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In order to improve the accuracy of motion pattern recognition, this paper combines the arti�cial visual neural network to
construct a motion pattern recognition system. Moreover, this paper discusses the psychological perception properties of human
eyes to color stimuli and gives a description of the observation �eld of view where the color stimuli are located. At the same time,
this paper analyzes the phenomenon of color adaptation and provides a method of color appearance matching through modeling
to achieve color appearance matching under variable observation conditions. Based on the chromatic adaptation transformation,
a chromatic appearance model is given, which can predict the corresponding color and also predict the chromatic appearance
properties of color stimuli under given observation conditions. In addition, this paper constructs an intelligent motion pattern
recognition system combined with arti�cial visual neural network. �e experimental results show that the motion pattern
recognition system based on arti�cial visual neural network can accurately identify the motion pattern category.

1. Introduction

Trajectory resampling refers to making the time interval
between consecutive sampling points in the trajectory the
same by inserting the mean or median value among the
sampling points. Trajectory segmentation refers to seg-
menting the trajectory at important turning points by MDL
value or DP algorithm and dividing a trajectory intomultiple
trajectory segments for analysis and mining. Trajectory
feature extraction refers to extracting features with strong
identi�cation ability from the trajectory. �e quality of
feature extraction largely determines the accuracy of motion
pattern recognition and is a key step in trajectory motion
pattern recognition. In addition, the extracted trajectory
features generally include trajectory motion features, shape
features, location features where the trajectory appears, and
time features. �e classi�er refers to constructing a classi�er
based on the trajectory data of the known category. �e
model can predict the trajectory data of the unknown cat-
egory and obtain one of the given categories. Establishing a
classi�er means using the feature vector of the training
trajectory as the input of the classi�er to train a classi�er for

motion pattern recognition. In the test phase, the feature
vector of the test trajectory is used as input, and the motion
pattern category of the test trajectory is obtained through the
trained classi�er. Currently, commonly used classi�ers in-
clude k-nearest neighbors, decision trees, random forests,
neural networks, support vector machines, Bayesian net-
works, conditional random �elds, etc.

With the popularization of electronic devices with global
positioning system functions, the behavior characteristics
and laws of individuals or groups can be analyzed by col-
lecting the location information of moving objects. It can
provide an important basis for commanding decision-
makers in the �elds of processing and large-scale military
operations. Group movement pattern analysis is to analyze
the movement state of the group and extract its behavior
pattern through the information of the position of each
member in the group changing over time, so as to com-
prehensively evaluate the group behavior pattern and action
e�ect. �e process of group motion pattern analysis mainly
includes the steps of data preprocessing, constructing time
series, using interpolation algorithm to calculate the cor-
responding member positions of the time series, and
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calculating various description parameters for data analysis.
Among them, data preprocessing mainly includes coordi-
nate transformation, time synchronization, and exclusion of
abnormal nodes. Since each member node records and
reports its position information at its own rhythm, the
original data set generally does not contain the position data
of all nodes at a certain time during group motion pattern
analysis. It is necessary to construct a unified time series of
the group on the basis of the time series of each member and
then use the interpolation algorithm to determine the po-
sition information of the member nodes in the group at this
moment under the time series.

In this paper, the artificial visual neural network is
combined to construct a motion pattern recognition system
to improve the effect of motion pattern recognition and
effectively improve the accuracy of motion pattern
recognition.

2. Related Work

Human body motion pattern recognition refers to the
process of identifying various motion states of the human
body, mainly by analyzing the data of inertial sensors to
identify motion patterns. Motion pattern recognition
technology is widely used in competitive sports, health
detection, medical research and pedestrian navigation, and
other fields [1]. In recent years, it has also been used in some
rescue work [2]. Literature [3] placed accelerometers on the
waist and thighs and used wavelet transform to analyze
postures such as walking, jogging, and lying down. 'e
experimental results were compared with video recordings,
indicating that the data from the accelerometer can be used
to identify human posture. Literature [4] proposes a rec-
ognition algorithm in which the accelerometer is placed on
the wrist and compares and analyzes the recognition results
of human behavior patterns on the wrist and buttocks.
Literature [5] places the sensor motion node on the front
right hip and proposes a new human action recognition
framework based on compressed sensing and sparse rep-
resentation theory. Literature [6] uses decision tree and
logistic regression technology to propose a new prediction
model based on machine classification learning. 'e rec-
ognition results of running and sitting are good, but the
recognition results of going up and down the stairs are not
very good. Literature [7] analyzed the data of two inertial
measurement units placed on the foot and shoulder to re-
alize indoor pedestrian navigation. Literature [8] uses
multiple sensors placed at different positions of the body and
proposes a classification and recognition algorithm suitable
for wearable sensor platforms, whose accuracy is higher than
that of a single sensor.

