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Localization is a fundamental capability for an autonomous mobile robot, especially in the navigation process. �e commonly
used laser-based simultaneous localization and mapping (SLAM) method can build a grid map of the indoor environment and
realize localization task. However, when a robot comes to a long corridor where there exists many geometrically symmetrical and
similar structures, it often fails to position itself. Besides, the environment is not represented to a semantic level that the robot
cannot interact well with users. To solve these crucial issues, in this paper, we propose an improved visual SLAM approach to
realize a robust and precise global localization.�e system is divided into twomain steps.�e �rst step is to construct a topological
semantic map using visual SLAM, text detection and recognition, and laser sensor data. �e second step is the localization which
repeats part work of the �rst step but makes the best use of the prebuilt semantic map. Experiments show that our approach and
solutions perform well and localize successfully almost everywhere in the corridor environment while traditional methods fail.

1. Introduction

Nowadays, many commercial service robots are used for
transporting goods in restaurants, hotels, and hospitals, es-
pecially during the COVID-19 epidemic time. Among them,
the localization research for autonomous mobile robot navi-
gation in a man-made structural environment is an ongoing
challenge. In indoor scenes, the most used method is using a
2D laser range�nder and laser-based SLAM to construct a 2D
occupancy grid map [1, 2]. �en the mobile robot performs
localization task by AMCL algorithm, which is a particle �lter
solution [3]. However, when the robot is in a long corridor, the
mapping result is always shorter than the real scene and the
localization is inaccurate. More seriously, it is easy for the
localization process to fall into a symmetrical or similarly
wrong position [4]. �e reason is that, for the laser sensor used
in the symmetrical and similar long corridor environment, the
data collected at di�erent times are similar. �erefore, the
mobile robot can not get accurate pose information when it
performs global localization tasks; besides, it is easy for the
robot to converge to the wrong unimodal distribution. More

than that, the number of particles increases with the size of the
map; then the computing and memory costs also increase. Of
all the shortcomings, the main one is the limited amount of
data information collected by a 2D laser sensor.

In comparison to a 2D laser sensor, cameras provide
more dense information such as point features, textures,
lines, objects, and texts. It is one of the most potential
sensors that can be used to perceive the environment and
localize the pose for mobile robotics.

To address these problems, we propose a novel visual
SLAM-based method for mobile robot localization, which is
assisted by text information and laser data features extracted
from the indoor scene, especially the long, symmetrical, and
similar corridor environment. Firstly, the mobile robot
initializes the system at the starting position. Secondly, it
moves along the middle line of the corridor and constructs a
features-based visual map using the visual SLAM method.
�irdly, the robot stops when passing through door areas,
rotates the camera toward the doorplate, and records the text
content together with the current keyframe node. Lastly, the
mobile robot navigates and localizes itself according to the
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previously built map. �e whole framework of the mapping
and localization system is depicted in Figure 1.

�is paper is organized as follows.�e related work of visual
SLAM, text detection, and recognition are discussed in Section 2.
A proposed method using visual SLAM for localization is
presented in Section 3. �e experiments and discussion are
described in Section 4 and Section 5 concludes the paper.

2. Related Work

2.1. Visual SLAM. In the �eld of visual SLAM, feature-based
indirect approaches and photometric-based direct methods
are currently two mainstream techniques. �e former one
extracts salient image features, like points, lines, and planar
features, to realize the target. By minimizing the reprojection
errors of the matched feature pairs, the camera motion and
the depth of map points can be computed. PTAM [5] �rstly
used the parallel threads to solve the visual SLAMproblem; it
estimated pose in the tracking thread and re�ned camera
motion in the local mapping thread. ORB-SLAM series
[6–8] adopted the idea of parallel threads, added a loop
closure thread, and used ORB features in the overall process.
It is a state-of-the-art solution in the research �eld and can
be used directly in applications.

�e direct methods solve pose estimation by minimizing
the pix-level intensity errors from two adjacent images. LSD-
SLAM [9] built a semidensemap compared to the sparse points
map by feature-based SLAM. However, it still needed features
extraction for loop closure purposes. SVO [10] used a depth
�lter model to estimate the depth and �ltered outliers. It
tracked sparse pixels using the FAST corners and modeled the
triangulated depth observations with a Gaussian Uniform
distribution. DSO was direct sparse odometry and a proba-
bilistic model without computing keypoints or descriptors [11].

