
Research Article
DownstreamSemantic SegmentationModel for Low-Level Surface
Crack Detection

Thitirat Siriborvornratanakul

Graduate School of Applied Statistics, National Institute of Development Administration,
148 Serithai Road, Klong-Chan, Bangkapi, Bangkok 10240, �ailand

Correspondence should be addressed to �itirat Siriborvornratanakul; thitirat@as.nida.ac.th

Received 30 January 2022; Revised 26 April 2022; Accepted 5 May 2022; Published 29 May 2022

Academic Editor: Deepu Rajan

Copyright © 2022 �itirat Siriborvornratanakul. �is is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in anymedium, provided the original work is
properly cited.

As surface crack detection is essential for roads and other building structures in most countries, this has been a very popular topic
in computer vision for automating structural health monitoring. Recently, many deep learning engineers have attempted to �nd
solutions to the problem. However, to the best of our knowledge, most previous methods were about designing and experimenting
with a deep learning model from scratch, which is highly technical and very time-consuming.�is study proposes a new approach
of using downstream models to accelerate the development of deep learning models for pixel-level crack detection. An o�-the-
shelf semantic segmentation model named DeepLabV3-ResNet101 is used as a base model and then experimented with di�erent
loss functions and training strategies. Our experimental results have revealed that the downstream models trained by the classic
cross-entropy loss function cannot provide reasonable results in pixel-level crack detection. �e most successful downstream
model we found is trained by the focal loss function without using the pretrained weights that are accompanied by the base model.
Our selected downstreammodel is generalized well across di�erent test datasets and yields the optimal dataset scale F-measures of
84.49% on CrackTree260, 80.29% on CRKWH100, 72.55% on CrackLS315, and 75.72% on Stone331.

1. Introduction

Crack is an early form of surface damage that can be easily
detected or recognized by visual inspection, both manually
by human experts and automatically by computer vision
algorithms. For low-level surface analysis tasks, it is non-
trivial to get pixel-perfect detection results regarding very
�ne and thin cracks because unpredictable grains and tex-
tures of the surface can be extremely confused as being crack
pixels. When looking for cracks in an input image, we can
consider the problem from either high-level or low-level
perspectives. Although both perspectives result in localizing
cracks (if any) in an input image, the high-level approaches
tend to perform the high-level scene understanding and
localize cracks in an approximate bounding-box manner,
whereas the low-level approaches prefer localizing cracks in
an accurate pixel-level manner. Because analysis landscapes
are di�erent in the two types of approaches, it is necessary to

choose the right level of problem consideration. If an input
image contains not only road surface but also other high-
level objects like building, sky, tree, tra�c cone, car, and so
forth, the high-level approaches should be applied �rst to
localize cracks in this complicated input image. After that, if
a more accurate pixel-level localization is required, the low-
level approach should be applied.

Before [1] �rst applied deep learning to road crack de-
tection in 2016, most works in vision-based low-level crack
detection relied on handcrafted feature methods and were not
able to reach a pure 2D vision-based solution that generalized
well to most road surfaces. �is is because actual crack pixels
have very similar visual characteristics compared to other
unpredictable noisy pixels like road textures/grains and
shadows. Since AlexNet [2] successfully debuted deep
learning to computer vision communities in 2012, there have
been many works in vision-based crack detection [1, 3, 4]
which experimentally con�rmed the superiority of deep

Hindawi
Advances in Multimedia
Volume 2022, Article ID 3712289, 12 pages
https://doi.org/10.1155/2022/3712289

mailto:thitirat@as.nida.ac.th
https://orcid.org/0000-0002-6530-5302
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/3712289

learning solutions over traditional vision-based solutions as
well as traditional machine learning solutions. Accordingly,
this paper will not focus on classical handcrafted-feature
solutions and traditional machine learning solutions. For the
rest of this paper, Section 2 explores the overall landscape of
deep-learning-based crack detection that includes all available
deep learning solutions for crack detection, both high and low
levels. Section 3 explains our proposed method of using a
pretrained model with a special loss function for severely
imbalanced data in order to yield a good low-level vision-
based crack detector. Experimental results are shown and
discussed in Section 4 before we conclude this paper in
Section 5. Note that this paper is different from our previous
works [5, 6] regarding vision-based road damage detection.
While this paper’s focus is on deep-learning-based solutions,
our previous work in [5] focused on vision-based pothole
detection using handcrafted features. As for our previous
work in [6], it proposed a deep learning model for pixel-level
crack detection like this paper. However, the previously
proposed model was designed and trained from scratch with
no experimental concern regarding downstream tasks.

Apart from our detailed literature review of deep-
learning-based crack detection in Section 2, the contribu-
tions of this paper include the following:

(1) We propose a new study regarding how to properly
use an existing off-the-shelf high-level semantic
segmentation model architecture (as officially avail-
able in amain deep learning framework like PyTorch)
for a problem with very different and unique object
characteristics of low-level crack segmentation.

(2) We experimentally confirm that building a down-
stream model upon the state-of-the-art semantic
segmentation model named DeepLabV3-ResNet101
is completely failed for low-level crack detection
when the classic cross-entropy loss function is used.

(3) We discover that a downstreammodel is successfully
trained upon DeepLabV3-ResNet101 if the focal loss
function [7, 8] is used.

(4) Because of unique visual characteristics of cracks, we
discover that training DeepLabV3-ResNet101 from
initially random weights shows more consistent
performances across different test sets than training
it from existing weights (as pretrained on a subset of
COCO train2017).

Despite the strength of being easy to apply and follow,
the limitation of our downstream model is the segmentation
correctness which is still lower than a deep learning model
designed and proposed specifically for crack segmentation
(but not officially available in any major deep learning
framework). �is limitation can be further researched in the
future by investigating new deep learning architectures or
alternative training/optimization strategies. Nevertheless,
the insight provided by this paper should help accelerate
future works in vision-based low-level crack detection in a
way where deep learning researchers and practitioners can
extend an off-the-shelf architecture like DeepLabV3-
ResNet101 and get reasonable crack segmentation results

upon their custom crack dataset without designing and
experimenting everything from scratch.

2. Related Works

�is section explains our literature review regarding how
previous researchers applied deep learning techniques to
both high-level and low-level crack detection problems.

2.1. SlidingWindowApproach. In the early years of applying
deep learning to low-level crack detection, the most popular
approach was perhaps the one that combines a traditional
solution of sliding window and a deep learning solution of
Convolutional Neural Network (CNN) image classifier. In
this approach, a big input image is cropped into several small
patches using one or more fixed-size sliding windows. �en,
based on a patch input, the CNN outputs classification
results of crack, noncrack, or other predefined classes. In the
latter part of CNN classification, there are two main clas-
sification strategies for crack detection—patch-level and
pixel-level classification.

