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Motion recognition based on human bones has attracted extensive attention in recent years because of its simplicity and ro-
bustness. Considering the causality of human movement, this paper proposes an improved deep learning method for posture
analysis in sports training. In order to deal with the complex situation of calculating joint torques as weights, the edge weights and
convolution weights of bone maps are used as auxiliary information networks according to the causality of joint distribution.
Thus, the stronger driving force of joint weights in the neural network is improved, the low importance of joint attention is
reduced, and the high importance of joint attention is enhanced. Experiments on three public motion recognition datasets show
that the proposed method can distinguish similar motions effectively compared with the mainstream methods. Besides, ex-
periments on a challenging UCF (University of Central Florida) sports dataset show that the proposed method can effectively

enhance the motion features and improve the accuracy of recognition.

1. Introduction

To analyze the problem of motion recognition from mul-
tidata dimensions, the existing methods use visual appear-
ance, depth information, optical flow, and even sound for
fusion and auxiliary recognition. Literature [1] proposed
that low redundancy and high separable joint information
representation can significantly improve the performance of
motion recognition. Literature [2] uses 3D joint coordinates
to analyze motion pattern recognition motions, and the
motion information extraction method adopted is simple
and efficient. However, the spatial relationship between
joints is ignored in this method; thus the accuracy is limited.
To solve this problem, relative distance and angle coding
joints were adopted in literature [3] to improve accuracy, but
the recognition results relying only on manual features were
not satisfactory. Deep learning model uses nonlinear neural
network to extract deep-level motion features to improve
accuracy [4]. Based on the excellent spatial feature extraction
ability of CNN (convolutional neural network), the bone
sequence is encoded as a pseudoimage in literature [5], and

its depth features are extracted based on CNN to improve
the recognition effect. However, the lack of time domain
information of the encoded image results in limited im-
provement of accuracy. In view of this problem, RNN
(recurrent neural network) [6], which has a good temporal
modelling ability, can recognize motions with a high ac-
curacy. However, the inherent defect of gradient dispersion
in RNN makes it difficult to learn long-term historical
information.

The above recognition method based on deep network
processes each image frame by frame and lacks the mining of
key images and parts. However, motion sequences usually
have large information redundancy, which makes the rel-
evant methods have poor real-time performance and lack of
highly separable information, resulting in limited im-
provement of accuracy. Based on this, a model based on
spatiotemporal attention mechanism was proposed in lit-
erature [7]. It uses the space-time attention mechanism to
extract bone features and assigns corresponding weights to
joints based on their importance to enhance the influence of
key images and parts, so as to improve the accuracy of
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motions [8]. However, this method only considers joint
coordinates and ignores spatial topological information, so
the accuracy is limited.

Deep learning-based methods are used to study posture
recognition in sports training from multiple perspectives,
and good recognition performance is achieved [9]. How-
ever, these methods still have some limitations, such as
ignoring the correlation between bone joints in the human
body structure and not considering the weight changes of
joints in different movements. Joints are considered to be
the ends of a rigid body, and different joints play different
roles in different training postures, so the key joints should
have more weight in determining the type of movement.
The joints of the human body are simplified to the mul-
tirigid body model, and the torques of each joint are cal-
culated by solving partial differential equations, and then
different weights are assigned to each joint according to the
torques of each joint. This method is not suitable for
complex graph convolutional networks because of too
many equations and too much calculation. However, the
main disadvantage of the local attention model is that it
only uses the local variation of the motion sequence to get
the attention weight, and it is difficult to get the accurate
attention weight.

Therefore, this paper proposes a human skeletal motion
recognition method combining causality and spatiotemporal
graph convolution network. Firstly, the causal coefficients of
the joint are calculated according to the joint coordinate
sequence, and the causal coefficient matrix is constructed.
Then, the causal coefficient matrix is applied to the graph
convolution network, which assigns different weights
according to the importance of joints in the process of
motion. In order to effectively learn dynamic features and
improve the accuracy of recognition, it is necessary to pay
attention to the joints with greater influence in the process of
motion and ignore the joints with less influence.

This paper has two main contributions:

(1) Considering the causality in human movement, a
spatiotemporal graph model is constructed for bone
data, and a motion recognition method combining
causality and spatiotemporal graph convolution
network is proposed.