2.2. Text Detection and Recognition. Text signs in the indoor
environment have semantic content, whichmakes easy to realize
human-computer interaction. To achieve and understand the
scene text information, the OCR techniques usually have two
phases, text detection and text recognition, respectively [12].

Text detection is to distinguish text regions from the
background of a captured image. Traditional methods based on
manually designed features perform well when there exists an
obvious construct between the text region and the background
part. �e stroke width transform (SWT) employed a local
image operator to compute the width of approximately textual
pixels, searched letter candidates, and grouped letters into text
lines [13]. �e maximally stable extremal region (MSER) had a
real-time detection performance [14]. In addition, it was robust
to blur, illumination, and color variation. �e morphology-
based method extracted high contrast areas as text line can-
didates [15] and was also invariant to di�erent image changes
like lighting, translation, rotation, and complicated back-
grounds. CTPN [16] was a connectionist text proposal network
and used CNN to detect a text line in a sequence of �ne-scale
text proposals which were then connected naturally with RNN.
�e other famous works based on deep learning networks were
EAST [17] and IncepText [18].

�ere are many open-source OCR engines and software
using traditional text recognition algorithms can be used,
such as Tesseract, Google Docs OCR, and Transym [19].
�ese methods have relatively high accuracy when the text
region has large contrast with the backgrounds and simple
text lines. In addition, it does not need a GPU con�guration.
If the scene texts are multiple fonts, colorful, and compli-
cated backgrounds, then the deep learning approaches based
on GPU will be essential. �ere are two mainstream solu-
tions based on CNN and RNN. �e �rst one uses CNN to
extract image features and combines RNN with con-
nectionist temporal classi�cation (CTC) to predict sequence,
like CRNN [20]. Another one employs CNN, the Seq2Seq
model, and Attention framework [21], which includes en-
coder and decoder, which adopts ideas from machine
translation techniques.

3. Method

When the mobile robot comes into a new environment for
the �rst time, it needs to construct a map and then navigate
in the environment according to the built map. We use a
monocular camera to perform visual SLAM for both
mapping and localization purposes. Di�erent from the
traditional laser-based SLAMmethod, our method uses laser
sensor data only for basic geometry features extraction, such
as door area, middle of the corridor, or end of the corridor.
In addition, text information extracted from the doorplates
region is used for semantic localization. �e detailed de-
scriptions are as follows.

3.1. Moving Strategy. In the map building phase, the mobile
robot mainly runs in the SLAM mode utilizing the ORB-
SLAM framework. It will create a sparse feature map of the
environment from scratch or incrementally update an
existingmap. However, most of the visual SLAM solutions are
used for handheld mode or driverless scenes. In these cases,
the moving trajectory of the camera will always be arti�cially
moved on a �xed route and will certainly not lose the tracking
of the route according to a prebuilt map.When it comes to the
applications of autonomous mobile robots, for instance, the
delivery robot moves in a corridor and needs to avoid ob-
stacles when encountering pedestrians; changing the moving
route will lose visual feature tracking. Consequently, the
mobile robot needs to move within a �xed route range,
preferably the middle line of the corridor, as shown in Fig-
ure 2, where a robot passes through a doorway area. �ree
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Figure 1: Framework of the mapping and localization system.
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routes indicated by red dotted lines are shown in Figure 2(a),
and three positions are indicated by red points.�ere are only
a few matched pairs between the visual features extracted
from the image captured in position A and those in position
C. Besides, the cameras oriented to di�erent directions also
have di�erent matching results, even if in the same position.
�erefore, if the mobile robot moves along the left red dotted
line as the route and maps the corridor using visual SLAM, it
will fail to localize itself when moving along the right red
dotted line in the subsequent process. Ideally, the mobile
robot moves along the middle red dotted line in Figure 2(a).

To ensure the mobile robot moves along a relatively �xed
route, a laser range �nder is used to measure the ranges from
the center of the sensor to the obstacle, thus analyzing a
high-precision position relative to the walls on both sides. As
shown in Figure 2(b), the left detected distance plus the right
one equals the width of the corridor.

dL + dR � wcorridor, (1)

where dL means the shortest distance between the left wall
and the center of the laser sensor, and dR means the one of
another side. When the robot passes through the doorway
area, the following equation holds:

dL + dR � wcorridor + 2∗ddoor. (2)

Consequently, when the mobile robot determines that it
is in the corridor area, it is easy for the robot to move along
the middle line of the corridor. �e robot can slightly adjust
its position so that the data measured by the laser sensor
satisfy the following equation:

dL � dR. (3)

�e next problem that needs to be solved is to determine
whether the robot is in the corridor area. Inmost indoor scenes,
the laser sensor can get whole valid distance data around the
robot; if not, the robot is most likely in the corridor area, as
shown in Figure 2(c) where the laser sensor gets two invalid
range data regions. �e blue areas belong to the range that can
be covered by the scanning radius of the laser sensor.