�e patch-level classification is when one input patch
results in one classification label. For example, in the work of
[9], one input image was twice scanned by a sliding window,
producing lot of 256× 256 pixel patches. �en, a small CNN
was trained to perform patch-level binary classification
(crack or noncrack). Although this work yielded 97%
classification accuracy on their test set, performing the
window sliding twice per one input image hurt the overall
speed (4.5 seconds per image). Similarly, Mitsubishi Electric
Research Laboratories [10] proposed a system combining a
520× 520 pixel sliding window and four patch-level CNN
binary classifiers (for crack, deposit, water leakage, and any).
In the test set evaluation, they got a precision of 79.5% and a
recall of 65.0%. Apart from the patch-based classification,
this work mentioned using two different weights for defect
and nondefect training patches in order to deal with the
problem of imbalanced dataset where the number of defect
patches was much less than the number of nondefect
patches. In addition, they used the strategy of Active
Learning in order not to put too much effort into the initial
phase of data labeling and annotation.

Speaking of the pixel-level classification, it refers to the
same sliding window technique but the CNN is now
designed for classifying some specific pixels in the input
patch. �is strategy usually provides an output image that
contains per-pixel classification results. For example, [11]
used one CNN as a pixel-level binary classifier. Input to the
CNN was a 18×18 pixel patch with its center pixel as the
target pixel. �e output of the CNN was a class label (crack
or noncrack) for the center pixel of the input patch. In [4],
the authors used a CNN for multilabel classification where
the 27× 27 pixel input patch resulted in 25 prediction values
belonging to the 5× 5 structure centered in the input patch.
�e authors said that, by forcing CNN to generate many
outputs at a time, it prevented CNN frommisunderstanding
the classification problem or being trapped by one specific
feature.

2 Advances in Multimedia

2.2. Object Detection Approach. Solving high-level crack
detection problems often relies on recent state-of-the-art
deep-learning-based object detectors. For example, [12]
employed a famous one-stage object detector named Single-
Shot MultiBox Detector (SSD) [13] to detect upright rect-
angular bounding boxes regarding many types of road
damage including cracks. �is detection was done despite
unpredictable presence of many nonroad objects in their city
view images. Likewise, [14] proposed using Faster R-CNN
[15], the most popular baseline for two-stage object detec-
tors, to localize and detect five types of surface damage
including concrete crack, steel corrosion (medium and high
damages), bolt corrosion, and steel delamination. Also, in
the recent work of [16], a self-reconfigurable robot was
proposed using deep learning for pavement segmentation as
well as pavement defects (crack and other damages) and
garbage detection. In the part of pavement defects and
garbage detection, the authors used a TensorFlow imple-
mentation of YOLOv2 [17], another popular deep-learning-
based one-stage object detector.

Compared to the sliding window approach described in
Section 2.1, deep-learning-powered object detectors are
superior in two aspects. First, the sliding window approach
significantly depends on one or more fixed-size sliding
windows, whereas the object detector approach allows more
optimized bounding boxes whose sizes are automatically
adjusted to fit each crack. �is allows the latter approach to
deal with images of different sizes and scales. Second, as
mentioned in [18] that convolutional layers are costly, the
sliding window approach that repeatedly applies CNN over
each patch is expensive compared to recent deep-learning-
based object detectors that rely on the concept of one CNN
as a shared feature extractor for all patches.

Although these deep-learning-powered object detectors
are good at high-level scene understanding and able to
bound variable-sized cracks on road surfaces, they all share
the same limitation. Because of the nature of upright rect-
angular bounding box outputs, these detectors are not able
to precisely localize crack pixels in each of their detected
bounding boxes. Consequently, these detectors alone are not
enough for low-level analysis tasks like measuring crack
width, understanding crack orientation and its distribution
pattern, and so forth. Also, for a case when a long thin crack
appears diagonally regarding its bounding box, the detector
has to output an unnecessarily big box in order to bound the
crack. In very unfortunate cases, the big bounding box may
cover the majority area of an input image in a way that
makes this box meaningless for crack detection. Our sug-
gestion is that we should use these deep-learning-based
object detectors to first locate all possible boxes of cracks out
of other unrelated objects or complicated scenes (if any).
�en, we should move to other approaches for pixel-level
fine-grained crack analysis.

2.3. Segmentation Approach. Although the sliding window
approach (Section 2.1) is costly at the first glance, it provides
more precise crack localization compared to bounding box
outputs of the object detection approach (Section 2.2) that

can be too big or too small. �erefore, there are crack de-
tection research works that choose the sliding window over
the object detector. For example, in the NB-CNN framework
[19], the authors explicitly mentioned that they did not
prefer the object detector but the sliding window with patch-
level classification for crack detection on a video of metallic
nuclear power plant specimens. �is selection was in order
to cover their problem including very thin and long-span-
ning cracks.

By the way, using the sliding window approach with
patch-level classification often ends up overestimating the
crack width (low precision) during aggregating predictions
among neighborhood pixels. But if the patch size is de-
creased for the sake of higher precision, it will result in a
higher classification error and a lower detection accuracy as
the information contained in one tiny patch is not enough to
distinguish a crack. To get pixel-perfect crack localization,
the sliding window approach with pixel-level classification
(explained in Section 2.1) is one alternative solution as it
provides an output image with per-pixel dense classification
results. Nevertheless, this sliding window approach is slow in
execution due to area redundancy between patches and the
number of times to execute CNN repeatedly for each patch.

At this point, we are looking for other deep learning
solutions that are capable of providing pixel-level classifi-
cation (low-level crack detection) without redundant
computation. Speaking from the perspective of computer
vision researchers, we believe that an end-to-end vision-
based segmentation model is the appropriate solution for
this problem. Examples of deep-learning-based segmenta-
tion models for crack detection are CrackNets. �e original
CrackNet (AKA CrackNet I) [20] and CrackNet II [21]
utilized the same concept of using convolutional layers to
detect all crack pixels in an input image. Unlike common
CNNs, CrackNet I and CrackNet II did not use any pooling
layers, so all layers (including the input and output layers)
produced outputs of the same 2D spatial size. CrackNet I
and CrackNet II resulted in precision of 90.13% and 90.20%,
recall of 87.63% and 89.06%, and F-measure of 88.86% and
89.62%, respectively. Although their experimental results
looked promising, both CrackNet models were not able to
perfectly detect the continuity of cracks, meaning that they
might detect several discontinued cracks instead of one
connected crack. At this point, another model named
CrackNet-R [22] was proposed to solve this problem of crack
continuity. CrackNet-R did not use convolutional layers but
it considered one crack pixel candidate as one input and fed
it to a recurrent neural network (RNN). �e RNN then
learned whether or not to connect the series of input can-
didates as one continuous crack. While it was a good idea to
use RNN to learn how pixels should relate to one another in
a continuous manner, CrackNet-R introduced many pro-
cesses with handcraft features and fixed algorithms that
could not learn to adjust themselves to fit different inputs.

Although a standard CNN can be simply adapted to
maintain the same 2D spatial size from the input image all
along to the output image as in CrackNet I and CrackNet II,
doing this with fully connected layers inside CNN is very
costly and is not efficient in time and memory consumption.

