinate of the neighborhood point before
transformation and qj is the coordinate after transformation.
,en, the algorithm calculates the ratio δ between the
nbh d(pi) coordinate distribution ranges on the x and y axes
(the first and second largest spindles), as shown in formula (4),
where X � xqj, qj ∈ nbhd(pi) , Y � yqj, qj ∈ nbhd(pi) 

[20].

δ �
max(X) − min(X)

max(Y) − min(Y)
. (4)

For symmetrical surfaces (that is, the neighbors are
distributed in the same direction along the largest and
second largest axes), the value of δ is equal to 1; for
asymmetric surfaces, δ is greater than 1. ,e algorithm sets
the threshold as th1(t1 > 1)and determines whether δ > th1 is
satisfied, and if it is satisfied, it is recorded as a key point.

,e algorithm traverses each point in the point cloud P

and completes the preliminary basket selection of the key
points, which is marked as KP.

For the key point kpi that has been preliminarily se-
lected, a quadric surface fitting is performed on its neigh-
borhood to obtain a parametric surface S. Subsequently, a
uniform n × n grid (n � 20) is used to sample the fitted

surface, and the principal curvature k1, k2 and Gaussian
curvature K at the sampling point are calculated, and the
parameter d is used to evaluate the quality of key points
according to formulas (5) and (6). In this paper, in order to
simplify the calculation, the algorithm uses neighborhood
points instead of uniform sampling points to calculate Qk,
and n is the number of neighborhood points [21].

K � k1k2, (5)

Qk �
1000

n
2 |K| + max(100K) +|min(100K)|

+ max 10k1(  + min 10k2( .

(6)

Finally, Qk is the saliency parameter. ,is article uses the
NMS algorithm to perform nonmaximum suppression,
where only the maximum value is retained to complete the
screening of key points.

,e Local Surface Patch (LSP) algorithm uses the least
squares method to fit a local point cloud into a parametric
surface. It calculates the first basic quantity and the second
basic quantity of the surface and then constructs the shape
index Si(pi) and filters out the points whose Si(pi) satisfies
certain conditions as the key points. Finally, the NMS al-
gorithm with Si as the saliency parameter, further filters the
initially selected key points to complete the final keypoint
detection. ,e specific process is as follows.

For the neighborhood nbhd(pi) of any point pi in the
point cloud P, the algorithm first establishes the LRF and
rotates the neighborhood nbhd(pi) to the three principal
axis directions of the LRF to eliminate the influence of the
initial pose on further calculations.,en, the quadric surface
s(pi) is fitted, and the principal curvature k1, k2 at the point
pi on the surface s(pi) is calculated according to the fol-
lowing formula [22]:

Si pi(  �
1
2

−
1
π
tan− 1k1 + k2

k1 − k2
. (7)

It can be seen that the value range of the shape index
value Si defined by the above formula is [0,1]. When the Si

value is large, the corresponding partial surface is convex;
when the Si value is small, the corresponding partial surface
is concave.

After completing the Si calculation of all points in the
point cloud, the preliminary screening of the key points can
be completed according to the following formula:

P1 P2 P3

P4

P5

P6

P7 P8

P9

P10 P11 P12

Figure 1: Key points after nonmaximum suppression.
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Si pi( ≥ (1 + α)μSi pi( ).

or Si pi( ≤ (1 − β)μSi pi( ).
(8)

Among them, μSi(pi)
is the mean value of Si in the

neighborhood of pi, α and β are preset parameters, and the
value of α and β should be between 0 and 1.

Si pi(  �
1
n



pj∈nbhd pi( )

Si pj . (9)

,en, Si is used as a saliency parameter. Using the NMS
algorithm, this paper judges whether the Si value is the
maximum or minimum value of the Si value of each point in
the neighborhood point by point. If it is, keep it. If it is not,
delete it. Finally, the key point set KP is obtained.

