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Developing self-driving cars is an important foundation for the development of intelligent transportation systems with
advanced telecommunications network infrastructure such as 6G networks. �e paper mentions two main problems, namely,
lane detection and obstacle detection (road signs, tra�c lights, vehicles ahead, etc.) through image processing algorithms. To
solve problems such as low detection accuracy of traditional image processing methods and poor real-time performance of
methods based on deep learning methods, lane and object detection algorithm barriers for smart tra�c are proposed. We �rst
convert the distorting image caused by the camera and use a threshold algorithm for the lane detection algorithm. �e image
with a top-down view is then determined through the extraction of a region of interest and inverse perspective transform.
Finally, we implement the sliding window method to determine pixels belonging to each lane and adapt it to a quadratic
equation. YOLO algorithm is suitable for identifying many types of obstacles for identi�cation problems. Finally, we use real-
time videos and the TuSimple dataset to perform simulations for the proposed algorithm.�e simulation results show that the
accuracy of the proposal for detecting lanes is 97.91% and the processing time is 0.0021 seconds. �e accuracy of the proposal
for detecting obstacles is 81.90%, and the processing time is 0.022 seconds. Compared with the traditional image processing
method, the average accuracy and execution time of the proposed method are 89.90% and 0.024 seconds, which is a strong
antinoise ability. �e results prove that the proposed algorithm can be deployed for self-driving car systems with a high
processing speed of the advanced network.

1. Introduction

Transportation represents the prosperity and progress of
a country. However, it also creates several serious
problems such as accidents and tra�c congestion. �ere
were 3,206 tra�c accidents nationwide killing 1672
people in the �rst quarter of 2021. Subjective causes
related to vehicle drivers are drunkenness, fatigue, and
inaccurate vehicle control. To reduce negative impacts
and improve the e�ciency of transportation, countries
are developing smart systems, including infrastructure
and vehicles, based on the basis of advanced networks
such as 5G and 6G networks.

For smart cars, one of the most indispensable tasks is
lane recognition and obstacle detection. �ey directly a�ect

driving behavior. A driver can e�ectively steer a smart
vehicle that provides its precise position on a road surface
based on a lane. Obstacle recognition such as location and
distance from other smart vehicles or animals on the road
and recognition of objects such as signs or tra�c lights
signi�cantly improve driving e�ciency and safety. �ese
jobs are performed through radio, sound, and light sensors
such as RADAR and LiDAR.�e authors [1] propose a lane
detection and warning technique that uses a global posi-
tioning system (GPS) in combination with an inertial
sensor and a highly accurate map. �e authors [2] use a
method to combine the LiDAR sensor and camera. �e
authors [3] present a LiDAR sensor that enables real-time
car detection based on distance and light ray intensity
information. �ese sensors measure parameters directly
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with a small processing time. However, the resolution of
GPS ranges from 10 to 15 meters, and the cost is high. In
several outdoor environments, generating signals may
interfere with each other, causing a reduction in system
reliability.

Currently, software drives self-driving cars by tracking
dozens of sensors and collecting data from a vehicle, radar,
high-resolution cameras, GPS, and cloud services.)e huge
amount of data will then be transmitted to the center
quickly using advanced 5G and 6G network infrastructure.
)e 5G network is currently in limited performance in a few
parts of the world and promises many improvements such
as faster speeds, higher connection density, lower latency,
and energy savings. )eoretical speeds of 5G networks
reach up to 20Gbps, and 6G networks move towards terabit
(Tbps) speeds that are several hundred to several thousand
times faster than 5G networks. However, the goal of the 6G
network is not only speed but also the remaining problems
of the 5G networks. Four main directions of connectivity
are being studied: smart connectivity (intelligent connec-
tivity), deep connectivity, and holographic and ubiquitous
connectivity. Currently, there are a lot of potential tech-
nologies that are considered for 6G networks such as
optical wireless, quantum communications, unmanned
aerial vehicles, and low-level satellites. Other technologies
such as artificial intelligence (AI) and big data analytics are
also included to support 6G networks to ensure network
quality (QoS) goals.

)erefore, we propose an algorithm that uses a single
front camera of a vehicle instead of using multiple cameras.
)e technique in [4] achieves stable results on the Caltech
lane dataset. )ey introduce three techniques for lane de-
tection, namely, using inverse perspective transformation to
remove effects, setting HLS thresholds to filter color
thresholds, and using the sliding window method to search
for lanes.

However, proposed techniques face several difficulties
in detecting lanes where they are not fully visible,
resulting in changing color values or shadows. Several
systems are developed based on an edge detection al-
gorithm [5] to solve the cases that the color threshold is
not able to handle. However, it causes a lot of noise.
YOLO is popularly used due to many reasons with le-
gitimate neural networks. One of the basic reasons is the
speed of recognition in real time. )e authors [6] have
detected many objects based on a deep learning algorithm
(YOLO). )e results are ideal for obstacle detection
problems. )erefore, we will use YOLO for the proposed
algorithm in the paper.

Our paper has two key points as follows:

(i) Firstly, we propose to convert distorting images
caused by the camera and use a threshold for edge
detection for the lane algorithm. Images with a top-
down perspective are determined through a region
of interest (ROI) extraction and inverse perspective
transformation. Finally, we implement the sliding
window method to determine pixels belonging to
each lane.

(ii) Secondly, we propose to use the YOLO algorithm for
the obstacle identification problem. )is is an ad-
vanced algorithm that is suitable for recognizing
many types of obstacles as analyzed above.

)e rest of the paper is presented as follows. In Section 2,
we will present related work. In Sections 3 and 4, we present
and evaluate the effectiveness of the proposed model, re-
spectively. Finally, we give a conclusion in Section 5.