Given a 2D laser range �nder that has a measurement
angle range of 360 degrees, the maximummeasuring distance
is de�ned as Dmax, the minimummeasuring distance asDmin,
and the angular resolution as ϕmin. �en the raw data can be
described by the following formula:

R � ri,ϕi( )|i � 1, 2, ..., N{ }, (4)

where N equals the value 360/ϕmin and represents the total
number of scanning points P � p1, p2, ..., pN{ }. An invalid
scan area angle θnull has a dynamically variable range. �e
maximum value θmax is got when the laser sensor mounted
on the robot is close to the wall, while the minimum value
θmin is got when the robot is located on the middle line along
the corridor. �e two values are de�ned as

θmax � arcsin
wcorridor

Dmax
,

θmin � arcsin
wcorridor

2Dmax
.




(5)

If the mobile robot is moving in a corridor, then (6)
holds.

θmin ≤ θnull ≤ θmax. (6)

We count the constant number of invalid return dis-
tances and compute the invalid area angle θnull according to

θnull � ϕi − ϕj
∣∣∣∣∣

∣∣∣∣∣. (7)

where ϕi means that the i-th angle whose return distance
value from the detected point pi is invalid and ϕj represents
the j-th. �e constant angle range between the two also has
invalid return distance values.

It is easy to �nd that the mobile robot is at the end of the
corridor if only one invalid area satis�es (6). Similarly, if two
invalid areas satisfy (6) and are distributed like Figure 2(c), then
the robot is most likely located in the middle of the corridor.

According to the above information extracted from the
laser scanning data, the mobile robot can autonomously move
to the free area along a preset �xed route. In addition, the robot
can get a coarse position estimation relative to the corridor.

3.2. Build an Image Map. �e next work is using visual
SLAM to construct a visual features map along the �xed
route which is got based on the previous laser data.

�e motion of a single camera should be solved by the
principle of epipolar geometry, as shown in Figure 3. De�ne
x2 as the coordinate on the normalized plane of the pixel
point p2 in the current image I2, and x1 is the pixel p1 in the
previous image I1. �e two points are matched by visual
feature; then, the following holds:

x1 � u1, v1, 1[ ]T,

x2 � u2, v2, 1[ ]T,

s1x1 � s2Rx2 + t,

xT2 t
∧Rx1 � 0,

E � t∧R,

F � K−TEK− 1,




(8)

where R means the camera rotation motion, t is the
translation, E represents the essential matrix, and F is the
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Figure 2: Mobile robot passes through the doorway area. (a)
Di�erent routes; (b) annotation data; (c) valid and invalid laser
scanning areas.
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fundamental matrix. If the parameters of the essential matrix
are calculated, then the basic matrix is easy to solve. Sim-
ilarly, the rotation and translation matrices can be obtained
by decomposing the essential matrix.

�e essential matrix E is a 3× 3matrix. Consider a pair of
matching points whose normalized coordinates are
x1 � [u1, v1, 1]T and x2 � [u2, v2, 1]T. According to the polar
constraint, the following equation holds:

u1, v1, 1( ) ×
e1
e4
e7

e2
e5
e8

e3
e6
e9

  ×
u2
v2
1

  � 0. (9)

Expand matrix E and write it in the form of vector; then
put all the points into one equation to become a system of
linear equations as (10) shows. ui and vi represent the i-th
feature point. �e coeªcient matrix of linear equations
consists of the position of characteristic points, with a size of
8× 9. If the matrix composed of eight pairs of matching
points satis�es the condition of rank 8, then the elements of
E can be solved by this equation.
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� 0.

(10)

According to the estimated essential matrix E and the
camera motion R, t can be recovered. �is process is ob-
tained by singular value decomposition (SVD), as follows:

E � UΣVT,

t∧1 � URZ
π
2
( )ΣUT,

t∧2 � URZ −
π
2

( )ΣUT,

R1 � URTZ
π
2
( )VT,

R2 � URTZ −
π
2

( )VT,




(11)

where U and V are orthogonal matrices, Σ is a singular value
matrix, and there are four possible solutions in the SVD
decomposition. Point P in world coordinate system has a
positive depth in both cameras, so the depth of the point
under the two cameras can be used as the basis for judging the
positive solution. �e �nal decomposition result is shown in

Σ � diag σ1, σ2, σ3( ), σ1 ≥ σ2 ≥ σ3,

E � Udiag
σ1 + σ1

2
,
σ1 + σ1

2
, 0( )VT.