,eHistogram of Normal Orientation (HoNO) algorithm
first calculates the angle between the normal vector of each
point in the neighborhood nbhd(pi) of each point pi in the
point cloudP and the normal vector of the target point pi, and
then counts them to form a histogram. According to the
histogram characteristics, the flat area is excluded and the
salient area of the feature is detected. ,en, by evaluating the
properties of the histogram and the neighborhood covariance
matrix, key points are extracted from the salient regions.

First, for each point pi ∈ P, this paper uses the PCA
algorithm to estimate the normal vector ni° . ,en, for every
point qj ∈ nbhd(pi) except pi in the neighborhood
nbhd(pi) of pi, calculate the normal vector angle 〈pi, qj〉

between qj and qi according to formula (10) and count the
included angles into the histogram Hi containing N boxes,
where the length of each box is 10 degrees. In order to
eliminate the influence of the neighborhood point density on
the algorithm, it is necessary to normalize the histogram
after the large-angle filling angle of the normal vectors of all
neighborhood points is completed.

θdeg � tan− 1 Ni × Nj

�����

�����

Ni · Nj

⎛⎝ ⎞⎠
180
π

. (10)

Obviously, the histogram Hi of the point pi with the
neighborhood approximate to the plane has the character-
istic of “the first box has a higher value and the rest of the box
values are approximately 0.” Similarly, the area with a larger
degree of curvature has a large normal vector distribution
range. ,erefore, most of the box values in its histogram are
nonzero. ,erefore, it is necessary to design parameters to
describe the distribution of values in the histogram.

Kurt(H) �


N
k�1 Hk − H( 

4

NS
4 − 3, (11)

S �

�������������


N
k�1 Hk − H( 

2

N



. (12)

As shown in formula (11), Kurt is used to express the
kurtosis and dispersion of the histogram distribution. If the
parameter kurtosis parameter Kurt(Hi) of the point pi

histogram is less than the preset parameter Th, there is no

obvious presence in the histogram. ,at is, the distribution
range of the values in the histogram is larger, and pi is
retained as the key point; otherwise, it is removed.

Finally, after the Kurt parameter calculation of all points
and the determination of the preliminary key points have
been completed, the key point set is deredundant by using
Kurt(H) as the saliency parameter and NMS is used to
obtain the final key point set KP.

,e Harris operator is extended to three-dimensional
space, and the specific steps are as follows.

First, for the point pi in the point cloud P, the algorithm
queries the neighborhood nbhd(pi) and establishes the LRF,
and the neighborhood nbhd(pi) is translated to the LRF
coordinate system that is the origin of pi.

After establishing LRF, the algorithm sets the parameters
according to formula (13) and performs quadric surface
fitting on the neighborhood to obtain the fitted quadric
surface parameter p1, p2, . . . , p6.

z � f(x, y)

�
p1

2
x
2

+ p2xy +
p3

2
y
2

+ p4x + p5y + p6.

(13)

For parametric surfaces, adding more high-order terms
means that it can adapt to more complex surfaces. However,
more complex surfaces do not have clearly defined deriv-
atives at certain points in the defined domain. Moreover,
when the neighborhood radius is not large, the vicinity of the
target point can be approximated as a quadric surface.
,erefore, the directional derivative can be easily obtained
according to the following equations:

fx �
zf(x, y)

zx
|x�0, (14)

fy �
zf(x, y)

zy
|y�0. (15)

Considering the influence of noise, the Gaussian func-
tion originally proposed by Harris and Stephens can be
applied, as shown in the following equations:

A �
1
���
2π

√
σ


R2

0
e

− x2+y2( )/2σ2fx(x, y)
2dxdy, (16)

B �
1
���
2π

√
σ


R2

0
e

− x2+y2( )/2σ2fx(x, y)
2dxdy, (17)

C �
1
���
2π

√
σ


R2

0
e

− x2+y2( )/2σ2fx(x, y)fy(x, y)dxdy. (18)

Substituting the quadric surface equation, it is simplified
as shown in the following equations:

A � p
2
4 + 2p

2
1 + 2p

2
2, (19)

B � p
2
5 + 2p

2
2 + 2p

2
3, (20)