(2) Aiming at the complex situation of calculating joint
torques to obtain weights, a method of calculating
joint weights based on causality was proposed, and
edge weights were assigned to bone graph according
to the causal relationship between joints. The weights
are used as auxiliary information to enhance the
convolutional network to improve the weights of
some joints with strong driving forces in the neural
network, so that the neural network can reduce the
joint attention of low importance and enhance the
joint attention of high importance.

This paper consists of five main parts: the first part is the
introduction, the second part is state of the art, the third part
is methodology, the fourth part is result analysis and dis-
cussion, and the fifth part is the conclusion.
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2. State of the Art

2.1. Bone-Based Training Motion Recognition. Traditional
bone motion recognition based on manual features captures
the dynamics of joint motion by manually designing dif-
ferent feature extraction methods. For example, literature
[10] established time-domain hierarchical covariance matrix
descriptors to represent the motion trajectories of joints.
Literature [11] used the relative position of joints as features.
In literature [12], rotation and translation between various
parts of the body are used to extract features, and then
traditional machine learning algorithms are used to classify
features, so as to classify motions. Because deep neural
networks can better learn feature representation, some re-
search studies on bone-based motion recognition has shifted
from manual feature design to deep learning-based methods.

2.2. Training Motion Recognition Method Based on Deep
Learning. Deep learning-based methods are divided into
two stages. In the early stage, researchers use RNN or
Temporal CNN to learn the motion recognition model in an
end-to-end manner. Most of these methods directly take the
bone coordinate sequence as the input feature or convert the
bone coordinate sequence into grayscale image and then
input it into the network for classification. However, RNN
and CNN cannot completely represent bone structure.
According to the natural structure of the human body, the
graph model is more suitable for the representation of bone
data. Therefore, literature [13] first applied a graph con-
volution network to bone-based motion recognition and
proposed an ST-GCN network model. Later, on the basis of
ST-GCN, 2S-AGCN was proposed in literature [14], which
improved the GCN module so that it could adaptively learn
the topological structure of the graph. Besides the bone data,
the bone information that had never been noticed before was
also used as the second information flow to improve the
recognition effect. Literature [15] used SGR component to
find connectivity between joints in spatial subgroup clus-
tering and measure correlation of joint time trajectory.
Literature [16] extended the skeleton diagram structure to
capture potential dependencies specific to the motion.
However, the above related algorithms based on bones only
consider the information of bone depth and ignore the
appearance features of effective expression of training
movements.

3. Methodology

As shown in Figure 1, this paper proposes a human motion
recognition model that integrates causality and spatiotem-
poral graph convolution network.

Firstly, the model calculates the causality of the joint
according to the joint coordinate sequence and constructs
the causal coefficient matrix. Then, the matrix is applied to
the ST-GCN graph convolution network to extract deep
features from bone data, so as to effectively learn dynamic
features and increase the accuracy of motion recognition.
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FIGURe 1: Motion recognition model combining causality and
spatiotemporal graph convolution network.

3.1. Space-Time Map Model. Let the bone sequence space-
time map be A(Q, E) with length N frames, and point set Q
contains joints at all times. Edge set E consists of two subsets,
one of which is the interskeleton connection E; of each frame
(blue line in Figure 2). E; reflects spatial attributes. The other
edge subset is Er (red line in Figure 2), which reflects
temporal ownership. The top feature of A(Q, E) is the joint
coordinate vector F(q,,), and the vertex g, represents the
coordinates of joint x in the nth frame.

3.2. Graph Convolution. By giving A(Q, E), the g, graph is
convoluted.

fout (qnx) = z ﬁfin(qny) sm (lnx(qny))> (1)

G €H () * 1

where H(g,,) = {qnyld(qny,qnx) < D} is the convolution
sampling region of g,,. f,, is the input feature of g,,. M is
the weight function that provides the weight vector for the

FIGURE 2: Schematic diagram of skeleton spatiotemporal graph.

input feature. Since the size of the traditional convolution
sampling area is fixed, and the number of weight vectors is
equal to the size of the sampling area, and the number of
vertices in H is changing, the mapping vertices need to
correspond to the weight vector in graph convolution.
Mappingl,.: H(q,,) — {0,---, Z — 1}. The adjacent nodes
are mapped to subset labels, and each neighbor node finds
the corresponding weight vector according to subset labels.
Usually, Z is set to 3, which will be divided into 3 subsets. The
first subset (S;) is the vertices themselves (orange nodes in
Figure 3). The second subset (S,) is a centripetal subset that
contains nodes closer to the body’s center of gravity (blue
nodes in Figure 3). The third subset (S;) is a centrifugal
subset that contains nodes farther from the center of gravity
(green nodes in Figure 3).