2. Related Work

Traffic congestion and accidents are very important prob-
lems, especially in urban areas and commercial centers. It
causes not only a waste of time and money but also air
pollution and health problems.

Smart cars have been a distant dream for a few decades.
However, many experts and scholars or engineering cor-
porations have been working on systems that solve these
problems with the rapid increase in computer speed. Self-
driving vehicles will revolutionize current society and reduce
road deaths.

In particular, computer vision plays a central role in
object recognition and tracking systems in future intelligent
transportation systems.

)e benefits of smart cars include the following:

(i) Smart cars can reduce traffic accidents caused by
human-caused errors such as mental incompetence,
drunkenness, or fatigue.

(ii) )anks to smart cars, the disabled, elderly, or those
without licenses can safely travel long distances.

(iii) Industry is subject to change. Goods can be deliv-
ered automatically, quickly, accurately, and cheaply,
especially for long-distance orders.

(iv) Public transport is also planned such as taxis or
buses to be replaced by smart cars that carry many
passengers almost all the time. It will improve
performance by minimizing receiving time and
customer distance. It helps to improve urban spaces
such as parking, traffic density, and congestion, thus
reducing the impact on the environment.

Many computer vision studies have been done re-
cently regarding lane detection based on features and
models. Several traditional image processing models for
road line detection are based on color and edge features
[7], Hough transforms [8], and Kalman filter [9]. Iden-
tifying ROI has low processing time. However, it is not
good since it is affected by many factors, including
brightness, weather, and traffic conditions. )e authors
[10] introduce a new color space to replace RGB color
space and analyze the distribution of road markings and
pavements using Gaussian distribution to determine its
color. )e authors [11] focused on the effect of light
changes on lane detection. )e authors [12] used the
Canny edge filter to find their borders. However, road
surface conditions and obstacles have inadvertently
created additional noise resulting in the performance of
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the algorithm being much lower than a color threshold.
)erefore, we need a suitable method of combining color
threshold and edge.

In recent years, there have been many studies on un-
structured lanes and curbs. )e authors [13, 14] presented a
vanishing point-based lane detection technique and
achieved good results for detecting unstructured lanes. )e
authors [15] present an algorithm after obtaining pixels from
extracting features that use direction, gray intensity, and
starting and ending point positions of road markings to
determine lanes. )e authors [16] introduce the B-snake
method using B-spline to describe lane shapes. All algo-
rithms perform Hough transform [17] to compute proba-
bility and find the lane containing the largest number of
pixels. )is method has low reliability for certain curvilinear
lane areas. )erefore, the sliding window method [4] is used
on perspective transformed images that can search for
quadratic lane equations with an accuracy of up to 84% on
the KITTI dataset [18–21]. However, the sliding window
method is highly dependent on conditions such as the
environment and road surface that lead to obstructions or
trees being misrepresented as lanes.

)e authors [22] presented a system that can detect and
classify lanes using a complex neural network with man-
ually labeled ROIs from KITTI dataset for left and right
lanes. )e detection accuracy is high. However, image
processing speed is slow since the algorithm takes too long
to preprocess data. )e authors [23] propose SegNet (a
pixel classifier network) that not only segments and detects
lanes but also classifies and receives pedestrians, trees, and
buildings. However, the disadvantages of the network are
complex network structure, large computational work, and
poor real-time performance. )e authors [24] present
geometry-based spatial CNN (SCNN) that solves con-
gesting lane problems.)e results indicate that the research
method has improved the lane recognition rate. However,
the disadvantage of an algorithm is limited by different
conditions. Color and feature-based detection only apply to
scenes with clear roads and clear lanes under simple
conditions. When the lane is damaged and complicated,
accuracy drops significantly. Model-based detection is only
suitable for preset situations, and algorithms have high
complexity and large computation. It improves efficiency
inaccuracy but requires high hardware and a more complex
model.

Vehicle detection methods fall into three categories,
namely, motion-based, feature-based, and template-based
matching.)e authors [17, 23] used background subtraction
and mean background difference methods, respectively.
However, this motion-based method is not suitable. When a
vehicle moves, the background also changes, causing very
serious errors. Tehrani Niknejad et al. combined Haar and
AdaBoost to detect vehicles on highways [24]. )e authors
[4] proposed a vehicle detection method based on a his-
togram of oriented gradients (HOG) and support vector
machines (SVMs) features for urban environments. Two
methods have improved accuracy significantly. However,
the traditional machine learning method only supports
training for a small amount of data since it has bad results for

obstacle detection, especially when detecting many layers.
)e sliding window technique is also slow compared to more
recent modern algorithms. Currently, deep learning
methods are mainly two- and single-stage. Two-stage net-
works such as Fast R-CNN [25], Faster R-CNN, and Mask
R-CNNusually have high accuracy. However, they have high
complexity and long computation time. Single-stage net-
works such as YOLO and SSD speeds have been greatly
improved. However, the results are not reliable. )erefore,
deep learning using legitimate neural networks [6] out-
performs other techniques. It can learn specific shapes (like
cars, pedestrians, traffic lights, animals, etc.) and use more
data. It is also harder to train. However, the results are better,
and the processing time is also shorter than that of using
SVM. It can strike a balance between accuracy and real-time
performance.