C � p4p5 + 2p1p2 + 2p2p3. (21)
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,en, the analysis matrix E is constructed as follows:

E �
A C

C B
 . (22)

By analyzing the determinant value and trace of the
matrix E, the Harris corner response value h(pi) at the point
pi is constructed. As shown in formula (23), k is a non-
negative preset parameter.

h pi(  � det(E) − k(tr(E))
2
. (23)

,e specific steps to implement the 3D-SIFTalgorithm in
this paper are as follows:

(1) ,e algorithm constructs the point cloud scale space
in a three-dimensional coordinate system.
,e scale space of the point cloud is L(x, y, z, σ), the
point whose coordinate is (x, y, z) and the pixel
value I(x, y, z) in its neighborhood are convolved
with a three-dimensional Gaussian function
G(x, y, z, σ) whose scale can be changed by changing
σ, as shown in the following formula:

L(x, y, z, σ) � G(x, y, z, σ)∗ I(x, y, z). (24)

Among them, the specific expression of the Gaussian
function is shown in the following formula:

G(x, y, z, σ) �
1

2πσ2
exp −

x
2

+ y
2

+ z
2

 

2σ2
⎛⎝ ⎞⎠. (25)

,e definition of the cube grid size during down-
sampling is shown in the following formula:

2kσ, k � 0, 1, . . . . (26)

(2) ,e algorithm builds the DoG space of the 3D point
cloud.
,e process of downsampling is equivalent to per-
forming local mean filtering on the point cloud set.
,e local features in each cube grid disappear,
replaced by the center of gravity coordinates, and
there will be discontinuities between the grids.
,erefore, in order to ensure that the algorithm can
find characteristic points in the point cloud stably, it
is necessary to construct a DoG space for the point
cloud. ,e construction formula is shown in the
following formula:

D(x, y, z, σ) � [G(x, y, z, kσ) − G(x, y, z, kσ)]
∗
I(x, y, z)

� L(x, y, z, kσ) − L(x, y, z, kσ).
(27)

,e construction of the DoG space of 3D point cloud
data is simply the process of convolving the Gaussian
scale function G(x, y, z, σ) with the coordinate data
I(x, y, z) of the point. It is equivalent to smoothing
the point cloud data layer by layer, and each layer
needs to be divided into several small scales dis-
tinguished by a certain step length, as shown in

formula (28). In the formula, T is a preset parameter
for calculating the Gaussian scale space.

σ′ � σ · 2t/T
, t � 0, 1, . . . . (28)

(3) ,e algorithm calculates the Gaussian filter response
value of the sampling point in the Gaussian scale
space.
When calculating the Gaussian filter response value,
in order to improve the efficiency of data processing,
the effect of increasing the distance between the
points on the characteristics of the sampling points
can be considered (here, the curvature c is used as the
main geometric feature). It is considered that the
closer the point to the sampling point p0i is, the
greater the contribution to its curvature.,erefore, it
is possible to consider weighting the coefficient wj of
the distance dist< 3σ from the point p0i. ,en, the
Gaussian filter response value F can be calculated
according to the following formula:

F �
 cjwj

 wj

. (29)

In formula (29), cj is the curvature value of the
neighboring point poj of the sampling point poi. ,e
calculation formula of the weighting coefficient wj is
shown in formula (30). In the formula, dist2(p0i, p0j)

represents the square of the distance between the
sampling point p0i and the neighboring point p0j.

wj � e
− dist2 p0i ,p0j( /2σ2

. (30)

According to the above formula, the corresponding
value of Gaussian filtering for each data point in the 3D
point cloud data can be calculated. By calculating the
difference between the Gaussian filter response value F

of the sampling point at the current scale and the
Gaussian filter response value F_last at the previous
scale, theDoG value of the sampling point at the current
scale can be obtained, as shown in the following formula:

DoG pi, σ − 1(  � F − Flast. (31)

,e algorithm repeats the above steps for all points in
the point cloud at each scale until all the points in the
point cloud are traversed to obtain all the DoG values
of all points in the point cloud at different scales.