It is proposed that current anomaly detectionmethods can
be mainly divided into two categories: trajectory-based
methods [9] and appearance feature-based methods [10]. 'e
former, as the most traditional anomaly detection method,
usually consists of two steps, tracking the target in the video
scene to obtain the motion trajectory and then modeling and
analyzing the tracking trajectory. In complex scenes with
many targets, both target tracking and trajectory analysis are

difficult, resulting in high computational cost. 'e most
common technique to solve this problem is to use the method
of feature extraction, which proposes a visual feature called
optical flow texture and combines it with spatial information
to detect abnormal behavior, but this method is only suitable
for detection. Behavior differs from normal movement pat-
terns. Optical flow mainly focuses on the motion information
of objects and often ignores some nondynamic abnormal
information [11]. Some more complete representations are
proposed to ensure the inclusion of dynamic and static in-
formation. Literature [12] uses optical flow and contour
features to generate spatiotemporal descriptions and uses
Nonnegative Locality-Constrained Linear Coding (NLLC) to
detect abnormal behaviors. Many different kinds of abnormal
behavior detection models have emerged in recent years.
Literature [13] proposes to segment the context of a video into
various semantic regions, establish a semantic context model
for moving objects in the context, and then use the model to
detect abnormal behavior. Literature [14] proposed a joint
sparse model (Jointly Sparse Model, JSM) to train the tra-
jectory in the training sample to obtain an overcomplete
dictionary and use the dictionary to sparsely reconstruct the
trajectory of the test sample and then detect anomalies
through the reconstruction error. Topic models can identify
behavior patterns in scenes and detect anomalies through
underlying features that appear at different levels and have
achieved great success in the field of behavior recognition.
Literature [15] utilizes hierarchical Bayesian models, such as
Latent Dirichlet Allocation (LDA) and Hierarchical Dirichlet
Process (HDP), to describe typical behaviors in videos. Lit-
erature [16] proposed a trajectory analysis method based on
the LDA model and used it for abnormal behavior detection.
Literature [17] proposed to use the Probabilistic Latent Se-
mantic Analysis (PLSA) method to build a topic model with
local information and quantify the location and size infor-
mation of the image through rich spatiotemporal gradient
descriptors to extend topic-based analysis and local descrip-
tors, supplemented with some easy-to-ignore exception local
information. However, traditional probabilistic topic models
lack a mechanism to directly control the sparsity of document
representation. Literature [18] proposed a sparse local coding
(Sparse Topical Coding, STC) method to find latent repre-
sentations in a large dataset and directly control the sparsity of
model representations through sparsity-inducing regulariza-
tion terms. A method for detecting abnormal video behavior
based on motion pattern analysis is proposed. In the un-
derlying processing process, the spatiotemporal descriptors
are extracted and combined with position information to
generate visual words, so that the visual words contain suf-
ficient dynamic and static information, which can be used for
the detection of various abnormal behaviors [19].

Previous related research work mainly focused on
extracting the motion features of trajectories, including
velocity, acceleration, and motion direction. If only the
motion features of the trajectory are extracted, the important
location features of the trajectory are often ignored. In some
special cases, such as in traffic jams, the motion charac-
teristics of multiple motionmodes are similar and difficult to
distinguish. Literature [20] believes that the location
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information of the trajectory can help researchers improve
the accuracy of trajectory motion pattern recognition, so it
proposes a region classification rule considering duration
and a path classification rule mining algorithm considering
duration.

Due to the large drift and low accuracy ofMEMS devices,
the auxiliary means of Zero Velocity Update (ZUPT) are
usually used to suppress the accumulation of errors, and the
solution accuracy is further improved by periodic error
clearing. In the process of walking, the time when the feet
remain relatively stationary with the ground is very short.
'erefore, the detection of the zero-speed interval is not only
the core of the zero-speed correction, but also the key link of
the pedestrian navigation solution [21].'ere may be missed
judgments or misjudgments during zero-speed zone de-
tection. Missing judgment means that all zero-speed state
points are not judged, and misjudgment means that non-
zero-speed state points are judged to be zero-speed state.
Since the boundary point between zero-speed and non-zero-
speed states cannot be accurately determined, the occur-
rence of missed judgments is inevitable [22].

3. Machine Vision Feature
Recognition Algorithms

If the apparent brightness of a color stimulus is B, the
brightness is L, and the apparent brightness of the reference
white point is ∞, the relationship between them can be
expressed as

L �
B

Bw

. (1)

If the chroma of a color stimulus is M, the chroma is C,
and the chroma of the reference white point (same as the
brightness) is Bw, the relationship between them can be
expressed as

C �
M

Bw

. (2)

Saturation indicates the purity of the color or the dif-
ference from a neutral. If hue is the perception of the
dominant wavelength, saturation is the degree to which
other wavelengths of light are doped in the dominant
wavelength.'e wider the range of wavelengths contained in
the color is, the less saturated the resulting color will feel.