Controlling self-driving cars on advanced networks
such as 4G, 5G, and 6G networks has been studied in
[26, 27]. In [26], the author studied the 6G-assisted co-
operative driving mode, which is an advanced driving
mode through information sharing and driving coordi-
nation using the V2V method. Simulation results show that
proposed algorithms significantly improve road safety,
capacity, and efficiency.)e authors [28] use a typical video
data stream to control car features through 5G video en-
abling a remote driving system. )e results show that it is a
possible direction for future research. In [29], the authors
simulate cars driven by a mobile edge cloud placed in a
Nokia simulator on top of a 5G network. )e setup ac-
curately simulates the ecosystem of future connecting
traffic scenarios based on Xbox Kinect, in-vehicle infrared,
and ultrasonic sensors. In [27], the authors present a test of
connecting cars on the basis of 5G networks. )ey address
latency in classically connecting network-physical systems
by using a mobile edge cloud in a 5G interface that is fully
emulated in cmWave. In [30], the authors present the
design of customized 5G network sections to improve
mobility, traffic safety, and road comfort. )e proposed
solutions involve zoning of core network and radio access
network resources as well as the functional configuration of
terminals for self-driving cars.

Based on the above analysis, the object feature-based
image processing method to classify lane pixels shows
efficiency in many types of environments and fast pro-
cessing time. However, it needs to select and combine
color and morphological characteristics to optimize and
limit the generation of additional noise. )e sliding
window algorithm performs to find around the previous
frame lane that can reduce processing speed and increase
reliability. Deep learning is outperforming a lot of
techniques such as computer vision and traditional
machine learning for obstacle recognition problems es-
pecially when it consists of many types. )erefore, we use
the sliding window method for the proposed system when
finding obstacles. More details will be presented in
Section 3. To the best of our knowledge, a system of lane
determination using YOLO and obstacle detection using
a sliding window has not been published in any previous
literature.
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3. Proposed System

3.1. Overview of System. )e diagram of the system is shown
in Figure 1.

)e system consists of two blocks that perform two
functions, namely, lane detection and obstacle recognition.

(i) Obstacle detection: objects, including vehicles ahead,
animals, or traffic signs, are common obstacles on
the road when participating in traffic and directly
affect the accuracy of lane detection such as crossing
the line street or obstructing the camera view. )e
proposed purpose of this module is to detect and
classify the obstacles ahead obtained by the camera.
)erefore, we come up with methods of handling
obstacles such as removing obstacles to improve lane
detection or providing warnings of obstacles ahead
for smart self-driving cars.

(ii) Lane detection: the reason why we recommend the
lane detection module is to issue warnings of vio-
lations while participating in highway traffic for self-
driving cars such as encroaching on the lane, going
in the wrong lane, or crossing the line street.

)e results of the obstacle recognition algorithm are used
to improve lane problems. )e vehicle detection block uses
the pretraining model YOLO to recognize a variety of ob-
stacles. Line detection block performs chromatic feature
extraction primarily and incorporates edge detection only
when color threshold gives bad results. Performing to find
neighborhood sliding windows is to reduce the false-positive
rate and increase the accuracy of the lane.

3.2. Lane Detection. Lane boundary detection is important
for determining the left and right positions of the real-world
driveway. In this lane determination, our algorithm is di-
vided into three stages of implementation including the
following.

3.2.1. Stage 1: Removing Image Distortion. Input image
before processing is recorded by the front camera on the
vehicle. Although the process of recording images is fast,
distortions still appear. )is distortion alters several
parameters such as actual size, the shape of the lane,
vehicles, or the actual environment. )ese changes cause
errors in judgment of direction and position or lane
curvature. )erefore, distortion correction is necessary.
In this section, image distortion removal is performed in
two steps, namely, camera correction and image dis-
tortion removal.

)e model of lane detection algorithm is shown in
Figure 2. Lane detection algorithm that we develop includes
the following steps:

(i) Step 1.1. Calibrating camera and correcting image
distortion.

(ii) Step 1.2. Creating a binary image using the lane
feature.

(iii) Step 1.3. Perspective conversion (for a top-down
view of the road).

(iv) Step 1.4. Locating lane.
(v) Step 1.5. Drawing showing the lane position on the

original image.

In this step, the system takes video from the front camera
of the vehicle. Output data is a video that contains a bounded
area between two lanes. Details of stages are presented as
follows.

)e calibration process requires a series of chessboard
images taken from multiple directions, as shown in
Figure 3.

In this paper, we use OpenCV function findChess-
boardCorners () to automatically find and chart chessboard.
We next use functions cv2.calibrateCamera () and cv2.un-
distort () to calculate and correct.

From the resulting camera correction, we remove image
distortion using the cv2 function. )e results are shown in
Figure 4.

3.2.2. Phase 2: Analyzing Lane Area. In the phase, we
perform the following steps:

(1) Step 2.1. Edge Detection. In this step, we have an image
without distortion. We next perform filtering to identify
lines on the road through their characteristics. We use
edge detection algorithms, including methods such as
Canny, Sobel, and Prewitt. However, traditional edge
detection algorithms have many problems such as wide
detection range, high noise, and long computation time.

Bounding Box 
Location

Line Detection

Vehicle 
Detection

INPUT
Video

OUTPUT
Video

Figure 1: An overview of the proposed system model.
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)erefore, we choose to use Sobel and color operators.
)e idea of the algorithm is to make lanes separate by
color and enhance accuracy by edge detection.

We try to combine different algorithms of color
threshold and gradient to create a binary image where lanes
can be segregated. )ere are many ways that good results
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NonZero
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Combine

Previous 
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Sliding Window 
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Transform

No

Yes
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Figure 2: Diagram of the lane detection algorithm.

Figure 3: Illustrating image of chessboard.
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can be achieved. In this paper, we found that the best results
are obtained using a color threshold. We experiment with
color space channels such as GRB, HSV, and Hue Satu-
ration Lightness (HSL) while using the color picker tech-
nique. Compared with RGB color space, HSL color can
better reflect image characteristics. Each color channel of
the HSL system can be used separately. )e HLS color
channel is used to handle cases when the color of the line is
too light or light. )e L channel threshold (lightness) will
reduce edges formed from shadows in the frame. )e S
(saturation) channel threshold will widen the white or
yellow lane, and the H channel threshold (Hue) is used to
represent lane color.

