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In recent years, laser scanning systems have been widely used to acquire multi-level three-dimensional spatial objects in real time.
�e laser scanning system is used to acquire the three-dimensional point cloud data of urban scenes. Due to the large-scale
characteristics of urban scenes, and the problems of scanning occlusion, scanning path, and limited scanning laser range, the laser
scanning system cannot scan every object in the scene comprehensively, multidirectionally and �nely, so the corresponding three-
dimensional point cloud data collected by many objects are incomplete, and the data images are relatively sparse and unevenly
distributed.�e existing point cloud denoising and enhancement algorithms, such as AMLS, RMLS, LOP, andWLOP, all use local
information to enhance the missing or sparse parts of the point cloud. �is point cloud enhancement method is only limited to a
small range and cannot do anything for the larger missing area of the point cloud. Even if it is done reluctantly, the e�ect is not
satisfactory. �ere are a lot of repetitive and similar features in urban buildings, such as the repetitive areas of �oors and balconies
in buildings.�ese repetitive areas are distributed in di�erent positions of point clouds, so the repetitive information has non local
characteristics. Based on the nonlocal characteristics of building point cloud data and the repetitive structure of buildings, this
article proposes a nonlocal point cloud data enhancement algorithm, which organizes the point cloud data in the repeated area
into a set of basic geometric elements (planes). �e structures are registered in a uni�ed coordinate system, and the point cloud is
enhanced and denoised through two denoising processes, “out-of-plane” and “in-plane.”

1. Introduction

With the rapid development of technologies such as laser
scanning, remote sensing, virtual reality, meta universe,
network image library, and the concept of “Digital Earth,”
cities around the world are competing to build their own
virtual city scenes [1]. Digital Earth is the use of digital
technology and methods to organize the spatial and tem-
poral changes of the Earth and its activities and environ-
ment, according to the earth’s coordinates, it is stored in
computers distributed around the world to form a digital
model of the earth. In urban planning, urban monitoring,
intelligent transportation, 3D maps, urban cultural heritage
protection, real games, virtual battle�elds, accident emer-
gency response, pollutant di�usion and other �elds, 3D
models of large-scale virtual urban scenes can be built [2].

Simulation and simulation play an important role. With the
improvement of urban informatization, 3D models of urban
scenes will be more widely used [3].

�e complexity and diversity of urban scenes require
e�ective collection of urban scene shape information and
accurate and rapid 3D reconstruction, which is very chal-
lenging. At present, the information collection of 3D urban
model is still a work with great investment and complicated
process. Its technology is the main in�uencing factor on the
formation process and design quality of 3D urban model [4].
How to improve the intelligence of information collection of
3D urban model is the bottleneck of building 3D urban
virtual environment. Scene 3D data recovery through pic-
tures and videos is the most e¡cient means to collect 3D
point cloud information [5]. In the same coordinate system,
it requires a lot of computation to quickly register images
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and obtain high-density 3D point clouds through stereo
matching. In addition, because of the height self similarity of
buildings in urban environment, it is easy to have regis-
tration problems. 'erefore, how to quickly and efficiently
register images and obtain high-density 3D point clouds in
the unified coordinate system is the focus of the current
discussion. It can be divided according to the characteristics
of the 3D laser scanning system and its related performance,
as shown in Table 1. 'is paper distinguishes three methods
according to different equipment, operating principle, and
effective distance. 'e specific classification is as follows:

However, due to the occlusion between objects and the
performance limitations of the data acquisition device, the
acquired data often present phenomena such as missing and
uneven distribution. 'e main premise of the next gener-
ation model is to process the collected information and
obtain comprehensive and balanced information. 'e final
goal of 3D reconstruction is to automatically generate the
model. However, due to the particularity of the data itself
and the reconstruction process itself, the grid pattern ob-
tained by gridding cannot meet the needs of high accuracy,
visualization, and data. How to automatically create a grid
model that meets the requirements is a key step to complete
the three-D reconstruction of the urban environment [6].