If the saturation of a color stimulus is recorded as S, then

S �
M

B
�

C

L
. (3)

'e observation condition attribute is used to describe
the scene (Scene) in which a color stimulus is observed. 'e
scene is often referred to as the viewing field or viewing
conditions. Viewing conditions have a large impact on color
perception. 'is subsection will define a simple typical
observation field (Figure 1), which consists of four parts: the
color stimulus (Stimulus), the proximal field (Proximal
field), the background (Background), and the surrounding
environment (Surround).

'e phenomenon of spatial structure refers to the
phenomenon that color appearance changes with
the spatial structure and background of color stimuli. 'e
most famous phenomenon is simultaneous contrast,
that is, the phenomenon that color appearance changes
to its opposite direction under a contrast perception. If
a brighter background induces a stimulus to appear
darker, a darker background will induce a brighter ap-
pearance. In the same way, red induction produces
green, green induction produces red, yellow induction
produces blue, and blue induction produces yellow.
Figure 2 shows how the color appearance changes
when grays of the same shade are placed against different
backgrounds. Among them, the two color blocks above
are placed on the same gray background, and the visual
perception is the same. However, when they are placed
against the different backgrounds below, the grays placed
against the black background are visually perceived as
“brighter,” while the grays placed against the white
background feel slightly darker. Figure 3 further sum-
marizes the strong effect of changes in the background on
color appearance. In the figure, the background is
getting brighter and brighter from left to right, and the
chromaticity values on each color bar are exactly the
same, but in visual perception. 'e color difference from
left to right is felt due to the gradient of the background
color.

'e change in the sensitivity of the human eye caused by
the change of the illumination light can be shown in Fig-
ure 4, which reflects the situation of changing from sunlight
illumination to incandescent lamp illumination. In daylight
illumination, since the spectral distribution of sunlight is
roughly flat, the red, green, and blue sensitivities are roughly
balanced. When changing to incandescent lighting, the red
component increases and the blue component decreases, so
the sensitivity of the red photoreceptor decreases and the
blue photoreceptor increases, resulting in always a fixed
response. 'is explains why the color appearance does not
change.

According to the von Kries hypothesis, its color ad-
aptation model can be established through the following
steps.

Surrounding
environment

Background

�e closest
to the field

Field of 2°
view

Color stimulus

Field of 10° view

Figure 1: A typical observation field.
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(1) First, the algorithm converts the CIEXYZ tristimulus
value to the LMS cone response value (sometimes
also called RGB or response), and the conversion
relationship is

L

M

S
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,

M �

0.4002 0.7076 −0.0808

−0.2263 1.1653 0.0457

0.0 0.0 0.9182

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(4)

Among them, M represents the Hunt-Pointer-
Estevez transformation matrix, and its elements are
determined by the chromaticity coordinates of the
three basic primary colors.

(2) Bymultiplying the initial vertebral response LMS of the
human eye to color stimuli and the independent gain
control coefficient αL, αM, αS, the adaptive vertebral
signal LMSadapted is obtained. 'e gain control coef-
ficient is the most critical part of most color adaptation
models. In the von Kries model, the reciprocal of the

scene’s maximum LMSmax-pheasant response value is
used as the independent gain control coefficient.
Usually, the maximum LMS pheasant response of the
scene is the pheasant response LMSwhite of the scene
white point, so the von Kries adaptation is usually also
called white point adaptation and has [23]

Ladapted

Madapted

Sadapted
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Among them,

αL �
1

Lmax
orαL �

1
Lwhite

,

αM �
1

Mmax
orαM �

1
Mwhite

,

αS �
1

Smax
orαS �

1
Swhite

.

(6)

(3) 'rough the adapted pheasant signal LMSadapted, the
algorithm calculates the adapted color stimulus value
XYZadppted as follows:

Xadapted

Yadppted

Zadapped

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
� M

−1
·

Ladppted

Madppted

Sadppted

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (7)

For any given color stimulus, it is very useful to obtain
the adapted CIEXYZ value, but more often it is more im-
portant to obtain the corresponding color of the color
stimulus under another observation condition. Chromatic
Adaptation Transform (CAT) is used to calculate the cor-
responding color. 'e derivation of the von Kries chromatic
adaptation transformation is as follows.

'e color stimulus value under the source observation
condition is XYZ, and the corresponding color is X2Y2Z2
under the target observation condition.'e task of von Kries
color adaptation transformation is to match the color

Figure 2: Simultaneous comparison phenomenon 1.

Figure 3: Simultaneous comparison phenomenon 2.
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appearance of two color stimuli under the source and
destination observation conditions, that is, to make the
adaptive vertebral response signals equal under the two
observation conditions.