(12)

If all feature points in the scene fall on the same plane,
then motion estimation can be carried out through
homography and the following equation holds:

nTP + d � 0,

p � 2K R −
tnT

d
( )K− 1p1.




(13)

Homography matrix is related to rotation, translation, and
plane parameters. Solvingmotion is similar to essencematrix E.
According to matching point pairs and (14) and (15), the H is
decomposed to calculate rotation and translation.
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. (14)

A set of matching point pairs can construct three
constraints (only two are linearly independent), so the
homography matrix with a degree of freedom of 8 can be
calculated through four pairs of matching feature points
(these feature points cannot have three collinear points), that
is, solve the following linear equations (when h 9� 0, the
right side is zero).
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

.

(15)

In monocular SLAM, the depth information of pixels
cannot be obtained only through a single image, and the
depth of map points needs to be estimated by triangulation.
Triangulation refers to determining the distance of the same
point by observing the included angle of the same point at
two places. According to (8) and (15), we can calculate the
world coordinate value of map points. However, due to the
in«uence of noise, the two lines often cannot intersect.
�erefore, it can be solved by the least square method.

p2
p1

e2e1 l2
l1

O2O1

I2I1

P

Figure 3: One point in two adjacent image frames (epipolar
geometry).
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s1x1∧x1 � 0,

s2x1∧Rx2 + x1∧t � 0.
􏼨 (16)

We utilize the ORB-SLAM open-source library which
extracts the ORB features to match the adjacent images. ORB
features combine the oriented FAST detector with a rotated
BRIEF descriptor and have low computational consumption,
compared with SIFTand SURF features. To add an efficiently
computed orientation to the FAST keypoint, an intensity
centroid is designed for computing a vector. )e moments of
a patch around the FAST keypoint are defined as

mpq � 􏽘
x,y

x
p
y

q
I(x, y), (17)

where the value of p and q can only be limited to 0 or 1.)en,
the intensity centroid is computed from those moments:

C �
m10

m00
,
m01

m00
􏼠 􏼡. (18)

)e orientation vector can be constructed by connecting
two points, one of them is the keypoint corner’s center, and
the other is the centroid of the patch.)en, the orientation is
computed as shown in the following:

θ � arctan m01, m10( 􏼁. (19)

)e work after keypoint detection is feature description
which is convenient for feature matching. An original BRIEF
descriptor is variant to in-plane rotation. It is a binary
description of an image patch using a binary intensity test τ
which is defined as follows:

τ(p; x, y) ≔
1 , p(x)<p(y),

0 , p(x)≥p(y),
􏼨 (20)

where p(x) and p(y) are the intensity at point x and point y.
)ere are usually 256 pairs of points selected to express a
keypoint. )en, the descriptor is defined as a vector of 256
binary tests.

fn(p) ≔ 􏽘
1≤i≤n

2i− 1τ p; xi, yi( 􏼁, (21)

where n equals 256. )en, a learning method that uses PCA
or other dimensionality reduction strategies is utilized to
assist in realizing a rotation-invariant BRIEF descriptor. )e

combination of oFAST and rBRIEF is called ORB feature,
and an example of the ORB features and matching pair is
shown in Figure 4, which has eliminated the mismatched
point pairs by using the RANSAC algorithm [22].

)en the depth of map points in the world coordinate
can be computed by using the triangulation method. )e
constructed map of a corridor is shown in Figure 5, which
has sparse points. )e blue trapezoidal blocks are camera
poses that represent the keyframes of those captured images
and will be saved as one part of an image map.)e green one
means the current frame.

3.3. Extend to a Semantic Map. When the mobile robot
performs a cargo transportation task and needs to interact
with the user, it is more convenient to use the semantic map
closed to human language expression and understanding. To
realize this function, text detection and recognition tech-
niques must be used to achieve the text-level information.

)e text characters in the indoor environment are
usually on the doorplate, room nameplate, signs, or billboard
on the wall. )e most common is the room number, which
can uniquely determine the location of a room. Conse-
quently, the mobile robot just needs to detect and recognize
the text information in the door area and extract the room
number; then the position of the robot can be determined.