Advances in Multimedia 3

�erefore, many researchers prefer using proper segmen-
tation models borrowing from the field of computer vision
as these segmentation models are carefully designed and
optimized for segmentation tasks. For example, the works of
[6, 23–26] performed pixel-level crack detection using the
popular U-Net architecture [27] that was firstly introduced
for end-to-end semantic segmentation in medical images.
Among these research works, some used the U-Net archi-
tecture as is, whereas some made major modifications in
U-Net to fine-tune it specifically for the context of crack
detection. Another state-of-the-art work named DeepCrack
[28] proposed a new deep learning architecture that looked
similar to U-Net but with a more sophisticated feature map
combination and loss fusion. DeepCrack resulted in the
precise pixel-level crack detection with the maximum
F-measure value of 91%.

3. Proposed Method

3.1. Model Architecture. According to Section 2, previous
research works on pixel-level crack detection often designed
and trained their deep learning models from scratch; they
did not consider much about accelerating their research and
development process with the concept of downstream
models. Because using downstream models reduces com-
plications in designing and training deep learning models,
downstream models have been applied for various tasks in
many real-life applications. In the context of pixel-level
crack detection, the goal of this paper is to observe down-
stream models built upon the state-of-the-art segmentation
model named DeepLabV3 [29]. At the time of writing this
paper, there are pretrained versions of DeepLabV3 available
in the official PyTorch. Also, DeepLabV3 with ResNet-101
backbone shows the best performances in semantic seg-
mentation as reported on the official website of PyTorch
(https://pytorch.org/vision/stable/models.html#semantic-
segmentation accessed on September 20, 2021).

Recently, there have been many state-of-the-art deep
learning models proposed for semantic segmentation, both
CNN-based models and the rising alternatives of Transformer-
based models. Table 1 shows some of them together with
mIOU (mean intersection over union) comparison. Never-
theless, this paper will not use these models as our purpose is to
use an off-the-shelf deep learning model officially available in a
major deep learning framework like PyTorch; this is in order to
observe how far one can achieve from downstream models
based on an off-the-shelf architecture in the context of low-level
crack detection. According to Table 1, Transformer-based
models seem to be superior to CNN-based models, particularly
in the ADE20K dataset. However, most Transformer-based
models for image segmentation are quite new and were
originally proposed for high-level semantic segmentation.
Hence, it is difficult to directly compare them with our work
that focuses on low-level semantic segmentation and crack
datasets due to differences in datasets, segmentation targets,
and evaluation metrics. In addition, for a general-purpose
computer vision backbone like Swin Transformer to perform
semantic segmentation, a base model like UperNet is needed,
adding another different factor to conduct a fair comparison.

As for other CNN-based models listed in the table, they are not
available as off-the-shelf models andDeepLabV3 is comparable
to them in terms of performance. So we will stick with
DeepLabV3 from this point onward.

Speaking of the state-of-the-art DeepLab series, although it
is trained on natural images regarding the COCOdataset that is
significantly different frommost low-level crack image datasets,
there are some works that reported performances of DeepLab
on crack image datasets. For example, [37] integrated a dense
upsampling convolution (DUC) module into DeepLabv3 for
dam crack semantic segmentation and got the maximum
mIOU of 57%. Also, the work of [38] introduced the densely
connected atrous spatial pyramid pooling module into
DeepLabv3+ and got an average intersection ratio of 82.37%.
Unlike these previous works, our work presented in this paper
focuses on the off-the-shelf DeepLabV3-ResNet101 architec-
ture as available in PyTorch 1.7.1 and torchvision 0.8.2 with no
major architecture modification other than the final classifi-
cation layer.

In this work, our model’s fine-tuning includes trying
four alternative loss functions (i.e., one cross-entropy loss
and three binary focal losses), four initial learning rates (i.e.,
0.1, 0.01, 0.001, and 0.0001), two alternative numbers of
output classes (i.e., one or two segmentation resultant maps),
two ways of pixel normalization regarding an input image
(i.e., with or without pixel normalization), two ways of using
pretrained weights (i.e., using or not using the pretrained
weights from COCO as provided by PyTorch), and two ways
of freezing layers (i.e., train all layers in the model or train
only the classifier). �e best results we discovered so far are
reported from this point onward.

For one three-channel (RGB) 2D input image, each of our
experimental models is set to output a one-channel 2D seg-
mentationmapwhosepixel value representsaprobabilityof the
pixel being crack; this setting is done by changing the classifier
of the loaded DeepLabV3-ResNet101 model to DeepLab-
Head(2048,1); the first parameter of 2048 is the size of feature
vector outputted by the ResNet-101 backbone, whereas the
second parameter of 1 is the number of desired output classes.
We also tried DeepLabHead(2048,2) as well but the results
seemed to be inferior compared to those of DeepLab-
Head(2048,1). In addition, we found that normalizing pixel
values of an input image showed no sign of performance im-
provement, so we omitted this step from further experiments.

3.2. Model Training. When optimizing a deep learning
model for image segmentation, our objective function is the
loss function that penalizes prediction errors for all image
pixels. Given one 2D input image I, let Ix,y be a pixel at 2D
coordinate (x, y) and letL(p) be a loss value calculated for
the p pixel; then, the constrained optimization for our
segmentation model is

min 􏽘
p∈Ix,y

L(p).
(1)

In an encoder-decoder network like DeepLabV3, the
constrained optimization is mostly the same as (1) except
that there are two subnetworks, the encoder and the decoder

4 Advances in Multimedia

https://pytorch.org/vision/stable/models.html#semantic-segmentation
https://pytorch.org/vision/stable/models.html#semantic-segmentation

working together as shown in Figure 1. In an encoder-decoder
network, an input image I is first passed through the encoder.
�en, the encoder’s outputs are fed as the decoder’s input.
Finally, outputs from the decoder are our segmentation re-
sults to be used in per-pixel loss computation. Nevertheless, as
recent encoder-decoder networks may involve several skip
connections and other complicated relationships between the
two subnetworks, the above equation may be evolved into a
much more sophisticated form.

Because the problem of pixel-level crack detection can be
considered as the problem of per-pixel binary classification
(crack or noncrack pixel), the default alternative of the loss
function is the cross-entropy loss function. However, according
to our experiments, no matter what training strategies we used
on DeepLabV3-ResNet101, proper crack detection results were
not obtained from the cross-entropy loss function. We believe
that this might be an unwanted consequence of the severely
imbalanced nature of low-level crack detection, where the
number of crack pixels is extremely smaller than the number of
noncrack pixels in most input images.

Since the common tricks of oversampling and under-
sampling cannot be used to balance the numbers of crack and
noncrack pixels in this context of low-level crack detection, we
explore other loss functions that prioritize prediction on the
positive class (crack) over that on the negative class (noncrack).
In this paper, the selected loss function is the binary focal loss
function—a binary version of the famous focal loss [7, 8]
computed as written in Equation 2. In the equation, yi and 􏽢yi

are ground-truth and predicted values of the ith pixel, re-
spectively; Lbf+ is the loss value calculated from positive
(crack) pixels, where yi � 1(y+); Lbf− is the loss value cal-
culated from negative (noncrack) pixels, where yi � 0(y−).
�e constant value of α =3 is used in all experiments. Also,
three values of c (i.e., 1, 2, and 4) will be experimented and
referred to as Lbf1, Lbf2, and Lbf4, respectively.