For the convenience of expression, we represent this
transformation as a linear matrix. From the von Kries model
introduced above, we can see that the adaptive response
value LMSadapped of the pheasant under the source obser-
vation condition is

Ladppted
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. (8)

'e response value L2M2S2 adapted of the pheasant after
adaptation under the objective observation condition is
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Among them, Lwhite2, Mwhite2, and Swhite2 represent the
cone response value of the target observation white point, so
the corresponding color X2Y2Z2 under the target obser-
vation condition is
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Y

Z

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (10)

'is paper proposes a model that combines the linear
process established by the von Kries model and the non-
linear process established by the exponential adaptation,
which is called the Nayatani model.

When calculating the adaptive cone response signal
LMSadapted, the Nayatani model uses a nonlinear model to
multiply the gain adjustment coefficient by an episodic
function. 'e exponent of the curtain function is based on a
variable that adapts to the field brightness. 'is enables the
Nayatani model to reflect luminance phenomena such as
Hunt and Stevens effects. In addition, a noise control function
is added for threshold prediction. 'e gain adjustment factor
is used to control the brightness of the nonselective samples
(gray) as the adaptation field brightness to avoid complete
color constancy. 'e specific formula is as follows:

Ladppted � αL ·
L + Ln

Lwhite + Ln

􏼠 􏼡

βL

,

Maddpted � αM ·
M + Mn

Mwhite + Mn

􏼠 􏼡

βU

,

Sadppted � αS ·
S + Sn

Swhite + Sn

􏼠 􏼡

βS

.

(11)
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Figure 4: Changes in the balance of human eye sensitivity due to changes in illumination light.
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Among them, Ln, Mn, and Sn represent the added ad-
ditive noise, βL, βM, and βS are variables based on adaptive
brightness level, and αL, αM, and αS are the coefficients that
make neutral gray stimuli produce color constancy.

'e basic structure of the Fairchild model is consistent
with the von Kries model, and only themethod of calculating
the gain control coefficient is more complicated. 'e for-
mula for calculating the adaptive pheasant response value
LMSadapted is as follows:

Ladppted

Madppted

Sadppted

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
�

αL 0.0 0.0

0.0 αM 0.0

0.0 0.0 αS

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ·

L

M

S

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (12)

'e formula for calculating coefficient αL is as follows
(the other two coefficients αM and αS are calculated in a
similar way):

αL �
pL

Ln

,

pL �
1 + Y

1/3
n + lE

1 + Y
1/3
n + 1/lE

,

lE �
3 Ln/LE( 􏼁

Ln/LE + Mn/ME + Sn/SE

.

(13)

Among them, Yn refers to the brightness of the adap-
tation field, and the unit is cd/m2, Ln, Mn, and Sn represent
the response value of the pheasant adapted to the white spot
stimulus, and LE, ME, and SE represent the response value of
the pheasant with equal energy illumination. When pL is
equal to 1 (the adaptive white point is equal energy illu-
mination Ln � Mn � Sn, that is, lE � 1), it is considered to be
fully adapted, and the model is completely transformed into
the von Kries model. When pL is Ln and αL is 1, it is
considered to be zero adaptation. When the pL value is
between the two, it belongs to incomplete adaptation. 'e
degree of adaptation depends on the degree of adaptation to
the field brightness level and the degree of adaptation to
energy illumination such as white point deviation. 'is
color-adaptive conversion method is similar to the von Kries
conversion method described above.

'e main difference between the spectral sharpening
chromatic adaptation model and the abovementioned
chromatic adaptationmodel lies in the first step of chromatic
adaptation, that is, the calculation method of the pheasant
response value. 'is type of model first normalizes the
CIEXYZ tristimulus values by dividing by the component.
'e obtained cone response value RGB does not represent
the physiological pheasant response signal, but the spectral
sharpened pheasant response signal, which can often better
maintain color saturation and color constancy. A specific
spectral sharpening model, the Bradford (BFD) chromatic
adaptation model, implements the following steps.

(1) 'e algorithm normalizes the CIEXYZ tristimulus
values and converts them to the RGB spectral

sharpening cone response space through the BFD
matrix. 'e formula is

R

G

B

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
� MB

X

Y

Y

Y

Z

Y

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

MB �

0.8951 0.2664 −0.1614

−0.7502 1.7135 0.0367

0.0389 −0.0685 1.0296

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(14)

Among them, the elements in the MB matrix are
obtained by optimizing the Lam\&Rigg dataset.

(2) 'e algorithm calculates the adaptive spectral
sharpening pheasant response value RcGcBc.

'e model uses a nonlinear power function for short
waves, and the calculation formula is as follows:

Rc � D
1.0
Rw

􏼠 􏼡 + 1 − D􏼢 􏼣R,

Gc � D
1.0
Gw

􏼠 􏼡 + 1 − D􏼢 􏼣G,

Bc � D
1.0
B

p
w

􏼠 􏼡 + 1 − D􏼢 􏼣|B|
p
,

p �
Bw

1.0
􏼒 􏼓

0.0834
.