However, the camera mounted on the robot platform
captures images in real time and continuously. Most of the
images do not have useful text information; processing these
images will be a waste of time and computing power. Besides,
the text information of a room number would probably only
be partially captured in one image; this will lead to mis-
judgment of the whole semantic result. To solve this problem,
we use the laser scanning data to get a preliminary judgment
where the doorway area is in the corridor. )en the robot
moves to a position facing the door and stops to capture an
image with the best perspective. Lastly, detect the text region
and recognize the correct room number.

We use two traditional approaches and one deep
learning method to detect text regions in a corridor envi-
ronment, respectively. Figure 6 shows the three detected
results; it is obvious that the deep learning method has the
best and most accurate detected box. Figure 6(a) is the
detected result by using the morphological method which
has wrong boxes including the door handle and other text-

(a) (b)

Figure 4: (a) ORB features and (b) matching pair.
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like signs. Figure 6(b) uses the MSER approach and includes
texture area affected by illumination. Figure 6(c) is a pro-
cessed result from Figure 6(b) by using the nonmaximum
suppression (NMS) algorithm [23]. )e red rectangle in
Figure 6(d) is the ideal result which is got by using the deep
learning approach.

)e subsequent recognizing phase is relatively easy if a
correct text box is detected. In addition, the text infor-
mation we need is only Arabic numerals. Many open-
source OCR solutions can realize this function and have
high accuracy [24]. However, to get a high overall text
detection and recognition accuracy, we choose to utilize an
online deep learning scheme which is called EasyDL from
Baidu company [25], https://ai.baidu.com/tech/ocr/
general. )us, we do not need to use GPU as the deep
learning processing module, which has high power con-
sumption and cost. Instead, only a WIFI module is needed
to access the Internet.

After achieving the text information, an extended se-
mantic map can be accomplished and is shown in Figure 7.
)e node represents a geo-tagged place which has doors or
an intersection, and the edge means a passable route. )e
images in the node are decided according to the keyframe
selection strategy of ORB-SLAM. )ree keyframes in each
doorway or intersection area are chosen to generate a node.
If a corridor is in the form of a straight line or circular, then
the semantic map can be represented by the data structure of
a two-way linked list. Other cases can be expressed as
multilayer quadtree.

3.4. Path Following. When a semantic map is constructed
and the robot’s initial pose is known, the navigation task is a
path following problem. )e path planning algorithm varies
with the form of a map. )e commonly used data structures
are a two-way linked list, multifork tree, and graphs.
Consequently, it is a look-up problem and finding the
shortest path.

Compared with nodes in a social network or an elec-
tronic map of a city, the geo-tagged nodes in an indoor
environment used by a personal robot are usually very few.
)erefore, search algorithms commonly used in data
structures are sufficient.

3.5. Localization Mode. In the localization or navigation
mode using the visual SLAMmethod, the system firstly loads
the previously built sparse feature map, then extracts fea-
tures of a newly captured image, and matches with those
from the image map. )e difficult thing is not the image
matching, but how to capture images in a fixed route and
direction that the robot ever traveled before. )e method is
using laser data to get a coarse place judgment according to
(1)–(8).

)en the localization problem for an autonomous
mobile robot becomes the problem of vision based global
localization using a visual vocabulary [26]. For a geo-tagged
place, the robot needs to perform a text retrieval task.
Equation (22) shows a mathematical form to express an
image.)e image is expressed as a vector vA which consisted

Figure 5: Image map with map points and keyframes.

(a) (b) (c) (d)

Figure 6: Text detection results. (a) Morphological method; (b) MSER; (c) MSER and NMS; (d) deep learning.
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of N-words and the weight ηi is computed from the product
of term frequency TFi and the inverse document frequency
IDFi [27].

TFi �
ni
n
,

IDFi � log
n

ni
,

ηi � TFi × IDFi,

vA � w1, η1( ), w2, η2( ), ..., wN, ηN( ){ }.




(22)

�e similarity of a new image translated to a form of bag-
of-words with the image database can be computed using
(23). When the robot moves to a doorway area, laser data
feature extraction, visual image vocabulary matching, and
text detection and recognition are combined to determine
the localization result.

s vA − vB( ) � 2∑
N

1
vAi
∣∣∣∣
∣∣∣∣ + vBi
∣∣∣∣
∣∣∣∣ − vAi − vBi
∣∣∣∣

∣∣∣∣. (23)

4. Experiments and Discussion

Our experimental platform is a two-wheel di�erential
driving mobile robot equipped with a RPLIDAR A2 and a
single perspective camera. �e laser sensor has a 360-degree
scanning rotation range and 8–12 meters’ distance.�e CPU
is ARM Cortex-A72 and the RAM memory size is 8GB. �e
experimental environment is a long, symmetrical, and
similar corridor inside a multiple-story hotel. �e length of
the corridor is 45 meters and the width is 1.85 meters.
Figure 8 shows the corridor and platform.�e laser sensor is
used for collision detection and basic structural features
extraction.