'e method of extracting 3D images of a scene from a
plurality of pictures taken from various perspectives is called
multidimensional stereovision [7]. 'e current multidimen-
sional stereo vision algorithms do not consider some charac-
teristics of man-made objects (e.g., buildings) themselves, and
the generated three-dimensional point cloud can be applicated.
'e current multidimensional stereoscopic vision method
cannot consider some characteristics of artificial objects (such as
buildings) and the generated 3D point cloud is only determined
according to the image matching with multiangle pictures and
the smoothness with adjacent images, resulting in sparse. Point
clouds generated in places with unclear texture characteristics
aremissing or inconsistent [8]. Due to the rapid development of
laser scanning technology, on-board and on-board laser
scanning devices are widely used as 3D data collection in urban
living sites [9]. Cloud data aremissing and unevenly distributed,
which seriously affects the nextmodel generation. In view of the
above problems, this article studies the use of building self-
similarity to complete, enhance, and denoise LiDAR point
clouds. 'ese problems are currently difficult and hot issues in
the field of computer vision and computer graphics, and there
are important theoretical issues to study these problems.

2. State of the Art

2.1.Overview of 3DReconstruction of Buildings. 'efinal grid
module must go through many stages such as 3D information
collection, 3D data processing and 3D reconstruction. 'e
information obtained can be mainly divided into long-distance
information (satellite images, aerial images, and airborne laser
scanning data) and short-range data (short-range photo-
grammetry data, short-range laser scanning data, and manual
measurement data). 'e 3D data processing refers to the work
data processing by processing the obtained 3D information [10].
For example, the shielding of the scanning point cloud data

information by the on-board laser, the limitation of the laser
range and the scanning area and other reasons cause themissing
and uneven distribution of the 3D point cloud data. Before
taking the newly acquired point cloud data as the next gen-
erationmodel, it can be enhanced and denoising [11]. Buildings,
roads, trees, and other objects must be gridded to form the
surface mesh of the object when carrying out the 3D point
cloud. Since the 3D discrete point cloud technology cannot be
accurate according to the surface structure of the object, the
mesh modeling technology can not only clearly see the surface
contour of the building but also carry out the next step of image
generation, background rendering, and other operations. In the
virtual reality and simulation design of building space, Zhou
et al. build the mathematical model of building location and
parameters and expand the mathematical model of the target
building space based on themathematical model of the building
space.'e results show that themethod has good point and line
rendering effect and can obtain more realistic gym simulation
design results based on 3D virtual building [12]. Grid repre-
sentation refers to using the position and normal vector in-
formation of 3D points to generate polygons (usually
represented by triangular patches) to form the surface of an
object [13]. Grid-based description has become a classic tech-
nology in 3D engineering. Figure 1 shows the flowchart of 3D
reconstruction of urban virtual scene, which mainly includes
three parts: 3D point cloud data acquisition, data processing,
and 3D scene reconstruction [14].

2.2. Overview of 3D Point Cloud Data Acquisition. 'e
complexity and diversity of urban environment makes it
challenging to effectively collect scene shape information
[15]. 'e collection of environmental characteristic infor-
mation is an important step in the reconstruction of the 3D
urban scene, and its technology is also the main influencing
factor that directly affects the formation and design quality
of the 3D urban model. 'e main information sources of 3D
urban model include (1) 3D point cloud data obtained by
static laser scanning equipment; (2) 3D point cloud data
generated based on 2D data (such as aerial photos, satellite,
and ground images); (3) 'e on-board point cloud infor-
mation directly obtained by the airborne laser scanning
device and the 3D point cloud information. Static laser
scanning equipment refers to fixing the equipment in one

Table 1: Classification of 3D laser scanning systems.