)e best results are the S channel to filter white and the L

channel to filter yellow lanes. We can see that lanes are
clearly defined as shown in Figure 5.

We find that the results of the color threshold selection
algorithm are the best based on test results. Lanes are blurred
when the light is unevenly distributed. )e road surface is
white when the color threshold does not work as well as
shown in Figure 6.

We try to improve the algorithm using methods such as
light balance or gamma correction and choose to use the
Sobel operator in the X-direction. )e Sobel operator is a
first-order differential operator. It calculates the gradient of a
pixel using the gradient of a neighborhood of the pixel and
then selects according to the given absolute value. )e es-
sence of this method is to reflect the gray difference char-
acteristics of adjacent pixels. )e operator consists of a set of
horizontal matrices and a set of 3 × 3 vertical matrices that
convolve the image in the plane as shown in (1) and (2). )e
obtained results are approximate values of the horizontal
and vertical luminance differences, respectively. Its form is
the filter operator for edge splitting using a fast convolution
function. )is method is simple and effective since it is
widely used.

If we consider A, Gx, and GGy y as the original image,
vertical, and horizontal edge detection, respectively, the
formula is expressed as follows:

Gx �

−10 + 1

−20 + 2

−10 + 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦∗A, (1)

Gy �

+1 +2 +1
0 0 0

−1 −2 −1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦∗A. (2)

At each point in the image, gradient approximations are
obtained using

G �

�������

G
2
x + G

2
y



. (3)

Based on the shape of the lane through the camera, it
is usually a vertical line or a small deviation relative to the
vertical direction. )e Sobel operator performs edge
detection on vertical and horizontal images and can
remove some noise. However, we have analyzed above
that the edge detection operator produces a lot of bad
noise and low accuracy. )erefore, this problem needs to
be solved effectively. We found the color threshold to be
the best. For the above inefficient cases where the number
of detected lane pixels is not enough, we will perform
color threshold matching with the Sobel. )erefore, we
will calculate the number of lane pixels and still perform
color threshold when recognition is good. )e rest will
combine with edge detection. )e results are shown in
Figure 7.

Figure 7 shows that the edge detection and threshold
superposition algorithm achieves good results with unbro-
ken detectable lanes.
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Figure 4: Result after removing image distortion.
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(2) Step 2.2. Reversing Perspective Transformation. Per-
spective transformations are useful for simpler spaces. )e
parallel lanes merge into a point of distance known as a
vanishing point. )e closer the distance between two ad-
jacent lanes, the lower the vanishing point that is detri-
mental to lane identification or object distance, as shown in
Figure 8.

)e goal of the algorithm is to turn a trapezoidal array of
the road ahead into a rectangle in accordance with reality
and restore the parallel relationship of lanes, as shown in
Figure 9.

To transform perspective to birds-eye mode, it is necessary
to define a rectangle on the original plane.)ese four points are
called source points. Predefining four rectangular points on a
new image is the position of destination where we want to
stretch the trapezoid. When we have two sets, we can use the

getPerspectiveTransform() function to calculate the transform
matrix perspective. When there is a transformation matrix, we
use the warpPerspective() function to convert perspective to a
birds-eye system. For a single camera, we have an image with a
size of 1280 × 720 and destination point parameters as shown in
Table 1.

)e aerial image of the lane is obtained from perspective
transformation as shown in Figure 10. )e result shows that
the lane is more clearly represented and is not distorted.

3.2.3. Stage 3: Detecting Road Markings. We can easily see
lane markings and significantly eliminate environmental
noise. In the next step, we need to locate the lane and find a
quadratic equation that fits defining lane. )e process in-
cludes the following steps:

Figure 6: Results of color threshold algorithm.

Figure 5: An example of the HLS threshold.
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(i) Determining the bottom position of the image
where the lane line starts using the pixel intensity
distribution histogram method.

(ii) Finding cumulative slices of the lane at the bottom
of the image horizontally (sliding window method).

(iii) Identifying nonzero pixels in terms of x and y of
sliding window and adjusting to find a quadratic
polynomial that fits those points (polyfit
polynomial).

)e detailed steps are as follows:

(1) Step 3.1. Finding Peak of Histogram Method. We get a
binary image with two distinct independent lanes after
generating a binary image from the color threshold and
perspective transformation for the lane image. We need to
determine the lane of pixels that are left and right. We first
create a histogram along with all columns in the bottom half
of the image (color intensity distribution over the bottom
half ) as shown in Figure 11.

We add pixels along each column of the image (count
number of nonzero pixels along the x-axis) with the graph
above. In a binary image from color threshold (pixels have
values 0 or 1), the two highest peaks of the histogram will
give a good representation of the x position of lane basis. We
can use the value to find lines.

(2) Step 3.2. Slide Window. )e cumulative search algo-
rithm will perform in a horizontal slice of an image to
determine the window position. Sliding windows are used

to accumulate from the bottom up. When the number of
pixels in the sliding window exceeds the set threshold
number, the mean is taken as the center of the next sliding
window.

We divide the image height into 9 parts with 9 windows
that translate from bottom to top based on left and right
separation. )e window center of the first window block
corresponding to the end position of the image is deter-
mined by the histogram method. A window width of 100
pixels is used to find pixels other than zero. If the cumulative
number of pixels is less than 50, the window will be
redefined.

In Figure 12, pixels corresponding to the left lane are
denoted in blue, and points of the right lane are denoted by
yellow representing lane segregation.

(3) Step 3.3. Searching Slide Window. )e purpose we
propose the sliding window search method is to find the
pixels belonging to each line. We have chosen the sliding
window size to be 100 pixels for the reasons as follows.