(4) ,e algorithm detects extreme points in the DoG
space of the point cloud.
In the DoG space of point cloud of various scales,
respectively, the DoG extremum of the neighboring
point is found in the neighborhood of the current
point. If the DoG value under a certain scale is
greater than the DoG value under two adjacent
scales, the current point under this scale is the key
point. ,e feature points found by this method are
scale-invariant and can be retained as feature points
in different scale spaces.
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4. Research on Sports Video Moving Target
Detection and Tracking Based on
SIFT Algorithm

,e data set of this paper mainly comes from the network,
and the data set of this paper is shown in Figure 2.

,e key point detection experiment in this paper is
based on the model point cloud of the above data set. ,e
evaluation index is calculated in each data set and the
average value is calculated. Finally, the average value of
the data set is calculated and the corresponding curve is
drawn.

,is paper chooses the relative repetition rate, the ac-
curacy rate of the descriptor matching experiment, and the
operation efficiency as the evaluation indicators.

(1) Relative repeatability (repetition rate). ,e repetition
rate represents the consistency between the key
points detected when the point cloud P changes and
the key points detected by the point cloud before the
change. As shown in formula (32), KP is the set of
key points detected by the point cloud P, KP′ is the
set of key points detected by the changed point cloud
P′, thenRKP represents the same part inKP′ andKP.

r �
length RKP( 

length(KP)
. (32)

,e repetition rate is used to evaluate the robustness of
the algorithm to factors such as spatial transformation,
noise, and resolution. ,e noise repetition rate rnoise
represents the proportion of the same part of the key
points detected before and after adding noise. ,e outlier
repetition rate routlier represents the proportion of the
same part of the key points detected before and after
adding the outlier. ,e grid resolution repetition rate
rdensity represents the proportion of the same part of the
key points detected before and after the point cloud
sampling.

In order to quantitatively set the neighborhood radius r,
for each data set, the algorithm first calculates the diagonal
length ri of the spatial bounding box of the data set model
point cloud Pi and traverses all models to obtain the
maximum length rmax. ,en, the algorithm reduces all the
point coordinates in the point cloud by rmax times, and in the
subsequent evaluation experiment, the neighborhood radius
r is uniformly set to 0.02.

,e evaluation experiment includes three parts: repeti-
tion rate experiment, running time experiment, and de-
scriptor matching experiment. Algorithms and test
programs are written in MATLAB language.

,e repetition rate experiment mainly includes two
parts: the parameter change module and the repetition rate
calculation module.

(1) ,e point cloud quality change module has three
modes to choose from: adding Gaussian noise,
changing the point cloud density, and adding out-
liner’s. ,ey correspond to the repeatability of the

key point detection algorithm to noise, the repeat-
ability of the grid resolution, and the repeatability of
the outliers.
In order to quantitatively obtain the amplitude of the
noise signal conforming to the Gaussian distribu-
tion, this paper sets the parameter k and combines
the neighborhood radius r used by the key point
detection algorithm, sets kr as the maximum am-
plitude N of Gaussian noise, and calculates noise
amplitude distribution by formula (33). Among
them, rand(a, b) represents a random number with a
value range of [a, b].

n � N

��������������

−2 logrand(0, 1)



cos(2πrand(0, 1)). (33)

After the algorithm calculates the noise amplitude n,
it chooses random direction angles θ and
φ(θ − rand(0, 2π)),φ � rand(0, π/2) and calculates
the unit vector l according to formula (34). Finally,
the algorithm calculates the coordinate p̂ ′� p+ nl°
after noise is added, p is the point cloud coordinate
before noise is added, and p′ is the point cloud
coordinate after noise is added.

l � (cos(θ) sin(φ), sin(θ)sin(φ), cos(φ)). (34)

Outliers are a common type of noise in the point
cloud obtained by three-dimensional scanning,
which manifests as noise points far away from the
surface of the object. Similarly, the algorithm uses
random sampling to select a certain proportion of
points po in the point cloud P as outliers. For
point po, the algorithm first calculates the normal
vector no, increases the coordinate value along the
direction of the normal vector no, and sets the
increment size to 1 times the radius of the
neighborhood. As shown in formula (35), the
outlier set p′

°

o is obtained. In order to observe
more intuitively, it is displayed in the form of a
patch.

po
′ � p0 + rno. (35)

In addition, in the repetitive experiments of the key
point algorithm on the space transformation, the
point cloud needs to be spatially transformed. Space
transformation can be realized by rotation and
translation, as shown in equation (36). By realizing
the rotation and translation of all the points in the
point cloud P, the transformed point cloud P ′ is
obtained.