3D laser scanning system

Different platforms
Airborne 3D laser scanning system
Ground 3D laser scanning system
Portable 3D laser scanning system

Working principle

Pulsed 3D laser scanning system
Phase 3D laser scanning system
Impulse-phase 3D laser scanning

system

Effective scanning
distance

Short-range 3D laser scanner
Mid-range 3D laser scanner
Long-range 3D laser scanner
Aviation 3D laser scanner
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place, adjusting the posture of the equipment, scanning part
of the shape of the scanned object, then moving the scanning
equipment to scan other parts, and finally passing the po-
sition information of the equipment and the scanned 3D
point cloud from the 3D point clouds scanned at different
positions that are registered in a unified coordinate system.
'e 3D point cloud obtained by the static laser scanner has
extremely high accuracy, but due to its complex use and low
degree of automation, it is mostly used for high-precision 3D
data acquisition and accurate modeling. Table 2 presents the
comparison of the CPU running time of the PSUR algorithm
and the incremental SfM algorithm [16].

'e abbreviation of motion structure is SFM, which mainly
refers to the method of finding out the corresponding points on
the image sequences of several different dimensions, and cal-
culating the position of 3D nodes and camera parameters in the
image through the corresponding points [17]. 'e theoretical
cornerstone of SFM is the basic principle of perspective pro-
jection geometry, that is, to establish the world relationship of
3D and 2D by introducing perspective projection mode [18].
Assuming that there is a pointX in the three-dimensional space,
and its two-dimensional corresponding pixel on the image I is x,
then there is a perspective projection matrix.

P � K[R|t]. (1)

where K represents the internal parameters of the camera, R
represents the orientation of the camera, and t represents the
position of the camera so that the projection formula is
established.

x � PX. (2)

'e basic principle of SfM is to extract matching two-
dimensional feature points from images taken at different

angles, namely x1, x2,. . .(matching points on different im-
ages), and calculate the two-dimensional feature points
using the two-dimensional corresponding matching points
and the projection formula [19]. 'e 3D signals of the
matching points including the camera essence, position, and
distance of each image are shown in Figure 2.

2.3. Lidar Scanning Point Cloud Acquisition. Vehicle and
airborne LiDAR (Ranging) is a new measurement tech-
nology obtained by interdisciplinary research in recent
years. It is based on laser detection method, electronic
computer, precision moving carrier attitude detection
method, and precision moving [20]. 'e rapid development
of GPS differential positioning technology provides a more
powerful scientific and technical guarantee for the acqui-
sition of large-scale urban scene 3D modeling data [21]. It
can quickly, in real time, and automatically acquire dense 3D
point cloud information in the measurement area and is a
new and fast 3D point cloud data acquisition method.
Compared with other traditional measurement methods, the
vehicle-mounted and airborne lidar scanning system has the
characteristics of a high degree of automation, short data
production cycle, low influence by weather, and high
measurement accuracy. It is the most advanced real-time 3D
data information acquisition system.

Now, there are also new laser scanning control systems
in the market, such as the 3D laser test vehicle lynx of the UK
Optech Co., Ltd. and the streetmapper of the UK 3D laser
test Co., Ltd. As shown in Figure 3, this laser scanning
control system is installed on the roof of the car, which can
scan the scene on both sides of the street at high speed under
normal speed, and can directly obtain 360-degree 3D point
cloud data. Meanwhile, the attached HD camera can also
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Figure 1: Flowchart of 3D reconstruction of urban building scene.
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Figure 2: Schematic diagram of SfM.
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Figure 3: Schematic diagram of 3D laser scanning.

Table 2: Performance comparison between PSUR algorithm and incremental SfM algorithm.

Test data #img s.view (m) f.graph (s) SfM (m) Total (m) RIAD (m)
4-sided (a) 446 52 400 119 178 673
Hotel (b) 235 27 254 81 113 751
Kinder. (c) 275 32 268 89 126 713
Dorn (d) 645 75 645 125 209 1282
12-sided (e) 594 69 545 158 236 1476
MedSchool (f ) 448 52 294 138 195 13559
2-buildings (g) 494 58 633
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obtain point cloud data synchronously. 'e corresponding
texture map is very suitable for obtaining 3D graphics and
surface texture data of larger urban scenes. 'e 3D point
cloud data of buildings used in this paper is obtained from
the lynx test.