When we compare neighboring frames, lane position
does not change significantly. )erefore, we only need to
find around the previous frame lane with the interval dataset
to 100 pixels instead of letting the window slide across the
entire horizontal line. )is leads to many significant benefits
as significantly reducing processing speed, removing several
noises that are not able to be filtered by edge and color
threshold, and improving reliability.

Using a large window size will cause processing time
because the pixel search area will be larger. Besides, we also
encounter some noise on the road that will affect the ac-
curacy of lane detection.

If the window size is too small, it will make it difficult to
find pixels because there will be cases where the pixels to be
searched are out of the search range. )is both reduces
accuracy and causes a loss of processing time. When the

Figure 8: Lane perspective results.
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cumulative number of pixels is too small, the window will
have to be redefined many times accordingly.

We have done resizing the sliding window. )e results
show that a window size of 100 pixels gives the best results in
lane detection.)e process details are described in Section 4.

(4) Step 3.4. Linear Regression. We need a quadratic equation
that is compatible with lane points. Using the polyfit
function with p � polyfit(x, y, 2), we can find three pa-
rameters A, B, C of equation A.x2 + B.x + C as shown in
Figure 13.

(5) Step 3.5. Finding the Best Line. We take two measures to
avoid errors and eliminate bad lane equations.

We first track previous frames to find similarities.
)erefore, we perform the quadratic coefficient of triple
tolerance. )e tolerance consists of three values 0.001, 1, and

100. If more than one factor exceeds the limit, the equation
will be equal to an average of five previous frames. We set the
parameter as lane.detected � None.

Figure 9: Result of the image of the lane.

Table 1: Perspective coordinates.

Source Destination
(535, 300) (200, 0)
(750, 300) (1000, 0)
(60, 720) (200, 720)
(1260, 720) (1000, 720)

Figure 10: Lane mask after reversing perspective transformation.
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Advances in Multimedia 9



Second, we remove the lane equation if the polyfit is
faulty (when there are not enough nonzero pixels on the x-
axis) or the average width between two lanes is greater than
800 or less than 300 pixels. )e lane equation is then equal to
the previous frame, and the parameter is
lane.detected � None.

When lane.detected � None, we perform the sliding
window again with the next frame instead of checking the
entire window.

(6) Step 3.5. Displaying Lane Position. When we know the
position of lane, we use the polyfit function to draw an area
of the image (bounding area between two lanes). We then
need to rotate the image area to the original perspective
and merge it with color image. )e result is shown in
Figure 14.

3.3. Obstacle Detection

3.3.1. YOLOv4 Overview. YOLOv4 is a single-stage detector
that effectively classifies and localizes objects in images with
a single pass. )e YOLOv4 model architecture can be
depicted as Figure 15.

)e backbone, CSPDarknet53, is a modification of the
DarkNet-53 network used in YOLOv3. )ere are 53 con-
volutional layers in the network using a cross-stage-partial
network.

)e neck includes a path aggregation network (PAN)
along with an implementation of spatial pyramid pooling
(SPP). )e former works as a method of aggregating

parameters from different backbone levels instead of using
the feature pyramid network (FPN) used in YOLOv3. SPP
significantly increases the receiving field. It separates the
most important contextual features and does not slow down
network performance.

)e head, YOLOv3, is used as the end of the string object
detector for dense prediction and detection. YOLOv4 de-
tects aerial objects effectively thanks to several innovative
methods such as a bag of freebies and a bag of specials
integrated into the model. YOLOv4 accurately predicts
small objects using the CioU loss function to reduce the
center point difference between the bounding box and the
ground. )e CutMix, Mosaic, and self-adversarial training
techniques increase the robustness of the algorithm com-
pared to previous YOLO versions. )e implementation of
methods such as CSP, Multi-input Weighted Residual
Connection (MiWRC), and PAN reduces the speed and cost
of computation. )ese are important for real-time object
detection. )erefore, we choose the YOLOv4 model for
obstacle detection because it is an effective model. It bal-
ances accuracy and real time by the requirements of the
problem.

3.3.2. Obstacle Detection Algorithm. Algorithmic tasks in-
clude one or more objects and classify objects of an image.
Before creating our model, we used a pretrained model
with 80 classes of COCO dataset [32]. Since types of
obstacles on the road can be cars, traffic lights, pedestrians,
motorbikes, bicycles, or animals, we used a pretrained
model as shown in Figure 16. Details of the process are as
follows:

(i) Step 1. Pretraining the YOLOv4 model.
)e input image of the neural network must be of
a certain form as a blob. When a frame is read
from a video stream, it is passed through the
blab From Image function to be converted into an
input blob for a neural network. )e process also
converts pixel values ranging from 0 to 1 and
resizes an image to (416, 416).
Blob is then performed forwarding over the YOLO
network. YOLOv4 algorithm generates bounding
boxes as predicting detection results.

(ii) Step 2. )reshold filtering and nonmaximum
suppression.
Each output bounding box of the network is
represented by a vector consisting of class and
five elements center_x, center_y, width, height,
and confidence box surrounding object. )e
output of the YOLO algorithm is multiple boxes.
However, most of the boxes are redundant.
)erefore, it is necessary to filter and remove
them.
In the first step, if there is a low probability of object
detection, a box will be discarded. We only keep
those boxes with probability greater than defining
threshold. )e remaining boxes will perform

Figure 12: Result of sliding window.

Figure 13: Result of linear regression.
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nonmax suppression. )is reduces the number of
overlapping boxes.

(iii) Step 3. Combining lane detection algorithm.
)e cause of wrong lane identification is mainly due
to blurred lanes, lost track, and interference caused
by obstacles on the road. )erefore, it would be
good to take advantage of the result of obstacle
detection for the lane detection algorithm. )e
results are shown in Figure 17.