P′ � R · P
Trans

+ T 
Trans

. (36)

Among them, PTrans represents the transpose of P,
and the rotation matrix R and translation matrix T

are obtained by formulas (37) and (38),
respectively.
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R �

1 0 0

0 cos(α) −sin(α)

0 sin(α) cos(α)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ·

cos(β) 0 sin(β)

0 1 0

−sin(β) 0 cos(α)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ·

cos(β) −sin(c) 0

sin(c) cos(β) 0

0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (37)

T �

tx

ty

tz

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (38)

(2) After completing the detection of the key point KP of
the original point cloud and the key point KP′ of the
transformed point cloud, it is necessary to calculate
the same part of the two key point sets, that is, the
repetitive calculation module.

Figure 3 of the repetition rate experiment shows that the
algorithm selects a data set. In the model of the data set, the
repetition rate change of the selected key point algorithm is
tested when the selected conditions change.We use the noise
repetition rate rnoise as an example. We must first add noise
to the model point cloud, and then use the key point de-
tection algorithm tested to perform key point detection on
the point cloud before and after adding noise, and finally use
Algorithm 1 or Algorithm 2 to calculate the repetition rate of
the two sets of key points.

Descriptor matching experiments need to be combined
with the PRC drawing process in the evaluation of the
description ability of feature descriptors. ,e calculation
process of PRC covers the complete target recognition
process including feature matching, verification, and other
steps. After selecting different key point detection algo-
rithms and combining them with the same descriptor, the

higher the accuracy of feature matching, the higher the
quality of the extracted key points. First, we need to detect
the key points of the scene point cloud Pscene and the model
point cloud Pmodel , respectively, and establish a feature
descriptor Fscene, Fmodel. ,en, we establish the corre-
sponding relationship between the scene feature and the
model feature and calculate the matching accuracy rate.
According to the change trend of the PRC curve, we can
determine the descriptive strength. ,at is, we know the
effect of the key point detection algorithm and the feature
descriptor.

5. Experimental Results and Analysis

5.1. Spatial Transformation Repetition Rate rtrans. ,e orig-
inal point cloud is rotated along the three coordinate axes of
x, y, z by π/8, π/4, π/3, π/2, π3π/2, 2π, the key points before
and after the rotation are detected, and the repetition rate is
calculated. ,e repetition rate calculated on the 4 data sets is
shown in Table 1. ,e rotation angle-repetition rate curve
shown in Figure 4 is drawn based on the average value of
rnoise on 4 data sets. Table 1 is the average value of the spatial

Figure 2: Sports data set.
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repetition rate rtrans of the key point detection algorithm on
the 4 data sets.

,e six algorithms tested have a repetition rate of 1 in all
tests. ,at is, they have spatial transformation invariance.
Some of these six algorithms realize the invariance of space
transformation, and some of them are described in the next
step by selecting features that have nothing to do with the
choice of coordinate system. For example, the ISS algorithm
uses the three eigenvalues of the covariance matrix, 3D-SIFT
uses the layer constructed by curvature, and the normal
vector angle is used by HoNO. Others describe features
directly in the local reference coordinate system. For ex-
ample, LSP and 3D-Harris both fit the quadric surface in the
local reference coordinate system.