Graph convolution network is usually composed of
multilayer spatiotemporal graph convolution layers; each
layer carries out spatial graph convolution and temporal
graph convolution in turn to extract high-level features of
the graph, and finally carries out pooling and Softmax
processing.

The feature of A(Q, E) is represented by the (C, N, T)
tensor, where C is the number of channels. N is the length of
time, and T'is the number of vertices. According to equation
(1), the graph convolution formula on multidimensional
tensors is shown in equations (2) and (3).

Z‘I

fout = Z Mz (finGZ)’ (2)
q

G, = A,'°G,A] e RTT, (3)

where G, is the adjacency matrix, Z, represents the con-
volution kernel size; its element G;” represents whether the
vertex q, is in the subset of q,., and M, € RC,, xCy x1x1
is the weight vector. The matrix G, determines whether the
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FIGURE 3: Subset mapping strategy.

vertex features are computed in conjunction with the weight
vectors. Since G, is defined in advance according to the bone
structure, that is, two different motion videos, as long as the
structure of human skeleton extracted is the same, G, is the
same in the convolution of the graph. Since the importance
of joints in different human motions is different, it is nec-
essary to reflect the difference of joint importance in the
adjacency matrix G,. In order to solve this problem, cau-
sality is integrated into the graph convolutional network to
enhance the motion recognition effect.

3.3. Motion Recognition Integrating Causality. The multi-
rigid body model of the human body is modelled by the
Lagrange method, and joint torques are calculated by partial
differential equations. The rigid body model has linkage; one
rigid body will drive other rigid bodies to move through the
rotating shaft. This linkage relationship obviously has cau-
sality. When a joint with a large torque exerts force, it will
drive other joints more, and the exerting joint is the “cause”
of the driven joint. Because the dynamic system of the
human body is very complex and there are many equations
after modelling, it is too complicated to calculate the in-
teraction degree between joints through equations. More-
over, the multirigid body model can only calculate the joint
torques at a single moment, and the calculation of joint
torques in continuous time is more complicated. Therefore,
it is difficult to analyze the strength and causality of joint
interaction through the multirigid body model.

3.3.1. Calculation of Joint Causality. Convergent cross
mapping (CCM) is a method to calculate the special cor-
relation of time series in complex systems. This method is
used to measure the causal relationship between the esti-
mated value and the similarity test variable of I. It can
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overcome the difficulties of complex multirigid body model
modelling and high computational complexity. And it can
quickly test the joint causal relationship, which has been
widely used. This paper allocates edge weights based on
CCM, and the steps are as follows:

(1) Build shadow flow

The e-dimensional delay vector is composed of I,
historical points of the point, which describes the
change of the joint over a period of time and can be
expressed as follows:

Tn = (In’ In—r’ In—ZT’ ] In—(E—l),)' (4)
The shadow flow T of joint coordinate sequence I is
the set of delay vectors I,, of each point I, 7 is the step.

(2) Find the nearest point and create the weight

For I,, find other E+1 time points that are most similar
to the joint position changes at time # and calculate the
Euclidean distance between T,, and other delay vectors.
The calculation formula is shown in equation (4).

d,=D(I,TL). (5)

Select E + 1 delay vector with the smallest distance as
the nearest neighbor point, and get the set of time
points  {#i;,7,,--+,Aig + 1} and distance sets
{di,d,,-++,dg,,}. Calculate the weight of T, for the
distance set as follows:

m, = F> (6)

px — e_dx/dl’ (7)
E+1

T=Y p, (8)
y=1

(3) Calculate the estimated value of X to Y and the
correlation coefficient

Using the weight of each point, the weighted sum of
each point J, in the coordinate sequence J is carried
out, thus obtaining the estimate of I to J.