4. Simulation and Result

4.1. Simulation Setup. We perform algorithm simulation
under the following conditions:

(i) Software environment: Windows 10 64-bit oper-
ating system, Python 3.7.2 64 bits, and OpenCV
4.1.0.

(ii) Hardware environment: Intel Core i5-9300H pro-
cessor 2.4GHz CPU.

(iii) )e maximum length of recognizable lanes is 32m
on expressways.

To perform a proposed algorithm for different envi-
ronments, we collect the TuSimple dataset (standard dataset
for detecting lanes) and ours. TuSimple dataset consists of
3626 training and 2782 testing videos. Each sequence
consists of 20 frames taken consecutively for one second
with dimensions of 1280 × 720 pixels. Images include var-
ious weather conditions such as cloudy, clear sky, traffic
environments, and lane conditions.

Details of simulation parameters are shown in Table 2.
Besides, we test the lane detection module on some

images taken from the KITTI dataset. )e simulation is
performed on an operating system of Intel(R) Core(TM) i3-
6100U CPU @ 2.30GHz, 8GB RAM, and Ubuntu 20.04; the
results are described in detail in Table 3.

Figure 14: Result of lane detection.

Image

Backbone Neck OutputInput

Figure 15: YOLO: single-stage architecture [31].
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4.2. Result. We perform a simulation with the above con-
ditions, and the results are shown as follows.

4.2.1. Lane Detection. First, the results of lane detection
under different conditions are as shown in Figure 18 for
TuSimple dataset and Figures 19 and 20 for KITTI dataset.

In Figure 18, we see that the lanes are well recognized
with areas that are highlighted in blue. To perform with
the TuSimple dataset, we get the results as shown in
Table 4.

It can be seen that the developing algorithm performs
well under different conditions with the TuSimple dataset.
)e average recognition accuracy rate received is 97.91%,
and the processing time is 85 milliseconds. To perform with
videos on the highway above, the accuracy has decreased.
However, the proposed algorithm still has good recognition
performance for the TuSimple dataset. )e results show that
proposal has high accuracy and adaptability.

Figure 19 shows the accurate results of lane detection in
low light and normal conditions on the KITTI dataset.
Figure 20 shows some false lane detection results due to the
ROI region selection not matching the lane curvature and
camera rotation. )e accuracy of our proposed method is
estimated on 195 frames extracted from the KITTI dataset.
In the paper, there are 166 frames of true lane detection and
29 frames of false lane detection.

)e performance of the proposedmethod is illustrated in
Table 3. In Table 3, the accuracy and processing time are
85.13% and 0.086 second/1 frame, respectively.

We next compare the proposed algorithm performance
with others for lane recognition. )e results are shown in
Table 5.

In Table 5, we perform the proposal using HSL and
Sobel filter and sliding window search (SWS) algorithm for
lane detection on TuSimple and KITTI datasets. Compared
with other algorithms, the SWS algorithm has a low av-
erage processing time. )e algorithm is a first-order line
detection algorithm since it is almost impossible to apply
to lanes with certain curvatures that cause lower accuracy
than our method by 2.21%. Besides, there are DL methods
such as FastDraw ResNet training or ConvLSTM net-
working based on the dataset and using an Intel Core i5
9300H CPU hardware environment that has high
accuracy.

)e average processing speed is very slow with these
algorithms (0.96 frames/s), which is not suitable for real-
time problems due to complex models and time processing.
Besides, it causes serious errors for several conditions
(mountain roads) due to insufficient training data. In
conditions such as mountain roads or under bridges, it
causes false-positive cases due to insufficient training data.
)erefore, the accuracy is 2.91% lower than the proposed
algorithm. On the KITTI dataset, our proposed algorithm
using Intel Core i3-6100U, CPU@ 2.3GHz, gives an accu-
racy of 85.13% greater than the traditional method of 1.13%.
However, the processing time is slower.

In Table 5, the proposed algorithm achieves good per-
formance with the same dataset with an accuracy recogni-
tion rate up to 97.91% for less than 10 milliseconds. It helps
to enhance driving safety for the real driving environments
of smart vehicles.

4.2.2. Sliding Window Size Selection. To understand the
influence of window size on correct lane detection, we
performed window resizing on a small dataset of 100 videos
corresponding to 2000 frames extracted from the TuSimple
dataset. )e window sizes tested were 50, 100, 150, 200, and
300 pixels, respectively. )e experimental process is per-
formed on an Intel(R) Core(TM) i3-6100U CPU @
2.30GHz, 8GB RAM, and Ubuntu 20.04 operating system.
)e results are shown in Table 6.

Table 6 shows that using a window size of 100 pixels
gives the highest accuracy of 96.40%. )e algorithm has a
lower accuracy of 93.15% and 91.25% with a minimum
window size of 50 pixels and a maximum of 300 pixels,
respectively. )e larger the window size, the slower the
processing time and the reduced accuracy since the larger
the area, the longer the search time and the more the noise
on the road. )erefore, a window size of 100 pixels is a
reasonable choice as it ensures high accuracy and suitable
processing time.

)e results are illustrated in Figures 21 and 22. In
Figure 21, the results show that choosing a window size that
is too small or too large will lead to incorrect lane

Pre-Training
Model YOLOv4

Non-Max
Suppression

Classification
Bounding Box Location

Confidences

Confidence
> 0.5

Get Frame

Frame with
Object detection

Ignore Bounding
Box

Figure 16: Diagram of obstacle identification algorithm.
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recognition due to interference such as wheelchair marks or
sudden changes in light.