(15)

Among them, Rw, Gw, and Bw represent the spectral
sharpening pheasant response values adapted to the white
point stimulus, and D represents the degree of adaptation.
Usually, D is taken as 1.0 in hard copy, which means full
color adaptation; that is, the effect of lighting is completely
canceled. In soft copy, D takes 0, which means zero adap-
tation, and the influence of light is not offset. When it is in a
darker condition like projection, D takes an intermediate
value, which means that the effect of illumination is partially
offset.

'e model calculates the tristimulus values after adap-
tation and the method of color adaptation transformation is
similar to the aforementioned von Kries transformation
method.

'e input parameters of the CIELAB model include two
sets of CIEXYZ tristimulus values, one is the color stimulus
itself, and the other is the color stimulus value of the ref-
erence white point. 'e model calculation formula is as
follows:
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L � 116f
Y

Yn

􏼠 􏼡 − 16,

a � 500 f
X

Yn

􏼠 􏼡 − f
Y

Yn

􏼠 􏼡􏼠 􏼡,

b � 200 f
Y

Yn

􏼠 􏼡 − f
Z

Zn

􏼠 􏼡􏼠 􏼡.

(16)

In the formula, the function f(x) is defined as follows:

f(x) �

x
1/3

, x> 0.008856,

7.787x +
16
116

, x≤ 0.008856.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(17)

Among them, X, Y, and Z are the tristimulus values of
color stimuli, XnΔYnΔZn is the tristimulus value of the
reference white point, and the normalization makes
Yn � 100.

'e definition of the color appearance model requires
the calculation of at least three properties of lightness,
chroma, and hue. 'e model provides the calculation of
lightness L, chroma Cab, and hue hab, and the a and b co-
ordinate values are calculated using the following formulas:

Cab �

������

a
2

+ b
2

􏽱

,

hab � tan−1 b

a
􏼠 􏼡.

(18)

Although the CIELAB model is the prototype of the
colored appearance model, it has the following defects:

(1) Wrong von Kries chromatic adaptation leads to
inaccurate chromatic appearance prediction.

(2) 'e CIELAB model does not consider most of the
color appearance phenomena, such as brightness,
surrounding environment, background, offset
lighting phenomenon, etc.

(3) 'e CIELAB model always assumes 100% white
point adaptation and does not consider the phe-
nomenon of incomplete color adaptation.

(4) 'e CIELABmodel is designed to predict small color
differences between similar objects under fixed
viewing conditions, so it is difficult to generalize as a
color appearance model.

(5) 'e hue constancy of the CIELAB model, especially
in the blue region, is very important for some image
processing techniques such as gamut matching.

'e RLAB model first converts the color tristimulus
values to the corresponding colors under the reference
standard environment (D65, 2° observer, illuminance of
318 cd/m2, hard copy media) through color adaptation
conversion. 'en, it calculates the color appearance prop-
erties using the corresponding color. For the corresponding
color prediction under other conditions, it can be calculated
by the inverse model of this model.

(1) 'e algorithm calculates the LMS vertebral response
value:

L

M

S

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ � M

X

Y

Z

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

M �

0.3897 0.6890 −0.0787

−0.2298 1.1834 0.0464

0.0 0.0 1.0000

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.

(19)

Among them, M still represents the Hunt-Pointer-
Estevez transformation matrix. 'e matrix is nor-
malized so that equal vertebral response values
(L�M� S� 100) can be obtained when the color
stimuli are equal energy illumination (i.e.,
X�Y�Z� 100). White dot tristimulus values
XwYwZw are also converted to LwMwSw pheasant
response values.

(2) 'e algorithm calculates the pheasant response value
LMSadppted after color adaptation.
Using the color adaptation matrix A, the adaptive
pheasant response value LMSadapted is obtained as
follows:

Ladapted

Madapted

Sadapted

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
� A•

L

M

S

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

A �

αL 0.0 0.0

0.0 αM 0.0

0.0 0.0 αS

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.

(20)

Among them,

αL �
pL + D 1.0 − pL( 􏼁

LW

,

pL �
1.0 + Y

1/3
n + 1E

1.0 + Y
1/3
n + 1.0/1E

,

1E �
3LW

LW + MW + SW

.

(21)

'e D factor describes the degree to which light is
offset in chromatic adaptation. In general, D� 1.0 in
hard copy conditions, indicating complete chromatic
adaptation. D� 0 in soft copy, which means no offset
light. When in a darker condition such as projection,
D takes an intermediate value, which means that the
illumination is partially offset. Its value depends on
the specific observation conditions and generally
takes 0.5 empirically. αMΔαSΔpMΔpSΔmE and sE are
calculated similarly.