Lbf � Lbf+ + Lbf− ,

Lbf+ � −
􏽐i∈y+

1 − 􏽢yi(􏼁
c

· log 􏽢yi(􏼁􏼂 􏼃

􏽐i∈y+
1 − 􏽢yi(􏼁

c
⎛⎝ ⎞⎠,

Lbf− � − α
􏽐i∈y−

􏽢yi(􏼁
c

· log 1 − 􏽢yi(􏼁􏼂 􏼃

􏽐i∈y−
􏽢yi(􏼁

c
⎛⎝ ⎞⎠.

(2)

Before training downstream models upon the Deep-
LabV3-ResNet101 architecture on the low-level crack image
dataset, there are two more training issues to be considered.
First, should we train all layers in the model or should we
train only the new layers in the DeepLabHead classifier?
Second, should we continue training from the pretrained
weights (pretrained on a subset of COCO train2017) or
should we train all weights from scratch? For the first issue,
our preliminary experiments revealed that training all layers
yields better results than training only the classifier, so we
will stick with this in all the following experiments. As for the
second issue, we will conduct experiments both with and
without pretrained weights and compare their results.

All experimental downstream models were trained on
the same laptop computer with one Nvidia GeForce RTX
2080 GPU (8GB RAM) using Python 3.8, CUDA Toolkit
10.2.89, cuDNN 7.6.5, PyTorch 1.7.1, and torchvision 0.8.2.
�e training was conducted for 300-epoch length with the
batch size of 2 and the Stochastic Gradient Descent (SGD)
optimizer (the initial learning rate of 0.0001, weight decay of
0.0005, and momentum of 0.9). �e learning rate scheduler
is used to multiply the current learning rate with 0.1 if the
validation loss stays stable for 10 continuous epochs.

3.3. Dataset and Evaluation Metrics. For a deep learning
model that works with natural images and requires high-
level scene/object understanding, it is common to expect a
training dataset with millions of images or more as the
object/scene diversity is very high. However, the work in this
paper deals with road surface images which are nonnatural
images and need no high-level scene/object understanding.
Hence, the number of training images needs not be that
much; for example, the famous U-Net deep learning model
[27] can do semantic segmentation on medical images using
only 30 training images; the state-of-the-art DeepCrack [28]
trains its deep learning model with 260 images from the
CrackTree260 dataset. In order to compare our downstream
models with the state-of-the-art DeepCrack (in Section 4),
we use the same bundle of four crack datasets distributed by
DeepCrack as well as their evaluation metrics as they were
proved sufficient for this task of crack segmentation. Ex-
ample images in the four crack datasets are displayed in
Figure 2 and summarized in Table 2. As written in the table,

Table 1: Comparison of state-of-the-art deep learning models in four high-level semantic segmentation datasets. Note that numeric data
filled in this table refers to mIOU evaluation results collected from original papers.

Model Publication Type
mIOU

PASCAL VOC 2012 Pascal Context Cityscapes ADE20K
(test set) (val. set) (test set) (val. set)

PSPNet [30] CVPR 2017 CNN 85.4 — 80.2 —
DeepLabV3 [29] arXiv 2017 CNN 85.7 — 81.3 —
EncNet [31] CVPR 2018 CNN 85.9 — — 44.7
DeepLabV3+ [32] ECCV 2018 CNN 87.8 — 82.1 –
Swin Transformer [33] ICCV 2021 Transformer — — — 53.5
Segmenter [34] ICCV 2021 Transformer — 59.0 — 51.8
SETR [35] CVPR 2021 Transformer — 55.8 81.6 50.3
SegFormer [36] NeurIPS 2021 Transformer — — 83.1 51.8

Advances in Multimedia 5

only the CrackTree260 dataset is used for training and
validating, whereas all four datasets are used for testing. One
interesting fact about this bundle of crack datasets is that all
ground-truth images are annotated with one-pixel-wide
curves despite the actual width of cracks.

Because our experimental models are designed for one
training sample which is a pair of one 512× 512 RGB input
image and one 512× 512 binary ground-truth image, there
are some preprocessing steps required to convert each
sample to the model-ready format. Our preprocessing steps
include image resizing and pixel rescaling. For the part of
image resizing, we resample the RGB input image using pixel
area relation and resize the binary ground-truth image using
the nearest neighbor interpolation; the latter interpolation is
selected in order not to introduce nonbinary pixels in the
resized image. �en, during the training process, several
techniques of data augmentation are applied on the ¦y to
each training sample; this is for the purpose of avoiding
over�tting and increasing image diversity. �e augmenta-
tion includes random ¦ip (both horizontal and vertical),
random blur, random hue, random saturation, random
brightness, random contrast, and random crop. Finally,
when the one-channel greyscale segmentation map is

predicted and outputted from our experimental model, it
must be postprocessed to become a �nal binary output map.
�e postprocessing steps include the min-max normaliza-
tion and the binarization.�e �nal output map is a 512× 512
one-channel binary image whose 0.0- and 1.0-pixel values
refer to noncrack and crack pixels, respectively. Note that the
image augmentation is partly done with OpenCV 4.5.1.48.

In the problem of high-level scene or object segmentation
as listed in Table 1, mIOU is a popular evaluation metric.
However, the situation is di�erent in the problem of low-level
crack detection, where each crack can be very thin and pixel-
accurate crack localization is nontrivial. Similar to previous
works in crack detection including DeepCrack [28], we do not
evaluate our downstream models with mIOU but three
F-measure-based values—the optimal dataset-scale F-measure
(ODS F-measure), the optimal image-scale F-measure (OIS
F-measure), and the average precision (AP or the area under
the precision-recall curve regarding the ODS F-measure). �e
model evaluation is done with some ¦exibility, allowing the
pixel that is predicted as a crack and is in the d-pixel proximity
of the actual crack pixel to be counted as a true-positive pixel.
�is ¦exible evaluation is used in many previous works of low-
level crack detection, including DeepCrack which used d � 2.

Figure 2: Examples of crack images (top row) and ground-truth images (bottom row) as provided by DeepCrack [28]. Columns from left to
right are the datasets named CrackTree260, CRKWH100, CrackLS315, and Stone331, respectively. Note that images in the bottom row are
inverted here for clear visualization.

512 × 512 × 3 512 × 512 × 1
DeepLabV3-ResNet101

Encoder
(ResNet101)

Decoder

Figure 1: A high-level illustration of DeepCrackV3-ResNet101 used in this work. For more details of DeepLabV3-ResNet101, please refer to
the original paper [29].