4.2.3. Obstacle Detection. We perform the algorithm on the
same TuSimple dataset and compare it with others. A wide
variety of obstacles can be identified with the 80-layer
pretrained YOLO model. )e average accuracy of mAP for
individual layers is 80.70%, 98.20%, 75.06%, and 42.49% for
cars, stop signs, traffic lights, and traffic signs, respectively.
When we compare it with a system using HOG and linear
SVM, we see that it can only recognize the presence of cars.
Besides, forwarding the entire image over the network is
more expensive than extracting the feature vector via SVM.

We only need to switch over the network once for YOLO,
and it is about 150 times for SVM and HOG. )erefore,
YOLO is 10 times faster than SVM and HOG. We set up the
confidence level at 50% in the paper. Compared with
YOLOv4, YOLOv3 has lower accuracy for subjects close to
the camera. However, the receiving distance is better. )e
performance results are shown in Table 7.

In the system using HOG and SVM features, the image is
scanned with a sliding window. )e feature vector is cal-
culated and put into the classifier with each window. An
image is detected with about 150 windows to discover cars.
In the YOLO algorithm, we do not have any window since
the detection is performed quickly. Each frame is transferred
to the network and is processed exactly one time. Tran-
sitioning the entire image over a network will take more
costs than extracting characteristics of window and SVM.
However, this is only performed once time instead of 150
times with SVM and HOG. )erefore, the average pro-
cessing time is also much lower than that of SVM and HOG.
Besides, there are many other layers such as people, dogs,
and cats that the ratio of false positives or negatives is much
better. As a result, the accuracy of YOLO is 24.1% higher
than HOG and SVM.

Figure 17: Using obstacle detection results to improve lane detection algorithms.

Table 2: )e parameters of the simulation system.

No. Parameter Values
1 Road type Limited access highway, mountain road, and urban road
2 Vehicle Mixed traffic (car, pedestrian, traffic lights, etc.)
3 Weather conditions Dry, clear, rain, and cloud
4 Camera Camera HD-RGB, resolution 1280× 720, and JPEG format
5 Roadway surface conditions Dry, wet, and undamaged
6 Average speed 1.335 seconds
7 Processor Intel Core i5-9300H CPU 2.4GHz
8 )e maximum length of detected lane 32 meters
9 YOLOv4 Input: 416× 416; and output: 80 classes
10 Software Windows 10 64 bits, Python 3.7 bits, and OpenCV 4.1.0
11 TuSimple dataset 3626 training and 2782 testing videos
12 Lane width 0÷ 4 meters

Table 3: Results of lane detection for different conditions with
KITTI dataset.

Parameter Valuable
Total number of frames (frames) 195
Correct identifiers (frames) 166
Incorrect identifiers (frames) 29
Average accuracy (%) 85.13
Average processing time (second) 0.086
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All object detection algorithms such as MS-CNN and
Faster R-CNN use regions to zone the object of an image
without looking entire frame. It will look at parts of the
image capable of containing high objects. CNN models

discover in two stages, namely, suggesting areas and clas-
sifications. First, it proposes an area of interest using a se-
lective search algorithm that returns about 2000 zones for
each image. It then classifies by applying CNN to all boxes.

(a) (b)

(c) (d)

Figure 18: Results of lane detection for different conditions: (a) sunny, (b) cloudy weather, (c) traffic, and (d) mountain road.

(a) (b)

Figure 19: Results of lane detection for different conditions: (a) shade and (b) good lighting in the KITTI dataset.

(a) (b)

Figure 20: Several wrong lane detection results for different conditions: (a) shade and (b) good lighting due to inappropriate ROI.

Table 4: Results of lane detection for different conditions with TuSimple dataset.

No. Condition Total number of videos Correct identifiers Incorrect identifiers Accuracy rate of identification (%)
1 Daytime 524 519 5 99.04
2 Weather 625 612 13 97.92
3 Traffic environment 918 906 12 98.69
4 Road surface condition 715 687 28 96.08
5 Total 2782 2733 58 97.91
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Although the number of calculations increases and the
processing speed is very slow, it gains high accuracy with
85.05% for Faster R-CNN and 81.6% for R-CNN. However,
this algorithm is difficult to implement in real-time
conditions.

In the above algorithms, the system initially performs
calculations of control parameters such as steering angle,
distance, and navigation. )e method of lane feature
extraction by color threshold or edge detection is still
large, and its performance is low for mountain roads or
continuously changing light. Besides, characteristics of
possible obstacles on the road are also factored into
consideration when we retrain with the YOLO model.

From the above results, we see that the proposed system
can detect lanes on a 2.4GHz CPU which takes about 85ms
with each image, and the vehicle detection time is about 0.91 s.
)e total time for lane detection and vehicle detection is about
0.995 s on CPU hardware and 0.02405 s on GeForce GTX
TITAN X GPU, respectively. )e average accuracy was
97.91% within the 32-meter safe zone. )e obstacle recog-
nition algorithm has the same accuracy as the algorithm in
[38]. However, the execution time is reduced by 2 and 100
times while using CPU and GPU hardware, respectively.
Besides, we also compare our systemwith [35].)e results are
as shown in Table 8. )e results show that our system im-
proves both accuracy and execution time compared with [35].

Table 5: Result of comparison lane detection algorithm.

Method Algorithm Average accuracy
(%)

Average processing time
(second) Environment system

Traditional method Hough transform [33] 95.70 0.06540 Intel Core i7-6700K CPU@
4GHz

Traditional method RANSAC+HSV [34] 86.21 0.50000 Intel Core i7-4700 CPU@
2.40GHz

Horizontal
filter +Otsu [35] 83.00 0.013 CPU Intel 3.30GHz

Traditional method Sliding window KITTI [4] 84.00 0.00318 Intel Core i5 5200U CPU@
2.20GHz

Deep learning FastDraw ResNet [36] 95.00 0.06533 NVIDIA GeForce GTX 1080,
GPU

Our proposal HSL+ Sobel filter + SWSKITTI
[4] 85.13 0.08620 Intel Core i3-6100U, CPU@

2.3GHz

Our proposal HSL+ Sobel filter+ SWS
TuSimple 97.91 0.08500 Intel Core i5-9300H, CPU@

2.4GHz

Our proposal HSL+ Sobel filter+ SWS
TuSimple 97.91 0.0021 GPU GeForce GTX TITAN X

Table 6: Results of lane detection for different size of window with the TuSimple dataset.