4.1. Lateral Deviation of Fixed Route. �e mobile robot
moves follow a �xed route which is the middle line
along the corridor. According to the laser data
computing and features extraction, the mobile robot

adjusts its moving direction; a trajectory is shown in
Figure 9.

From Figure 9, we �nd that the precision of laser data is
very high, which is suitable for applications with accurate
distance requirements.

4.2. Text Detection and Recognition. We collected 150 im-
ages from 30 doorway areas in a �fth-«oor corridor
inside the hotel. Five images in each area are collected
from di�erent perspectives and positions, but all of them
are roughly facing the door. Because GPU device is not
used in the microcomputer system, the o®ine deep
learning model is not adopted for comparative experi-
ments. Firstly, di�erent text detection methods are tested
and the average detected text boxes per image are counted.
Table 1 shows the result which demonstrates that tradi-
tional methods detect many wrong areas as the text re-
gions while online deep learning method performs better.
Many lines or outlines in the image are misidenti�ed as
text information like numerals or characters. Conse-
quently, WIFI based cloud platform solution is the best
solution.

�e second experiment is a comparison of the text
recognition methods.�e accuracy or successful recognition
rate is calculated by counting the number of correct char-
acter recognitions out of the total tests (150 recognition
experiments from 30 doorway areas). We used traditional
method solution Tesseract and the online deep learning
method to recognize the previously detected text boxes,
respectively. Table 2 shows the recognition results. Com-
pared with the traditional method, our online deep learning
method achieved high accuracy.

4.3. Global Localization. In order to achieve a quantitative
evaluation of the global localization performance, we
placed the robot in 20 di�erent positions in the corridor
and used four di�erent methods to perform global local-
ization task, respectively. Due to the di�erent moving
strategies in di�erent methods, we set the task ending
condition for each positioning process. �e AMCL method
corresponded to condition when the particles were con-
verged to a single cluster. �e ORB-SLAM and text

Node i+2Right side

NullLe� side

Node iBackward

NullForward

Node i+1

Door iRRight side

Door iLLe� side

Nodei-1Backward

Node i+1Forward

Node i

Door1RRight side

Door1LLe� side

StartBackward

Node2Forward

Nodel

Figure 7: Topological semantic map diagram.
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identi�cation methods allowed the robot to rotate one
circle in place. In our proposed method, the robot was
allowed to adjust its position near the middle line of the
corridor, and it needed to move 0.24 meters and rotate 90
degrees on average which were the acceptable range and the
requirement of our mobile strategy. �e results are shown
in Table 3. It is obvious that our approach achieves a higher
localization success rate when compared with other
methods.

5. Conclusions

�is paper presented a novel mapping and localization
approach for an autonomous mobile robot navigating in a
long corridor environment. Laser data was used to keep a

(a)

(b) (c)

Figure 8: Experimental environment and platform. (a) Floor plan of the second «oor of a hotel; (b) corridor image of the second «oor;
(c) the robot platform.
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Table 1: Comparison of text detection results.

Method Average detected boxes per image
Morphological method 7.4
MESR 9.2
MSER+NMS 6.9
Ours 1.1

Table 2: Recognition results.

Method Total number of
recognitions

Number of correct
recognitions

Accuracy
(%)

Tesseract 150 83 55.3
Ours 150 148 98.7

Table 3: Localization results from di�erent methods.

Method Test positions Success times Correct rate (%)
AMCL 20 9 45.0
ORB-SLAM 20 14 70.0
Text 20 4 20.0
Ours 20 19 95.0
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fixed moving route and extract features for coarse place
judgment. Visual SLAM was used to get visual localization
and text information for a semantic level purpose.

Although the proposed approach can solve most of the
corridor environment localization and semantic interaction
with users, the situation in which the mobile robot is inside a
specific room was not considered. )erefore, in our future
research work, we will pay attention to the topological metric
map which can cover all indoor environments. In addition,
the 5G communication and cloud computing technology
can be used to achieve multiple semantic information in the
field of robotics; thus, the mobile robot does not need to
configure GPU and other large computing platforms.
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