6 Advances in Multimedia

To perform the flexible evaluation, we use two ground-truth
images to compute precision and recall; the two ground-truth
images are one original ground-truth image (i.e., one-pixel
wide crack annotation) and one flexible ground-truth image.
For any predefined integer value of d> 0, the flexible ground-
truth image is prepared by applying the morphological dilation

to the original ground-truth image with the square kernel of
size (2 ∗ d) + 1. �is means that if the original white pixel (i.e.,
crack pixel) has one-pixel width, using d � 2 will make the
pixel become five-pixel wide in the flexible ground-truth image.
Finally, when computing precision and recall values, the
numbers of true-positive and false-positive pixels are counted

Table 3: Comparing our downstream models built upon DeepLabV3-ResNet101 with other works of deep-learning-based low-level crack
detection on the same test datasets; the flexibility value of d � 2 is used in all evaluations. While ODS F-measure is reported with its
corresponding precision (P) and recall (R) as written underneath, OIS F-measure is reported together with its standard deviation (written
with a leading ± symbol) showing the dispersion of the optimal image-scale F-measure in a particular test dataset. For each training strategy
of us, the best (maximum) value among the four loss functions is highlighted in bold.

Modified U-
Net [6]

DeepCrack
[28]

Our downstream models built upon DeepLabV3-ResNet101
Trained from pretrained weights Trained from random weights

Lbce Lbf1 Lbf2 Lbf4 Lbce Lbf1 Lbf2 Lbf4

CrackTree260
OIS F-
measure 0.3981 – 0.3081 0.8520 0.8596 0.8752 0.3031 0.8542 0.8577 0.8705

± .0919 ± .0468 ± .0521 ± .0312 ± .0594 ± .0227 ± .0241 ± .0230

ODS F-
measure 0.3940 –

0.2218 0.8354 0.8408 0.8553 0.2721 0.8440 0.8449 0.8530
@P .1325 @P .7706 @P .7835 @P .8049 @P .1789 @P .7777 @P .7870 @P .8056
@R .6793 @R .9120 @R .9073 @R .9124 @R .5684 @R .9226 @R .9120 @R .9064

AP 0.1683 – 0.1317 0.8347 0.8387 0.8879 0.1764 0.8595 0.8820 0.8913
CRKWH100
OIS F-
measure 0.3350 0.9170 0.1117 0.5321 0.6107 0.5447 0.1681 0.8131 0.8020 0.8111

± .1208 ± .3660 ± .3404 ± .3595 ± .0983 ± .1282 ± .1315 ± .1276

ODS F-
measure 0.3483 0.9095

0.1407 0.5226 0.4480 0.6612 0.0951 0.8166 0.8029 0.8011
@P

0.0848
@P

0.3934
@P

0.3072
@P

0.5338
@P

0.0595
@P

0.7530
@P

0.7416
@P

0.7429
@R

0.4128
@R

0.7785
@R

0.8277
@R

0.8686
@R

0.2369
@R

0.8919
@R

0.8752
@R

0.8693
AP 0.1242 0.9315 0.0642 0.3490 0.2629 0.3938 0.0421 0.8362 0.8215 0.8239

CrackLS315
OIS F-
measure 0.2517 0.8671 0.1371 0.6844 0.7191 0.6761 0.1832 0.7315 0.7177 0.7217

± 0.1009 ± 0.2237 ± 0.1924 ± 0.2467 ± 0.1095 ± 0.1734 ± 0.1808 ± 0.1832

ODS F-
measure 0.2648 0.8449

0.0791 0.7143 0.7332 0.6698 0.1143 0.7446 0.7255 0.7325
@P

0.0560
@P

0.6322
@P

0.6587
@P

0.5656
@P

0.0628
@P

0.6722
@P

0.6597
@P

0.6663
@R

0.1345
@R

0.8208
@R

0.8268
@R

0.8210
@R

0.6413
@R

0.8345
@R

0.8059
@R

0.8133
AP 0.1004 0.8772 0.0351 0.6378 0.6893 0.5178 0.0512 0.7205 0.7096 0.7138

Stone331
OIS F-
measure 0.4090 0.8751 0.0605 0.0480 0.0532 0.0564 0.0453 0.6683 0.7587 0.6578

± 0.0687 ± 0.0200 ± 0.0273 ± 0.0406 ± 0.0309 ± 0.1719 ± 0.1348 ± 0.1976

ODS F-
measure 0.4333 0.8559

0.0313 0.0340 0.0358 0.0288 0.0277 0.6829 0.7572 0.6822
@P

0.0159
@P

0.0173
@P

0.0182
@P

0.0146
@P

0.0140
@P

0.6036
@P

0.7075
@P

0.6264
@R

0.8917
@R

0.9817
@R

0.9662
@R

0.9784
@R

1.0000
@R

0.7862
@R

0.8144
@R

0.7488
AP 0.2374 0.8883 0.0126 0.0123 0.0130 0.0125 0.0098 0.6686 0.7697 0.6653

Table 2: Summary of the four crack datasets used in this paper.

Dataset Resolution Number of images
(pixels) Train. Val. Test Total

CrackTree260 800× 600, 960× 720 200 20 40 260
CRKWH100 512× 512 — — 100 100
CrackLS315 512× 512 — — 315 315
Stone331 1024×1024 — — 331 331

Advances in Multimedia 7

on the flexible ground-truth image, whereas the number of
false-negative pixels is counted on the original ground-truth
image. Note that we use scikit-learn 0.23.2 for evaluation and
matplotlib 3.3.1 for image as well as graph visualization.

3.4. Comparative Experiments. To compare our proposed
models with other deep learning models, we choose our
previous work ofModified U-Net [6] and the state-of-the-art
DeepCrack [28]. Like our work, both are deep learning
models that can be trained in an end-to-end manner and are
proposed specifically for crack segmentation.

Although Modified U-Net and DeepCrack share the
same concept of using the encoder-decoder architecture,
their internal implementations are totally different. On one
hand, Modified U-Net borrows the main concept from the
famous U-Net [27] and applies some modifications to make
it fit with the task of crack segmentation. �is means that
Modified U-Net follows the idea of symmetry U-shape
encoder-decoder architecture with skip connections be-
tween same-level layers in the encoder and the decoder as
well as a single loss computed only at the end of the decoder.
On the other hand, DeepCrack is a newly designed archi-
tecture that has an appearance that is similar to that of
U-Net but has no skip connection between the two

subnetworks and uses a compound loss to train the model.
Instead of propagating feature maps from the encoder and
concatenating them directly to feature maps in the decoder,
DeepCrack combines feature maps from same-level layers
in the encoder and the decoder, fuses them at the middle,
and produces an additional loss for each level. In terms of
crack segmentation performances, DeepCrack achieves the
state-of-the-art results in segmenting very fine and thin
cracks, whereas Modified U-Net suffers from overly thick
segmentation results (high recall but low precision). To get
more precise results fromModified U-Net, a postprocessing
step (e.g., edge thinning) may be required in addition.