No. Size of window (pixels) Correct identifiers Incorrect identifiers Average accuracy (%) Average processing time (second)
1 50 1863 137 93.15 0.0855
2 100 1928 72 96.40 0.0872
3 150 1916 84 95.80 0.0922
4 200 1891 109 94.55 0.0942
5 300 1825 175 91.25 0.0963

(a) (b)

Figure 21: Result of lane detection with window sizes of (a) 50 pixels and (b) and 100 pixels in the TuSimple dataset.
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5. Conclusion

)e paper proposes two-lane detection algorithms based on
computer vision and uses a pretrained YOLO model to
identify obstacles in images taken from the front camera of
the vehicle. In the paper, we identify lanes with nearly 98%
accuracy and obstacle detection with average mAP accuracy
of 74.1% when the average accuracy with car class is over
80%. However, the system needs to be performed for other
datasets. Besides, it is necessary to improve the algorithm on
the road with different brightness.

)erefore, we will develop an obstacle recognition al-
gorithm with special conditions such as changing light or
many obstacles using other advanced networks in the future.

Data Availability

In the paper, we used a pretrained model with 80 classes of
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Montréal, Canada, October. 2019.

[4] M. Rezwanul Haque, M. Islam, M. Milon Islam, K. Saeed
Alam, and H. Iqbal, “A computer vision based lane detection
approach,” International Journal of Image, Graphics and
Signal Processing, vol. 11, no. 3, pp. 27–34, March 2019.

[5] W. Farag and Z. Saleh, “Road lane-lines detection in real-time
for advanced driving assistance systems,” in Proceedings of the
2018 International Conference on Innovation and Intelligence
for Informatics, Computing, and Technologies (3ICT), pp. 1–8,
Sakhier, Bahrain, November 2018.

[6] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only
look once: unified, real-time object detection,” in Proceedings
of the 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 779–788, Las Vegas, NV, USA, June
2016.

[7] K.-Y. Chiu and S.-F. Lin, “Lane detection using color-based
segmentation,” in Proceedings of the IEEE Proceedings. In-
telligent Vehicles Symposium, 2005, pp. 706–711, Las Vegas,
NV, USA, June 2005.

[8] J. Baili, M. Marzougui, A. Sboui et al., “Lane departure de-
tection using image processing techniques,” in Proceedings of
the 2017 2nd International Conference on Anti-Cyber Crimes
(ICACC), pp. 238–241, Abha, Saudi Arabia, March 2017.

[9] C. Lee and J.-H. Moon, “Robust lane detection and tracking
for real-time applications,” IEEE Transactions on Intelligent
Transportation Systems, vol. 19, no. 12, pp. 4043–4048, 2018.

[10] B. Zheng, B. Tian, J. Duan, and D. Gao, “Automatic detection
technique of preceding lane and vehicle,” in Proceedings of the
2008 IEEE International Conference on Automation and Lo-
gistics, pp. 1370–1375, Qingdao, China, September 2008.

[11] J. Son, H. Yoo, S. Kim, and K. Sohn, “Real-time illumination
invariant lane detection for lane departure warning system,”
Expert Systems with Applications, vol. 42, no. 4, pp. 1816–1824,
2015.

[12] M. Oussalah, A. Zaatri, and H. Van Brussel, “Kalman filter
approach for lane extraction and following,” Journal of In-
telligent and Robotic Systems, vol. 34, no. 2, pp. 195–218, 2002.

[13] H. Kong, S. E. Sarma, and F. Tang, “Generalizing laplacian of
Gaussian filters for vanishing-point detection,” IEEE Trans-
actions on Intelligent Transportation Systems, vol. 14, no. 1,
pp. 408–418, 2013.

[14] H. Amini and B. Karasfi, “New approach to road detection in
challenging outdoor environment for autonomous vehicle,”
in Proceedings of the 2016 Artificial Intelligence and Robotics
(IRANOPEN), pp. 7–11, Qazvin, Iran, April 2016.

[15] Y. Yim and S.-Y. Oh, “)ree-feature based automatic lane
detection algorithm (tfalda) for autonomous driving,” in
Proceedings of the 199 IEEE/IEEJ/JSAI International Confer-
ence on Intelligent Transportation Systems (Cat.
No.99TH8383), pp. 929–932, Tokyo, Japan, October 1999.

[16] V. Gaikwad and S. Lokhande, “Lane departure identification
for advanced driver assistance,” IEEE Transactions on Intel-
ligent Transportation Systems, vol. 16, no. 2, pp. 910–918, 2015.

[17] C. L. Azevedo, J. L. Cardoso, M. Ben-Akiva, J. P. Costeira, and
M. Marques, “Automatic vehicle trajectory extraction by
aerial remote sensing,” Procedia - Social and Behavioral
Sciences, vol. 111, pp. 849–858, 2014.

[18] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for au-
tonomous driving? the kitti vision benchmark suite,” in
Proceedings of the 2012 IEEE Conference on Computer Vision
and Pattern Recognition, pp. 3354–3361, Providence, RI, USA,
June 2012.

[19] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets
robotics: the kitti dataset,” Be International Journal of Ro-
botics Research, vol. 32, no. 11, pp. 1231–1237, 2013.
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