5.2. Gaussian Noise Repetition Rate rnoise. ,e original point
cloud adds Gaussian noise according to the maximum noise
amplitude of 0.05r, 0.08r, 0.1r, 0.15r, and 0.2r. ,e key points
before and after adding the noise are detected, and the
repetition rate is calculated. ,e rnoise on the 4 data sets are
shown in Tables 2–5. ,e Gaussian noise-repetition rate

input parameter

Select the dataset Change the form

Original point
cloud

Resolution/
noise/outliers

Control point
cloud

Detect key points

Key point
(original)

Key point
(control)

Calculate repeat
rates

Output variable

Select
detection
algorithm

Figure 3: Flow chart of repetition rate experiment.

Table 1: ,e average value of the spatial repetition rate rnoise of the
key point detection algorithm on the 4 data sets.

Rotation angle (π) 1/8 1/4 1/3 1/2 1 3/2 2
ISS 1.0 1.0 1.0 1.0 1.0 1.0 1.0
KPQ 1.0 1.0 1.0 1.0 1.0 1.0 1.0
HoNO 1.0 1.0 1.0 1.0 1.0 1.0 1.0
LSP 1.0 1.0 1.0 1.0 1.0 1.0 1.0
3D-Harris 1.0 1.0 1.0 1.0 1.0 1.0 1.0
3D-SIFT 1.0 1.0 1.0 1.0 1.0 1.0 1.0

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

ISS
KPQ
HoNO

LSP
3D-Harris
3D-SIFT

0.125 0.25 0.3333... 0.5 1.5 21

Figure 4: Rotation angle-repetition rate change curve.
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variation curve shown in Figure 5 is drawn based on the
average value of rnoise on 4 data sets.

From the above experimental results, it can be seen that
3D-Harris uses the parameter characteristics of local
quadric surface fitting, and 3D-SIFT uses the parameter
characteristics of the covariance matrix. Both methods have
a certain inhibitory effect on Gaussian noise. ,e ISS al-
gorithm also uses the eigenvalues of the covariance matrix
to determine the key points, but it does not use the scale
space to further smooth it like 3D-SIFT, so it is more
sensitive to noise. ,e LSP algorithm and the KPQ algo-
rithm use the combination of principal curvature and
Gaussian curvature at the key points to form the shape

index value Si and the key point quality Q as the rating
indicators. Like the ISS algorithm, the neighborhood dis-
tribution characteristics of features are not considered
when selecting key points, and there is no smoothing
process for noise, so the repetition rate is lower when the
noise intensity is high.

5.3. Resolution Repetition Rate rdensity. ,e original point
cloud is reduced according to the reduction rate of 50%,
70%, 80%, 90%, and 95%.,e key points before and after the
reduction are detected, and the repetition rate is calculated.
,e rdensity on the 4 data sets are shown in Tables 6–9, re-
spectively. ,e reduction rate-repetition rate curve shown in
Figure 6 is drawn based on the average value of the rdensity on
the 4 data sets.

From the data in the table, it can be found that increasing
the neighborhood radius can make the algorithm more
robust to resolution changes.

5.4. Outlier Repetition Rate routlier. ,e original point cloud
adds outliers according to the ratio of 0.1%, 0.5%, 1%, 2%,
and 5%. ,e key points before and after the outlier are
added, and the repetition rate is calculated.,e routlier on the
4 data sets are shown in Tables 10–13, respectively. ,e
reduction rate-repetition rate curve shown in Figure 7 is
drawn based on the routlier average value on the 4 data sets.

In the above experiment, the key point detection algo-
rithm decreases more as the proportion of outliers increases,

Table 2: Gaussian noise repetition rate rnoise of the key point
detection algorithm on the Laser Scanner data set.

Peak
intensity (r) 0.05 0.08 0.1 0.15 0.2

ISS 0.660944 0.511464 0.458439 0.352894 0.408949
KPQ 0.568529 0.46561 0.430967 0.341683 0.261388
HoNO 0.769721 0.77063 0.774064 0.772145 0.78376
LSP 0.407939 0.401172 0.389355 0.40097 0.390062
3D-Harris 0.784265 0.702556 0.673367 0.497627 0.42117
3D-SIFT 0.783053 0.708818 0.690234 0.585093 0.535502

Table 3: Gaussian noise repetition rate rnoise of the key point
detection algorithm on the Random View data set.