Similar to Modified U-Net and DeepCrack, our down-
stream models regarding DeepLabV3-ResNet101 use the
encoder-decoder architecture. However, designing and tun-
ing Modified U-Net and DeepCrack is a process that requires
researchers and practitioners to experiment and tweak every
related design and hyperparameter by themselves; this can
discouragemanywho are not familiarwith these kinds of deep
learningmodels for semantic segmentation.Our research goal
is different as it is our main contribution to help researchers
and practitioners by utilizing asmuch as possible from an off-
the-shelf architecture officially available in a major deep
learning framework. Hence, we choose to rely mainly on the
fixed architecture of DeepLabV3-ResNet101, change only on

0.0
0.0

0.2

0.4

0.6

0.8

1.0

0.2 0.4

Recall

trainset_unseen: Dataset's F1 evaluation (all losses)

Pr
ec

isi
on

0.6 0.8 1.0

DeepLabv3 pretrained+finetune (BCE)
DeepLabv3 pretrained+finetune (BF 1.0)
DeepLabv3 pretrained+finetune (BF 2.0)
DeepLabv3 pretrained+finetune (BF 4.0)

(a)

testset1: Dataset's F1 evaluation (all losses)

0.0

0.0

0.2

0.4

0.6

0.8

1.0

0.2 0.4

Recall

Pr
ec

isi
on

0.6 0.8 1.0

DeepLabv3 pretrained+finetune (BCE)
DeepLabv3 pretrained+finetune (BF 1.0)
DeepLabv3 pretrained+finetune (BF 2.0)
DeepLabv3 pretrained+finetune (BF 4.0)

(b)

testset2: Dataset's F1 evaluation (all losses)

0.0

0.0

0.2

0.4

0.6

0.8

1.0

0.2 0.4

Recall

Pr
ec

isi
on

0.6 0.8 1.0

DeepLabv3 pretrained+finetune (BCE)
DeepLabv3 pretrained+finetune (BF 1.0)
DeepLabv3 pretrained+finetune (BF 2.0)
DeepLabv3 pretrained+finetune (BF 4.0)

(c)

testset3: Dataset's F1 evaluation (all losses)

0.0

0.0

0.2

0.4

0.6

0.8

1.0

0.2 0.4

Recall

Pr
ec

isi
on

0.6 0.8 1.0

DeepLabv3 pretrained+finetune (BCE)
DeepLabv3 pretrained+finetune (BF 1.0)
DeepLabv3 pretrained+finetune (BF 2.0)
DeepLabv3 pretrained+finetune (BF 4.0)

(d)

0.0
0.0

0.2

0.4

0.6

0.8

1.0

0.2 0.4

Recall

trainset_unseen: Dataset's F1 evaluation (all losses)

Pr
ec

isi
on

0.6 0.8 1.0

DeepLabv3 random+finetune (BCE)
DeepLabv3 random+finetune (BF 1.0)
DeepLabv3 random+finetune (BF 2.0)
DeepLabv3 random+finetune (BF 4.0)

(e)

testset1: Dataset's F1 evaluation (all losses)

0.0

0.0

0.2

0.4

0.6

0.8

1.0

0.2 0.4

Recall

Pr
ec

isi
on

0.6 0.8 1.0

DeepLabv3 random+finetune (BCE)
DeepLabv3 random+finetune (BF 1.0)
DeepLabv3 random+finetune (BF 2.0)
DeepLabv3 random+finetune (BF 4.0)

(f)

testset2: Dataset's F1 evaluation (all losses)

0.0

0.0

0.2

0.4

0.6

0.8

1.0

0.2 0.4

Recall

Pr
ec

isi
on

0.6 0.8 1.0

DeepLabv3 random+finetune (BCE)
DeepLabv3 random+finetune (BF 1.0)
DeepLabv3 random+finetune (BF 2.0)
DeepLabv3 random+finetune (BF 4.0)

(g)

testset3: Dataset's F1 evaluation (all losses)

0.0

0.0

0.2

0.4

0.6

0.8

1.0

0.2 0.4

Recall

Pr
ec

isi
on

0.6 0.8 1.0

DeepLabv3 random+finetune (BCE)
DeepLabv3 random+finetune (BF 1.0)
DeepLabv3 random+finetune (BF 2.0)
DeepLabv3 random+finetune (BF 4.0)

(h)

Figure 3: �e precision-recall curves regarding our downstream models built upon DeepLabV3-ResNet101. �e best F-measure (ODS F-
measure) of each graph is marked with a small rectangle. (a–d) and (e–h) represent two training strategies which are training from the
pretrained weights and training from random weights, respectively. Testing results are shown for CrackTree260 in (a, e), CRKWH100 in (b,
f), CrackLS315 in (c, g), and Stone331 in (d, h).

8 Advances in Multimedia

the essential part of the classi�er head, and tune only those
hyperparameters that are fundamental to most deep learning
practitioners (e.g., the loss function, trainable layers, and the
decision whether to use pretrained weights).

4. Experimental Results

Table 3 compares our downstream models with the state-of-
the-art DeepCrack model [28] as well as our previous model

Input

Cr
ac

kT
re

e2
60

CR
KW

H
10

0
Cr

ac
kL

S3
15

St
on

e3
31

Ground truth Prediction Final output
1.0

0.8

0.6

0.4

0.2

0.0
1.0

0.8

0.6

0.4

0.2

0.0
1.0

0.8

0.6

0.4

0.2

0.0
1.0

0.8

0.6

0.4

0.2

0.0
1.0

0.8

0.6

0.4

0.2

0.0
1.0

0.8

0.6

0.4

0.2

0.0
1.0

0.8

0.6

0.4

0.2

0.0
1.0

0.8

0.6

0.4

0.2

0.0

Figure 4: Some results from our downstream model that is trained by Lbf2 from random weights. For better visualization, binary
images in the second and fourth columns are inverted and greyscale images in the third column are colorized with the jet colormap in
matplotlib.

Advances in Multimedia 9

of Modified U-Net [6]. Except for DeepCrack whose re-
ported performances in [28] are used as is, other models in
the table are trained with the CrackTree260 dataset and
tested with four crack datasets following the description in
Table 2. Note that, to avoid dynamic results due to different
random seed values, each of our experimental DeepLabV3-
ResNet101 models in Table 3 is trained and evaluated only
once using the same set of fixed seeding values.

According to Table 3, when evaluating our downstream
models with unseen images from the CrackTree260 dataset,
the performances of downstream models are not much
different between the two training strategies. However, when
changing to other test datasets, the training strategy of
random weights performs better, particularly in the
Stone331 dataset. �is difference between the two training
strategies in our downstream models is also shown in
Figure 3, where (a)-(d) graphs belonging to the training
strategy of pretrained weights reveal performance instability
across different test datasets. Adding more epochs of
trainingmay allow the downstreammodels on the top row of
the figure to fit more on the problem of pixel-level crack
detection. However, doing this will increase computational
resources. Our recommendation for the problem of low-
level crack detection is that in case the base model is
originally proposed for high-level scene/object segmenta-
tion, it is better to neglect the pretrained weights given with
the base model and train our downstream models from
random weights.