3. Local Point Cloud Enhancement Technology

3.1. Plane Extraction. In the first step of the algorithm, using
the RANSAC algorithm, each repeating region is divided
into a set of planes, and at the same time, the normal vector
of the plane is assigned to each 3D point belonging to the
plane. After obtaining this set of planes, a filter is performed
to remove the planes containing a small number of point
clouds from the plane set, using 50 as the threshold in the
experiment. 'e most robust way to describe line segments
is the calculation formula in weighting, where the weighted
confidence is the average width of each line segment. Here,
line segments can be replaced by planes, and how to de-
termine the confidence level of each plane will be described.
Each plane Pi will belong to plane Pi.

'e set of three-dimensional points of is denoted as {p1,
p2, . . .}. Here, we use their scales to describe the confidence
of these points as planes, denoted ϕ(Pi). So, the confidence of
a plane is a combination of these three factors:

ω Pi(  � σ Pi(  · η Pi(  · ϕ Pi( . (3)

Because the point cloud is unordered, the loss function
designed must be able to avoid the uncertainty of the result
caused by the disorder of the point cloud. Next, two loss
functions are introduced: Chamfer distance (CD) and Earth
mover’s distance (EMD).

CD is defined as follows:

dChamfer
Xp,Xp  � 

x∈XP

min
y∈Xp

‖x − y‖
2
2 + 

y∈XP

min
x∈Xp

‖x − y‖
2
2,

(4)

where Xp is the real distributed point cloud. For each
predicted point, the point inXp that has the smallest distance
from this point is found, then the smallest distance is cal-
culated, and this is done for all predicted points. In turn,
according to each point in Xp, the minimum distance is
found from this point in the predicted point cloud, this
operation is performed on all real points, and the distances
are added up, and the final distance obtained is the Chamfer.
(Note: Although this algorithm is simple and fast to cal-
culate, it is obvious that the Chamfer distance algorithm
cannot guarantee the consistency between the two point
cloud distributions.)

EMD is defined as follows:

dEMD
Xp, Xp  � min

ϕ: Xp⟶ Xp



x∈Xp

‖x − ϕ(x)‖2. (5)

EMD can alleviate the problem brought by CD, where Ø
is a bijection, since it can make one point set map to another
point set, which can ensure the consistency between the two
point sets, so EMD has a significant impact. In view of this,

the article uses CD and EMD in stages. First, after the sparse
point cloud is generated for the first time, the use of EMD
can keep the generated point cloud and the real point cloud
with the same distribution and can reduce the amount of
calculation. 'en all subsequent dense point clouds use CD
to calculate the loss.

3.2. Triangulation Model. 'e triangulation principle of the
heterogeneous stereo vision system is the same as that of the
isomorphic stereo vision system, both of which use the
parallax of two images to measure the distance of a certain
point according to the triangular model. 'e imaging
principle of the stereo vision system is similar to that of the
human eye. Humans are able to perceive the distance of an
object due to the difference in imaging a certain point be-
tween the two eyes. 'e further apart the points are, the
smaller the difference. 'e greater the distance of the points,
the greater this difference, which is often referred to as
parallax.

As shown in Figure 4, P is a certain point in the envi-
ronment to be tested, and OR and OTare the optical centers
of the two cameras, respectively. 'e imaging points of point
P on the two camera sensors are P1 and P2, respectively, f is
the focal length, B is the baseline distance, XR and XTare the
abscissa of the ordinary image and the abscissa of the
panoramic image, respectively, and Z is the depth distance to
be solved. Let the distance between P1 and P2 be D, then we
have

D � B − XR − XT( . (6)

According to the principle of similar triangles, we have

B − XR − XT( 

B
�

Z − f

Z
. (7)

where

Z �
fB

XR − XT

. (8)

where the focal length f can be obtained by single-target
positioning of the camera, and the baseline distance B can be
obtained by manual measurement, so as long as the depth
information Z can be obtained by obtaining the parallax XR-
XT.