Peak
intensity (r) 0.05 0.08 0.1 0.15 0.2

ISS 0.616302 0.580447 0.538229 0.445208 0.392183
KPQ 0.493082 0.455712 0.428341 0.361277 0.330169
HoNO 0.351076 0.304515 0.291385 0.275225 0.254924
LSP 0.205939 0.198162 0.19897 0.203515 0.230078
3D-Harris 0.651046 0.614888 0.597213 0.531462 0.486113
3D-SIFT 0.750632 0.702556 0.657914 0.574488 0.524594

Table 4: Gaussian noise repetition rate rnoise of key point detection
algorithm on Space Time data set.

Peak
intensity (r) 0.05 0.08 0.1 0.15 0.2

ISS 0.647107 0.510757 0.464398 0.426018 0.396627
KPQ 0.625291 0.557722 0.511464 0.434199 0.365014
HoNO 0.603374 0.561762 0.543784 0.495809 0.49894
LSP 0.410363 0.414908 0.419251 0.414201 0.416423
3D-Harris 0.837492 0.765378 0.728917 0.614585 0.534189
3D-SIFT 0.829917 0.773862 0.707606 0.631452 0.57267

Table 5: Gaussian noise repetition rate rnoise of the key point
detection algorithm on the Kinect data set.

Peak
intensity (r) 0.05 0.08 0.1 0.15 0.2

ISS 0.634583 0.488436 0.444703 0.395516 0.375114
KPQ 0.552672 0.479245 0.462075 0.399758 0.34643
HoNO 0.559843 0.502576 0.463186 0.419958 0.379154
LSP 0.399253 0.395314 0.37875 0.387335 0.389759
3D-Harris 0.790123 0.745885 0.680235 0.57873 0.477629
3D-SIFT 0.803859 0.724776 0.653167 0.543279 0.480962

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0.05 0.08 0.1 0.15 0.2

ISS
KPQ
HoNO

LSP
3D-Harris
3D-SIFT

Figure 5: Gaussian noise-repetition rate change curve.

Table 6: ,e resolution repetition rate rdensity of the key point
detection algorithm on the laser scanner data set.

Reduced
proportions 50% 70% 80% 90% 95%

ISS 0.096455 0.108979 0.094031 0.090092 0.066357
KPQ 0.028785 0.019695 0.017069 0.013635 0.013736
HoNO 0.152611 0.100899 0.07474 0.039087 0.027775
LSP 0.247046 0.188466 0.149884 0.087264 0.043834
3D-Harris 0.084941 0.087567 0.088375 0.059388 0.046258
3D-SIFT 0.1212 0.12827 0.102717 0.069286 0.047975
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indicating that the method of covariance matrix eigenvalue
decomposition has stronger stability to outliers.

,e above research verifies that the sports video moving
target detection and tracking based on the SIFT algorithm
proposed in this paper has good results.

Table 7: ,e resolution repetition rate rdensity of the key point detection algorithm on the random view data set.

Reduced proportions 50% 70% 80% 90% 95%
ISS 0.148672 0.161701 0.145844 0.085244 0.033532
KPQ 0.051409 0.030603 0.018382 0.029997 0.030603
HoNO 0.066155 0.046561 0.03232 0.019493 0.015857
LSP 0.086759 0.062822 0.036764 0.015655 0.003838
3D-Harris 0.089991 0.081406 0.104434 0.055247 0.016059
3D-SIFT 0.111908 0.122917 0.110999 0.082921 0.037269

Table 8: ,e resolution repetition rate rdensity of the key point detection algorithm on the Space Time data set.

Reduced proportions 50% 70% 80% 90% 95%
ISS 0.117362 0.097061 0.079184 0.058075 0.040905
KPQ 0.033835 0.025149 0.012524 0.010403 0.007272
HoNO 0.134229 0.101303 0.068882 0.039693 0.022725
LSP 0.156348 0.114231 0.096354 0.044238 0.022422
3D-Harris 0.094132 0.082012 0.081406 0.067973 0.035754
3D-SIFT 0.145743 0.134128 0.104636 0.087163 0.043733

Table 9: ,e resolution repetition rate rdensity of the key point
detection algorithm on the Kinect data set.