Among all models listed in Table 3, the best one is the
state-of-the-art DeepCrack which wins in all indicators.
Nevertheless, our downstream models trained with the bi-
nary focal loss function show reasonable performances es-
pecially when they are trained from random weights.
Considering the three downstream models trained withLbf
from random weights, although the winner in each test
dataset is varied, the performances of the three models are
not significantly different from one another in each indi-
cator, except for the Stone331 dataset. In the Stone331
dataset, the downstream model trained with Lbf2 is better
than the other two by a significant margin. Because of this
ability of good generalization among different test datasets,
the downstream model trained with Lbf2 from random
weights is concluded as our best downstream model. As for
bad performing models, two downstream models trained
with the binary cross-entropy loss function are obviously the
worst as they can barely detect or localize any crack. �e
second worst model is Modified U-Net as this model suffers

from too thick segmentation results (high recall but low
precision) in the context of one-pixel-wide ground-truth
annotation; observing the cause of thick results is listed as
future work in Modified U-Net’s paper. Comparing Mod-
ified U-Net and our best downstream model trained with
Lbf2 from random weights, our downstream model beats
Modified U-Net with􏽥2x (up to 7x) better evaluation results.

Figure 4 displays some segmentation results from the
downstreammodel trained withLbf2 from randomweights.
Images in the fourth column are obtained by binarizing the
corresponding images in the third column (i.e., the raw
prediction images). In this figure, the threshold value used
for binarizing images in each dataset is the one that produces
the ODS F-measure in Table 3. Hence, it is the threshold
value that tries to maximize the balance between precision
and recall. �e current segmentation images in the fourth
column show a problem of crack discontinuity which might
become better if we choose another threshold value that aims
for higher recall. Because getting both high precision and
high recall with a single-shot end-to-end deep learning
model is challenging for very fine cracks, a specifically
designedmodel like the state-of-the-art DeepCrack [28] may
be required. However, for downstream models whose
knowledge or architecture can be shared or transferred
among different problem domains, additional post-
processing steps like the edge thinning and edge linking in
the classic Canny edge detector [39] should become useful to
improve the final segmentation results without having to
tweak or redesign the deep learning model’s architecture.

Finally, in terms of time analysis, Table 4 shows a
comparison between the three model architectures in our
comparative experimental results; note that values regarding
DeepCrack are from those reported in its original paper [28].
From the table, it is obvious that the least accurate Modified
U-Net is the fastest and the least time-consuming model,
whereas the most accurate DeepCrack is the slowest and the
most time-consuming model (even after being compensated
with its 1.5x lower GPU FLOPS).

5. Conclusion

�is paper uses the popular concept of downstream models
in the context of low-level crack detection. Based on the
state-of-the-art DeepLabV3-ResNet101 architecture for se-
mantic segmentation, our downstream models are trained
with four alternative loss functions and two training strat-
egies. Experimental results reveal that, for the same training

Table 4: Time analysis regarding three model architectures based on input images of 512× 512 resolution.

Model Training time Inference
Remark

per 300 epochs Time per image FPS

DeepCrack [28] — 0.153 s 6 One Nvidia GeForce GTX TITAN-X GPU
(6.69 TFLOPS in FP32)

Modified U-Net [6] 2 h 15m 0.040 s 25 One Nvidia GeForce RTX 2080 GPU
(10.07 TFLOPS in FP32)

DeepLabV3-ResNet101 (ours) 6 h 0.078 s 13 One Nvidia GeForce RTX 2080 GPU
(10.07 TFLOPS in FP32)

10 Advances in Multimedia

setting, downstream models generalize to different datasets
better when they are trained from random weights rather
than from the pretrained weights. Also, using the binary
focal loss function with c � 2 yields the most compromised
results in all test datasets.

�is paper experimentally confirms that it is possible to
use an off-the-shelf deep learning architecture for semantic
segmentation as a base model and build downstreammodels
upon it for low-level crack detection. Major architecture
modification to the base model is not necessary but the
special loss function is required to deal with the severely
imbalanced nature of low-level crack detection. It is worth
noting that the purpose of our downstream models is dif-
ferent from those of other previous works that specially
design and fabricate their deep learning architectures from
scratch for low-level crack detection. Our downstream
models focus on reusing an existing deep learning archi-
tecture, including the one that is not proposed for low-level
crack detection, reducing technical tasks, and accelerating
the model training. Our future work is to additionally im-
prove the performance of the downstream model without
introducing any major modification to the model archi-
tecture. We plan to further apply advanced image processing
techniques on the probability map provided by the down-
stream model to refine the results.

Data Availability

Previously reported crack datasets that were used to support
this study are available at 10.1109/TIP.2018.2878966. �e
prior study and datasets are cited at relevant places within
the text as references [28].

Conflicts of Interest

�e author declares that no conflicts of interest.

Acknowledgments

�e research presented herein was partially supported by a
research grant from the Research Center, National Institute
of Development Administration (NIDA), Bangkok,
�ailand.

References

[1] L. Zhang, F. Yang, Y. D. Zhang, and Y. J. Zhu, “Road crack
detection using deep convolutional neural network,” in
Proceedings of the IEEE International Conference on Image
Processing, pp. 3708–3712, ICIP, Phoenix, AZ, USA,
Sebtember2016.

[2] A. Krizhevsky, I. Sutskever, and G. E. Hintodn, “ImageNet
classification with deep convolutional neural networks,” In-
ternational Conference on Neural Information Processing
Systems (NIPS’12), vol. 1, pp. 1097–1105, 2012.

[3] M. Eisenbach, R. Stricker, D. Seichter et al., “How to get
pavement distress detection ready for deep learning? A sys-
tematic approach,” in Proceedings of the IEEE International
Joint Conference on Neural Networks, pp. 2039–2047, IJCNN,
Anchorage, AK, USA, July 2017.

[4] Z. Fan, Y. Wu, J. Lu, and W. Li, “Automatic pavement crack
detection based on structured prediction with the convolu-
tional neural network,” 2018, https://arxiv.org/abs/1802.
02208.

[5] T. Siriborvornratanakul, “An automatic road distress visual
inspection system using an onboard in-car camera,” Advances
in Multimedia, vol. 2018, Article ID 2561953, 10 pages, 2018.

[6] T. Siriborvornratanakul, “A deep learning based road distress
visual inspection system using Modified U-Net,” in Lecture
Notes in Computer Science, vol. 13097, pp. 345–355, 2021.

[7] T. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, “Focal loss
for dense object detection,” in Proceedings of the IEEE In-
ternational Conference on Computer Vision, ICCV, Venice,
Italy, September 2017.

[8] T. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, “Focal loss
for dense object detection,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 42, no. 2, pp. 318–327,
2020.

[9] Y. Cha, W. Choi, and O. Büyüköztürk, “Deep learning-based
crack damage detection using convolutional neural net-
works,” Computer-Aided Civil and Infrastructure Engineering,
vol. 32, no. 5, pp. 361–378, 2017.