3.3. PlaneClustering. In this step, similar planes are grouped
together. 'e similarity measure uses the plane parameter
equation, and the L2-distance of the plane parameter is used
as the similarity measure of the two planes. 'e plane P can
be expressed as a parametric equation:

n
→

· p + d � 0, (9)

of which

n
→

� nx, ny, nz , (10)

represents the normal vector of the plane and
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‖ n
→

‖ � 1, (11)

p represents a point on the plane P and d represents the
distance from the origin to the plane. For a plane, its pa-
rameters can be used to represent, namely (nx, ny, d), which
represents a plane as a three-dimensional point.'e distance
between two planes is calculated using the parameter l two
distances. Planar clustering can be transformed into a
clustering problem on three-dimensional points. However, if
there is no point cloud in some overlapping areas, or even
the point cloud distribution on some planes is inconsistent,
if the same calculation is made for each plane, some planes
below the confidence level will also change the clustering
results. 'e plane will affect the clustering results.

For the stability of clustering, a sorted clustering process
is introduced here, and planes are added to each class one by
one.'e planes are ordered in all repeat regions according to
confidence. According to the sorting, each time a plane with
the highest confidence is taken from the sequence and placed
into the existing class. If the L2-distance of the plane to all
planes in the existing class is greater than a threshold, a new
class is generated. Finally, some classes that contain fewer
planes are discarded.

3.4. Node Merge. In this step, the wall-directed graph is
simplified by selecting two redundant nodes (vi, vj) to merge
(Figure 5). Redundant nodes contain wall images of the same
wall segmented in different images. To merge two redundant
nodes (vi, vj), the following two conditions must be met: (1)
'e wall images in (vi, vj) have representational similarity,
which is measured using the L2-distance of the GIST global
descriptor, called GIST similarity; (2) Two nodes (vi, vj) are
subsequent nodes of the same node, or (vj) have the same
subsequent nodes, and the similarity measure is called se-
quential similarity.

'e sequential similarity is defined by the weights and
angles of the edges of the two nodes to the target node
(vi, vj). 'e metric function that fuses GIST similarity and
order similarity is defined as follows:

S(i, j) �

NiNj

Ni + Nj

, if Ni ≥ v, Nj ≥ v, A (i, j) < η d(i, j)< ε,

0, otherwise.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(12)

where d (i, j) represents the L2-distance of the GIST global
descriptor; Ni and Nj represent the edge weights between the
node (vi, vj) and the target node, respectively; A(i, j) rep-
resents the two nodes with the angle difference between the
target nodes. First, only nodes that satisfy d(i, j) less than ε
and A(i, j) less than η can be merged; second, (vi, vj) where
both Ni and Nj are relatively large are candidate node pairs
for merging. 'e parameters ], ε, and η were used in the
experiments as 2, 0.8, and 5°, respectively. Figure 6 shows the
two steps of node merging.'e two values on the edge in the
figure represent the angle and weight, respectively. Nodes A
and E are selected to merge (middle image), and nodes B and
D are selected to merge (right image).

4. Experimental Results and Analysis

In this section, we test five real data, namely Simple wall,
Detail, Tall, Cylinder, and Fat. 'ese five sets of data have
different characteristics. 'e simple wall is mainly a simple
building wall composed of planes. Detailed drawing of
building wall with balcony was performed, with detailed
structural features. 'e point cloud is sparse or missing due
to occlusion. A cylinder is a building containing a cylinder.
Fat is a typical modern residential building. Before testing
the real data set, we used the synthesized 2D data to test the
influence of the number of repeated regions and the noise
level of 3D points on the Nola algorithm. Cylinder is a
building containing cylinders. Fat is a typical modern res-
idential building. Before testing on the real dataset, we use a
synthetic 2D data to test the effect of the number of repeat
regions and the noise level of 3D points on the NOLA
algorithm.