(3) 'e algorithm calculates the corresponding color
XrefYrefZref under the reference standard conditions.
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'e reference standard condition is D65 illumina-
tion, 2° observers, and hard copy of the adaptation
field illumination 318cd/m2; the calculation formula
is as follows:

Xref

Yref

Zref

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
� M

−1
· A

−1
ref · A · M ·

X

Y

Z

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

A
−1
ref �

LD65 0.0 0.0

0.0 MD65 0.0

0.0 0.0 SD65

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(22)

Among them, LD65MD65SD65 represents the pheasant
response value of the D65 illumination white point.
'erefore, if R � M−1 · A−1

ref , it is a constant matrix,
and

R �

1.9569 −1.1882 0.2313

0.3612 0.6388 0.0

0.0 0.0 1.0000

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (23)

(4) 'e algorithm calculates the color appearance
attribute.

'e related color appearance attribute parameters and
calculation methods are as follows:

L
R

� 100 Yref( 􏼁
σ
,

a
R

� 430 Xref( 􏼁
σ

− Yref( 􏼁
σ

􏼂 􏼃,

b
R

� 170 Yref( 􏼁
σ

− Zref( 􏼁
σ

􏼂 􏼃,

C
R

�

�����������

a
R

􏼐 􏼑
2

+ b
R

􏼐 􏼑
2

􏽲

,

h
R

� arctan
b

R

a
R

􏼠 􏼡.

(24)

Among them, the index σ is the surrounding environ-
ment parameter, which is 1/2.3 in the average environment;
1/2.9 in the dark environment; 1/3.5 in the dark
environment.

'e LLAB model adopts the Bradford color adaptation
conversion method, and the specific implementation steps
are as follows.

(1) 'e algorithm calculates the RGB cone response
value

R

G

B

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
� MB

X

Y

Y

Y

Z

Y

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

MB �

0.8951 0.2664 −0.1614

−0.7502 1.7135 0.0367

0.0389 −0.0685 1.0296

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(25)

Similarly, the RGB pheasant response values of the
source adaptive field white point and the reference
standard white point can be calculated, which are
denoted as RwGwBw and RwrGwrBwr, respectively.
Among them, the white point under the reference
standard condition is CIED65, and its tristimulus
value XwrYwrZwr is a constant (Xwr � 95.05,

Ywr � 100.0, Zwr � 108.88).
(2) 'e algorithm performs color adaptation conversion

and calculates the corresponding color XrefYrefZref
under the reference standard conditions. 'e algo-
rithm first calculates the pheasant response value
RrefGrefBref under the reference standard condition,
which is

Rref � D
Rwr

Rw

􏼠 􏼡 + 1 − D􏼢 􏼣R,

Gref � D
Gwr

Gw

􏼠 􏼡 + 1 − D􏼢 􏼣G.

(26)

If B≥ 0, then

Bref � D
Bwr

B
p
w

􏼠 􏼡 + 1 − D􏼢 􏼣B
p
. (27)

Otherwise,

Bref � − D
Bwr

B
p
w

􏼠 􏼡 + 1 − D􏼢 􏼣|B|
p
. (28)

Among them,

p �
Bw

Bwr

􏼠 􏼡

0.0834

. (29)

'en, the algorithm calculates the corresponding
color XrefYrefZref under the reference standard
condition, which is
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Xref

Yref

Zref

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ � M
−1
B

RrefY

GrefY

BrefY

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (30)

(3) 'e algorithm calculates the color appearance
attributes.

'e related color appearance attribute parameters and
calculation methods are as follows:

L
L

� 116f
Yref

Ywr
􏼠 􏼡

z

− 16,

a � 500 f
Xref

Xwr
􏼠 􏼡 − f

Yref

Ywr
􏼠 􏼡􏼢 􏼣,

b � 200 f
Yref

Ywr
􏼠 􏼡 − f

Zref

Zwr
􏼠 􏼡􏼢 􏼣,

z � 1 + FL

Yb

100
􏼒 􏼓

(1/2)

.

(31)

In the formula, the function f(x) is defined as follows:

f(x) �

x
1/Fs , x> 0.008856,

0.0088561/Fs − 16/116􏼐 􏼑

0.008856
⎡⎢⎣ ⎤⎥⎦x +

16
116

, x≤ 0.008856,

C
L

� 25 ln(1 + 0.05C),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C
L

� 25 ln (1 + 0.05C),

C �

���������

(a)
2

+(b)
2

􏽱

,

h
L

� tan−1 b

a
􏼠 􏼡,

A
L

� C
L cos h

L
􏼐 􏼑,

B
L

� C
L sin h

L
􏼐 􏼑.

(32)

In addition to lightness LL, chroma CL, and hue hL, the
model can also predict visual chroma, saturation, etc. Since
these color appearance attributes are beyond the scope of
this study, their specific formulas are not given.