Reduced
proportions 50% 70% 80% 90% 95%

ISS 0.151096 0.142511 0.12726 0.089385 0.05858
KPQ 0.060398 0.061812 0.050601 0.049288 0.049086
HoNO 0.119382 0.077467 0.058378 0.03333 0.021816
LSP 0.205636 0.164327 0.123826 0.071407 0.038683
3D-Harris 0.109282 0.10908 0.099384 0.063731 0.033229
3D-SIFT 0.15958 0.15049 0.123523 0.091809 0.057873

Table 10: ,e outlier repetition rate routlier of the key point de-
tection algorithm on the laser scanner data set.

Proportion
of outliers 0.1% 0.5% 1% 2% 5%

ISS 0.984851 0.903647 0.8787 0.841431 0.767196
KPQ 0.969398 0.846683 0.77063 0.734371 0.629836
HoNO 0.970812 0.913747 0.874256 0.833755 0.798001
LSP 0.994749 0.943138 0.887386 0.821837 0.705081
3D-Harris 0.999999 0.933745 0.923039 0.883245 0.828604
3D-SIFT 0.994749 0.948996 0.904758 0.865267 0.828604
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Figure 6: ,e relationship between the repetition rate and the
reduction rate.

Table 12: ,e outlier repetition rate routlier of the key point de-
tection algorithm on the space time data set.

Proportion
of outliers 0.1% 0.5% 1% 2% 5%

ISS 0.999999 0.97263 0.952733 0.9191 0.86153
KPQ 0.984952 0.939805 0.878902 0.827796 0.735078
HoNO 0.984851 0.896476 0.847289 0.802243 0.739118
LSP 0.998082 0.958389 0.904657 0.834866 0.681548
3D-Harris 0.999999 0.996163 0.986669 0.961015 0.926574
3D-SIFT 0.999999 0.971115 0.952026 0.937583 0.911626

Table 13: ,e outlier repetition rate routlier of the key point de-
tection algorithm on the Kinect data set.

Proportion
of outliers 0.1% 0.5% 1% 2% 5%

ISS 0.999999 0.977478 0.958793 0.939906 0.886982
KPQ 0.999496 0.962429 0.921423 0.865974 0.771943
HoNO 0.983134 0.901122 0.844764 0.776488 0.699526
LSP 0.999799 0.960914 0.922837 0.855672 0.718413
3D-Harris 0.999999 0.99788 0.989396 0.965156 0.933038
3D-SIFT 0.999999 0.981215 0.962833 0.942532 0.910818

Table 11: ,e outlier repetition rate routlier of the key point de-
tection algorithm on the random view data set.

Proportion
of outliers 0.1% 0.5% 1% 2% 5%

ISS 0.997678 0.949804 0.910212 0.856682 0.764267
KPQ 0.98778 0.893951 0.849309 0.742451 0.611757
HoNO 0.934654 0.770226 0.63125 0.519342 0.406727
LSP 0.994143 0.924251 0.872337 0.76053 0.557318
3D-Harris 0.999999 0.976266 0.93021 0.8787 0.783962
3D-SIFT 0.995759 0.953541 0.940512 0.90799 0.842037
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6. Conclusion

In the sports behavior recognition system, many algorithms
lack timing information. In order to make up for the de-
ficiencies of these algorithms, many researchers make up for
the lack of time information by establishing a time series
model for feature descriptors to further describe the be-
haviors and reflect the information that different types of
behaviors change in chronological order so that the ex-
pression of features is more accurate and distinguishable,
and the classification accuracy is improved. ,is paper uses
SIFT to perform the recognition and analysis of sports video
images and uses SIFT algorithm to recognize and track
moving targets. Finally, this paper verifies through experi-
ments that the sports video moving target detection and
tracking proposed in this paper based on the SIFTalgorithm
has good results.
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