'e experimental group of “processing result parameters
of the algorithm in the article” conducted the initial regis-
tration and fine registration stages on the mean square error
and time-consuming performance indicators of the classic
SAC-IA algorithm, the algorithm in the literature, and the
improved ICP algorithm. 'e relevant performance com-
parison parameter information is shown in Table 3. Among
them, the literature in the initial registration stage uses the
classic SAC-IA algorithm, so the accuracy and time results of
their initial registration are exactly the same.

'rough a comprehensive analysis of the relevant pa-
rameters of the algorithm processing results in the text from
the experimental results in Table 3, it can be known that:

(1) In the initial registration stage, the improved SAC-IA
algorithm constructed in this article is better than the
classical SAC-IA algorithm in terms of mean square
error and calculation time. Compared with the
classical SAC-IA algorithm, the IA algorithm has
improved the initial registration accuracy of Ar-
madillo data, Goddess data, and Gate data by 54.35%,

p

z P’

Xr

OrOR

P

XR

B (Baseling)

Figure 4: Schematic diagram of triangulation.
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42.62%, and 39.56%, respectively; in terms of the
time consumption of initial registration calculation,
the improved SAC-IA algorithm is more efficient
than the classical SAC algorithm. IA algorithm re-
duces the time consumption of Armadillo, Goddess,
and Gate by 54.41%, 35.29%, and 50.51%
respectively.

(2) In the fine registration stage, the improved ICP al-
gorithm constructed in this article is significantly
improved in mean square error and operation speed
compared with the classical ICP algorithm and the
literature algorithm: In terms of fine registration

accuracy, the improved ICP algorithm of this article is
better than the classical ICP algorithm.'e algorithm’s
improvements in Armadillo data, Goddess data, and
Gate data are 96.73%, 96.56%, and 96.8%, respectively,
which are 94.84%, 94.76%, and 95.30% higher than
those in the literature in Armadillo data, Goddess data,
and Gate data. In terms of aspects, the improved ICP
algorithm of this article reduces the time consumption
of Armadillo, Goddess, and Gate data by 67.39%,
67.16%, and 65.56%, respectively, compared with the
classical ICP algorithm, which is decreased by 31.82%,
40.54%, and 29.73%, respectively.
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'e experimental group of “ICP algorithm compari-
son and evaluation” compared the registration error and
registration time-consuming performance of the classic
ICP algorithm, the literature algorithm, and the improved
ICP algorithm in the fine registration stage. 'e relevant
performance comparison parameters are detailed in
Table 4.

'rough a comprehensive analysis of the ICP algorithm
from the experimental results in Table 4, it can be seen that:
through the three sets of data of Armadillo, Goddess, and
Gate, the classical ICP algorithm, the algorithm in the lit-
erature, and the improved ICP algorithm of this article are
used for algorithm experiments. 'e improved ICP algo-
rithm of this article is better than the classic ICP algorithm.
'e registration errors are increased by 61.11%, 76.6%, and
35.42%, respectively, and the required registration time is
reduced by 67.39%, 67.16%, and 65.56%, respectively, and
the required registration time is reduced by 31.82%, 40.54%
and 29.73%, respectively.

In this article, the above algorithm is tested on a PC
configured with an intel (R) Core(TM) i7 2.80GHZ pro-
cessor and 4G memory. Table 5 shows the performance
evaluation of the algorithm in this chapter. #pts. represents
the number of point clouds of the test data; #queries rep-
resents the number of repeated region types; #repet. rep-
resents the number of repeated regions of each repeated

region type; prep. time represents the preprocessing time,
including RANSAC plane extraction, repeated regions de-
tection, etc.; cons. time represents the processing time of
point cloud enhancement.