'e spectral sharpening space conversion adopts the
equal energy balance matrix to convert the CIEXYZ tri-
stimulus values to the CAT02 space, so as to obtain the
sharpening space response values RGB, XwYwZw are also
converted into RwGwBw, and the specific calculation formula
is as follows:

R

G

B

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ � MCAT02

X

Y

Z

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

MCAT02 �

0.7328 0.4296 −0.1624

−0.7036 1.6975 0.0061

0.0030 0.00136 0.9834

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.

(33)

'e adaptive sharpening signal RcGcBc is obtained by
multiplying the RGB signal by the independent gain control
coefficient (αR, αG, αB), namely:

Rc

Gc

Bc

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ � A•

R

G

B

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

A �

αR 0.0 0.0

0.0 αG 0.0

0.0 0.0 αB

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.

(34)

Among them,

αR �
YWD

RW

+(1 − D)

D � F · 1 −
1
3.6

􏼒 􏼓e
−L4− 42/92( )􏼔 􏼕.

(35)

'e D factor is used to reflect the degree of color ad-
aptation and is a function of the environment and LA.
'eoretically, the value ofD should be from 0 (can not adapt
to the selected white point) to 1 (complete adaptation). In
fact, the minimum value of D does not fall below 0.65 in the
dark environment and grows exponentially with LA. 'e
relationship curves of D − LA under the three environments
are shown in Figure 5.

'e cone response space transformation transforms
RcGcBc into the pheasant response space before the non-
linear response is compressed. 'rough experimental
comparison, it is found that nonlinear response compression
in a space similar to the cone response can predict better
color appearance attribute values. 'e conversion formula is
as follows:

R′

G′

B′

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ � MH · M
−1
CAT02 ·

Rc

Gc

Bc

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

MH �

0.38971 0.68898 −0.07868

−0.22981 1.18340 0.04641

0.0 0.0 1.0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.

(36)

'e specific formula of nonlinear response compression
is as follows:
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Ra
′ �

400 FLR′/100( 􏼁
0.42

27.13 + FLR′/100( 􏼁
0.42 + 0.1. (37)

Among them,

FL � 0.2k
4 5LA( 􏼁 + 0.1 1 − k

4
􏼐 􏼑

2
5LA( 􏼁

1/3
,

k �
1

5LA + 1( 􏼁
.

(38)

Ga
′ and Ba

′ are calculated similarly, and Rwa′ ΔGwa′ and Bwa
′

can also be converted.
'e calculation method of color appearance attribute is

as follows:

a �
Ra
′ − 12Ga

′

11
+

Ba
′

11
,

b �
1
9

􏼒 􏼓 Ra
′ + Ga
′ − 2Ba
′( 􏼁,

t �
e a

2
+ b

2
􏼐 􏼑

(1/2)

Ra
′ + Ga
′ +(21/20)Ba

′
,

h � tan−1 b

a
􏼠 􏼡,

A � 2Ra
′ + Ga
′ +

1
20

􏼒 􏼓Ba
′ − 0.305􏼔 􏼕Nbb.

(39)

Among them,

Nbb � 0.725
1
n

􏼒 􏼓
0.2

,

n �
Yb

Yw

.

(40)

A represents the achromatic response, and the constant
term −0.305 in the formula determines the minimum lu-
minance value, so that when Y is 0, A is also 0, and the

achromatic response Aw of the white point can be calculated
similarly. 'e formula for calculating lightness J is

J � 100
A

AW

􏼠 􏼡

cz

. (41)

Among them,

z � 1.48 +
�
n

√
. (42)

With the lightness and temporary variables t, the chroma
C can be calculated as follows:

C � t
0.9

���
J

100

􏽲

1.64 − 0.29n
( 􏼁

0.73
. (43)

4. Accurate Recognition of Motion Patterns
Based on Artificial Visual Neural Network

Figure 6(a) is a schematic diagram of the visual movement of
the RS neuron activated by the moving target. In this figure,
a moving target (that is, the solid-line sphere in the figure)
rotates CCW around the center point. At different moments
in the rotational motion (i.e., the dotted sphere in the figure),
the translational motion direction of the moving target
changes regularly. 'at is, relative to the previous moment,
the translational movement direction of themoving object at
the current moment always changes incrementally in the
counterclockwise direction. Figure 6(b) is a schematic di-
agram of the basic visual mechanism for RS neurons to
recognize rotational motion patterns. Moreover, each step in
the figure corresponds to a specific visual signal processing
in the visual channel.