[10] C. Feng, M. Liu, C. Kao, and T. Lee, “Deep active learning for
civil infrastructure defect detection and classification,” in
Proceedings of the International Workshop on Computing in
Civil Engineering, pp. 298–306, IWCCE, Seattle, USA, June
2017.

[11] Y. Li, H. Li, and H. Wang, “Pixel-wise crack detection using
deep local pattern predictor for robot application,” Sensors,
vol. 18, no. 9, 2018.

[12] H. Maeda, Y. Sekimoto, T. Seto, T. Kashiyama, and H. Omata,
“Road damage detection and classification using deep neural
networks with smartphone images,” Computer-Aided Civil
and Infrastructure Engineering, vol. 33, no. 12, pp. 1127–1141,
2018.

[13] W. Liu, D. Anguelov, D. Erhan et al., “SSD: Single Shot
MultiBox detector,” in Proceedings of the European Conference
on Computer Vision, pp. 21–37, ECCV, Springer, Cham,
September2016.

[14] Y. Cha, W. Choi, G. Suh, S. Mahmoudkhani, and
O. Buyukozturk, “Autonomous structural visual inspection
using region-based deep learning for detecting multiple
damage types,” Computer-Aided Civil and Infrastructure
Engineering, vol. 33, no. 9, pp. 731–747, 2018.

[15] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: towards
real-time object detection with region proposal networks,”
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 39, no. 6, pp. 1137–1149, 2017.

[16] B. Ramalingam, A. A. Hayat, M. R. Elara et al., “Deep learning
based pavement inspection using self-reconfigurable robot,”
Sensors, vol. 21, no. 8, 2021.

[17] J. Redmon and A. Farhadi, “YOLO9000: better, faster,
stronger,” 2016, https://arxiv.org/abs/1612.08242.

[18] N. Ma, X. Zhang, H. Zheng, and J. Sun, “ShuffleNet V2:
practical guidelines for efficient CNN architecture design,” in
Proceedings of the European Conference on Computer Vision,
pp. 122–138, ECCV, Springer, Cham, September2018.

[19] F. Chen and M. R. Jahanshahi, “Deep learning-based crack
detection using convolutional neural network and näıve bayes
data fusion,” IEEE Transactions on Industrial Electronics,
vol. 65, no. 5, pp. 4392–4400, 2018.

[20] A. Zhang, K. C. Wang, B. Li et al., “Automated pixel-level
pavement crack detection on 3D asphalt surfaces using a

Advances in Multimedia 11

https://arxiv.org/abs/1802.02208
https://arxiv.org/abs/1802.02208
https://arxiv.org/abs/1612.08242

deep-learning network,” Computer-Aided Civil and Infra-
structure Engineering, vol. 32, no. 10, pp. 805–819, 2017.

[21] A. Zhang, K. C. Wang, M. Asce et al., “Deep learning-based
fully automated pavement crack detection on 3D asphalt
surfaces with an improved CrackNet,” Journal of Computing
in Civil Engineering, vol. 32, no. 5, 2018.

[22] A. Zhang, K. C. Wang, Y. Fei et al., “Automated pixel-level
pavement crack detection on 3D asphalt surfaces with a re-
current neural network,” Computer-Aided Civil and Infra-
structure Engineering, vol. 34, no. 3, pp. 213–229, 2019.

[23] J. Cheng, W. Xiong, W. Chen, Y. Gu, and Y. Li, “Pixel-level
crack detection using U-Net,” in Proceedings of the IEEE
Region 10 International Conference, TENCON’18, Jeju, Korea
(South), October2018.

[24] Z. Liu, Y. Cao, Y. Wang, and W. Wang, “Computer vision-
based concrete crack detection using U-net fully convolu-
tional networks,” Automation in Construction, vol. 104,
pp. 129–139, 2019.

[25] S. L. Lau, E. K. Chong, X. Yang, and X. Wang, “Automated
pavement crack segmentation using U-Net-based convolu-
tional neural network,” IEEE Access, vol. 991 page, 2020.

[26] W. Qiao, H. Zhang, F. Zhu, and Q. Wu, “A crack identifi-
cation method for concrete structures using improved U-Net
convolutional neural networks,” Mathematical Problems in
Engineering, vol. 2021, Article ID 6654996, 16 pages, 2021.

[27] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolu-
tional networks for biomedical image segmentation,”Medical
Image Computing and Computer-Assisted Intervention,
vol. 9351, pp. 234–241, 2015.

[28] Q. Zou, Z. Zhang, Q. Li, X. Qi, Q. Wang, and S. Wang,
“DeepCrack: learning hierarchical convolutional features for
crack detection,” IEEE Transactions on Image Processing,
vol. 28, no. 3, pp. 1498–1512, 2019.

[29] L.-C. Chen, G. Papandreou, F. Schroff, and H. Adam, “Re-
thinking atrous convolution for semantic image segmenta-
tion,” 2017, https://arxiv.org/abs/1706.05587.

[30] H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia, “Pyramid scene
parsing network,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, CVPR, Honolulu,
HI, USA, July 2017.

[31] H. Zhang, K. Dana, J. Shi et al., “Context encoding for se-
mantic segmentation,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
CVPR, Salt Lake City, UT, USA, March 2018.

[32] L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam,
“Encoder-decoder with atrous separable convolution for se-
mantic image segmentation,” in Proceedings of the European
Conference on Computer Vision, ECCV, Munich, Germany,
October 2018.

[33] Z. Liu, Y. Lin, Y. Cao et al., “Swin Transformer: hierarchical
vision transformer using shifted windows,” in Proceedings of
the IEEE/CVF International Conference on Computer Vision,
ICCV, 2021.

[34] R. Strudel, R. Garcia, I. Laptev, and C. Schmid, “Segmenter:
transformer for semantic segmentation,” in Proceedings of the
IEEE/CVF International Conference on Computer Vision,
ICCV, 2021.

[35] S. Zheng, J. Lu, H. Zhao et al., “Rethinking semantic seg-
mentation from a sequence-to-sequence perspective with
transformers,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, CVPR, 2021.

[36] E. Xie, W. Wang, Z. Yu, A. Anandkumar, J. M. Alvarez, and
P. Luo, “SegFormer: simple and efficient design for semantic
segmentation with transformers,” in Proceedings of the

Conference on Neural Information Processing Systems, Neu-
rIPS, December 2021.

[37] J. Zhang and J. Zhang, “An improved nondestructive semantic
segmentation method for concrete dam surface crack images
with high resolution,”Mathematical Problems in Engineering,
vol. 2020, Article ID 5054740, 14 pages, 2020.

[38] H. Fu, D. Meng, W. Li, and Y. Wang, “Bridge crack semantic
segmentation based on improved Deeplabv3+,” Journal of
Marine Science and Engineering, vol. 9, no. 671, 2021.

[39] J. Canny, “A computational approach to edge detection,” IEEE
Transactions on Pattern Analysis and Machine Intelligence,
vol. 8, no. 6, pp. 679–698, 1986.

12 Advances in Multimedia

https://arxiv.org/abs/1706.05587