'e WLOP is a method that uses local information to
strengthen point clouds, establish local operators, and it-
eratively adjust the size and displacement of normal vectors
of each point cloud. In this section, we compare the en-
hancement results of local point cloud enhancement method
(WLOP) and non local point cloud enhancement calculation
(NOLA) in constructing 3D point cloud. It can be seen from
the conclusion that WLOP cannot preserve some flat and
line segment features of the point cloud itself. 'erefore,
after WLOP is performed, the point cloud range in which
line segment features are displayed in the input point cloud
is curved. Even if we replace the input data with data
synthesized from repeated regions, the results given by
WLOP are still suboptimal. 'e NOLA algorithm uses basic
geometric elements as processing objects (planes, cylinders,
and line segments) rather than a single 3D point. During the
processing, the point cloud maintains the characteristics of
the original plane, cylinder, and line segment, so the ideal
point cloud enhancement results are obtained.

'e GFSR algorithm is implemented in the development
platform of VS2008.net under Windows system, and the test
is completed on a PC using Intel (R) core (TM) i72.80ghz

Table 4: Comparison and evaluation of ICP algorithms.

Point cloud group
name

Classic ICP algorithm Literature algorithms Improved ICP algorithm of this
article

Registration
error/m

Registration
time/s

Registration
error/m

Registration
time/s

Registration
error/m

Registration
time/s

Armadillo 5.4×10−5 46 2.8×10−5 22 2.1× 10−5 15
Goddess 4.7×10−5 67 1.9×10−5 37 1.1× 10−5 22
Gate 4.8×10−5 151 3.6×10−5 74 3.1× 10−5 52

Table 5: Performance statistics.

Model # pts # queries # repet Prep. time (s) Cons. time
Simple wall 181,486 2 12 | 12 121 115 s
Detail 128,558 2 5 | 6 60 160
Tall 433,325 3 7 | 17 | 25 55 135 s
Cylinder 1,354,305 15 [3–32] 320 215 s
Fat 737,723 12 [6–8] 300 99 s

Table 6: Performance evaluation and grid model scale statistics.

Test data #pts. (k) gram.
seg. (s)

model
rec. (s)

model
#vertices model#faces

Detail 815 746 47 15388 7690
Tall 1919 675 25 5276 2670
Synthetic 673 319 17 5340 5042
Neat 450 376 27 10084 3922
Fat 1688 517 22 7844 1150
Simple 109 243 19 2300 4042
Bar 3393 470 21 8084
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processor and four gigabytes of memory. Table 6 shows the
performance evaluation of the calculation in this chapter,
including the scale data of the gridmodel.Where PTS. shows
the scale of the enhanced node cloud; gram. seg. represents
the time required for segmentation according to the syntax
principle; model rec. describes the working time spent in the
model making stage. 'e number of vertices in the mode
represents the number of vertices of the final mesh model;
and model#faces indicates the number of faces in the final
mesh model.

5. Conclusion

In recent years, laser scanning systems have been widely
used in real-time acquisition of multilevel 3D space targets,
especially vehicle-mounted laser scanning systems are used
to acquire 3D data in urban scenes. 'e vehicle-mounted
laser scanning system can quickly and accurately obtain 3D
point cloud information such as urban buildings, trees,
bridges, and roads. 'e corresponding 3D point cloud data
are incomplete or sparse. Especially in urban buildings, due
to the high density of buildings, it is easy to block each
other, and the trees on the roadside will also block the
buildings. Also, due to the limited range of laser scanning
equipment, the point clouds of the high-rise parts of the
building are sparse or missing. 'e current local point
cloud enhancement algorithm mainly considers the use of
neighborhood information to enhance the point cloud.
'is calculation cannot repair the missing areas of large-
scale point clouds. In this method, a nonlocal point cloud
method is established by considering the non local (i.e.,
repeated) region and the high-level semantic information
such as the plane cylinder. 'e algorithm enhances the
input point cloud by repeating the three steps of region
detection, “out-of-plane” denoising, and “in-plane”
denoising. Finally, the full practice proves the accuracy,
rationality, and correctness of this method. 'e practice
proves that the method we provide can effectively improve
the efficiency of the input point cloud, fill the missing area
of the data, and eliminate the impact.
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