Figure 7(a) presents a schematic diagram of the basic
visual mechanism of DRS neurons in perceiving deep ro-
tational motion patterns. In order to perceive deep rotational
motion patterns of moving objects, visual signals are pro-
cessed in four steps in the visual pathway of DRS neurons,
that is, (1) visual signal processing and perceived lumen
change, (2) acquisition of changes in visual excitation and
inhibition, (3) extraction of changes in translation direction
of moving objects and depth of motion behavior, (4) syn-
thetic depth of motion behavior and changes in translation
direction, and DRS neuron output membrane potential.
Each step corresponds to a specific visual signal processing
process in the visual pathway. After layer-by-layer visual
information processing, DRS neurons can perceive the
spatiotemporal energy changes caused by deep rotational
motion in the visual field. Figure 7(b) is a schematic diagram
of the amount of visual motion behavior implied by a
moving target that performs a counterclockwise deep ro-
tation motion on the horizontal plane.

On the basis of the above research, the effect of the
motion pattern recognition based on artificial visual neural
network proposed in this paper is verified, and the motion
pattern recognition effect of the model in this paper is
counted, and Table 1 and Figure 8 are obtained.

LA
0 200 400 600 800
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0.2

0.4

0.6

0.8

1

D

Average
Dim
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Figure 5: 'e relationship of D − LA in three environments.
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Figure 6: (a) Schematic diagram of the movement direction change of the moving target in the frontal-parallel plane rotating motion;
(b) the basic visual mechanism of RS neuron detecting the rotational movement pattern.
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Table 1: Verification of recognition effect of motion pattern recognition model based on artificial visual neural network.

Num Motion recognition Num Motion recognition Num Motion recognition
1 89.30 21 81.08 41 78.75
2 79.09 22 78.60 42 83.52
3 78.88 23 79.49 43 85.55
4 81.69 24 78.93 44 80.82
5 86.81 25 82.57 45 81.64
6 88.32 26 86.38 46 81.79
7 80.60 27 89.53 47 77.45
8 82.36 28 89.12 48 80.28
9 80.61 29 89.57 49 82.47
10 86.12 30 82.78 50 79.96
11 82.61 31 86.05 51 82.02
12 83.85 32 78.75 52 79.81
13 87.45 33 86.51 53 84.38
14 79.51 34 90.02 54 81.15
15 87.51 35 86.79 55 85.63
16 83.71 36 81.96 56 83.33
17 87.69 37 79.60 57 83.18
18 79.74 38 87.92 58 82.52
19 82.89 39 81.10 59 89.61
20 80.33 40 78.92 60 86.18

Enter the visual
stimulus for the current

moment

Visual
inhibition

Visual
excitement

Perceived flow, Light
and dark change

�e motion behavior amount of
each translation direction of the

moving target is extracted.

�e DRS neurons output the
membrane potential for excitation

Motor behavior volume integration

�e deep movement
behavior amount of
the motor target is

extracted

(a)

Y(axis of rotation)

Sports target

Horizontal plane

z

M1

M2 CCW revolve

O

Camera vision axis

(b)

Figure 7: (a) Schematic diagram of the basic visual mechanism of deep rotational motion perception by DRS neurons. (b) Schematic
diagram of the hidden visual motion behavior of a moving target that performs counterclockwise depth rotation motion on the horizontal
plane. M1 in the figure represents the translation direction, and M2 represents the depth motion direction.
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Combined with the simulation recognition experiment,
it can be seen that the motion pattern recognition model
based on artificial visual neural network can accurately
identify the motion pattern category.

5. Conclusion

'e motion pattern recognition of moving objects is
generally divided into training process and testing pro-
cess. In the training process, all training trajectories
(trajectories of known motion patterns) are preprocessed
first, then features are extracted for each trajectory, and
finally a classifier is constructed. In the test phase, all test
trajectories (trajectories with unknown motion patterns)
are preprocessed first, then features are extracted for each
test trajectory, and finally the motion pattern recognition
is performed on the test trajectories using the classifier
obtained in the training phase. 'is paper combines the
artificial visual neural network to construct a motion
pattern recognition system to improve the motion pattern
recognition effect. 'e experimental results show that the
motion pattern recognition system based on artificial
visual neural network can accurately identify the motion
pattern category.

Data Availability

'e labeled dataset used to support the findings of this study
is available from the corresponding author upon request.

Conflicts of Interest

'e author declares that there are no conflicts of interest.

Acknowledgments

'is study was sponsored by Hubei University of
Technology.

References

[1] G. Sz}ucs and B. Tamás, “Body part extraction and pose es-
timation method in rowing videos,” Journal of Computing and
Information Technology, vol. 26, no. 1, pp. 29–43, 2018.

[2] R. Gu, G. Wang, Z. Jiang, and J. N. Hwang, “Multi-person
hierarchical 3d pose estimation in natural videos,” IEEE
Transactions on Circuits and Systems for Video Technology,
vol. 30, no. 11, pp. 4245–4257, 2019.

[3] M. Nasr, H. Ayman, N. Ebrahim, R. Osama, N. Mosaad, and
A. Mounir, “Realtime multi-person 2D pose estimation,”
International Journal of Advanced Networking and Applica-
tions, vol. 11, no. 6, pp. 4501–4508, 2020.
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