E+1

T =Y m.J;. (9)

x=1

In this paper, the ability of I historical information to
estimate J is measured by calculating Pearson phase
relation Cj; of original coordinate sequence J and
estimated value J|I.

Cy=Ip U, JDI (10)

(4) Calculate the edge weight matrix

For a pair of joints I and J, two correlation coeffi-
cients C;; and Cj; can be obtained, which are I
estimation J and ] estimation I, respectively. As-
suming that the space-time graph has T joints, the
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causality coefficient matrix C can be obtained by
calculating the causality coefficient of two joints.

cor (ly,lx). (11)

x and y are the joint numbers. In this paper, each line
of coeflicient matrix C is normalized by Softmax, and
the normalized coefficients are embedded as edge
weights of A(Q, E).

3.3.2. Edge Weight Embedding. Inspired by the attention
mechanism of CNN and RNN, this paper changes the edge
weight of A(Q, E) edge set according to the causal coefficient.
In order to assign different weights to different edges in A(Q,
E), equation (2) is modified as follows:

Z
fout = ZMZ (fin(GZGC))’ (12)
q

where © represents the product of each element of the
matrix. In equation (12), G, indicates whether two vertices
are connected in a subset by a matrix element value of 0 or
1/IS,,|. However, in the process of movement, the strength
of interarticular force is different. Since the matrix G, was
T'x T, the edge weight matrix C was T'x T, the matrix size
was also Tx T when C and G, were applied element by
element. Therefore, replacing G, in equation (2) with
(G, ©C) will not cause the problem of matrix size mismatch.

As shown in Figure 4, the weight of the upper part of the
bone marked C corresponds to the movements of the lower
part. Because the main movement part is the arm, and the
movement range is large, while the movement range of the
lower limb joints is small, the edge weight between the upper
limb joints is correspondingly larger than the lower limb joints.

In this paper, the CCM method is used to test the
characteristics of time variable causality and calculate the
causality between each vertex. Joint causality is transformed
into edge weights, and then edge weights are embedded into
graph adjacency matrix by by-element product, thus re-
ducing the joint attention of low importance and enhancing
the joint attention of high importance.

3.3.3. Network Structure. ST-GCN is used as the basic
network in this paper. In order to apply edge weight
matrix, this paper adds edge weight matrix as input and
multiplies edge weight matrix with adjacent matrix ele-
ment by an element before convolution operation. The
convolution layer structure of space-time graph is shown
in Figure 5.

4. Result Analysis and Discussion

In this section, the experiment is firstly carried out on three
public motion recognition datasets based on NTU RGB-D,
Northwestern-UCLA, and SBU Interaction Dataset. The
experiment was then performed on the UCF Sports dataset.

0.0498 0.0407
. ‘ )
9 ‘0
»
» 5
N Z
%

0.0488

FIGURE 4: Schematic diagram of edge weight.

4.1. Experiment on General Motion Recognition Database.
This experiment is based on the framework of the space-time
graph convolution network. The processor is Intel Core(TM)
17-7700, main frequency 3.60 GHz, 32 GB memory, and
NVIDIA Ge Force GTX 1070. The number of neurons in
each layer was 128, the apparent feature extraction radius
was 5 pixels, and the initial learning rate was 0.002. The
equilibrium factor A=10"" and the batch size is 64.
Dropout =0.45 to prevent overfitting.

4.1.1. NTU RGB-D Dataset. This dataset consisted of 40
subjects using 3 Kinect V2 cameras to collect 60 kinds of
movements, 56,880 video clips, and 3D bone data se-
quences from —45°, 0° and 45" angles. It includes individual
daily training movements (such as rope skipping, running,
and squatting), interactive training of characters (such as
barbell training, dumbbell training, and elastic belt train-
ing), and interactive training of pairs (such as drug ball
relay, double flat back stretching, and double cross high-
five)

In the cross-subject experiment, 40 types of subjects were
divided into training and test sets, numbered as 1, 2,4, 5, 8, 9,
13,14, 15, 16,17, 18, 19, 25, 27, 28, 31, 34, 35, 38, and the rest
were test sets. In the cross-view experiment, the first camera
was selected as the test set, and the rest were training sets.

In this section, the accuracy and loss curves corre-
sponding to the training set and test set in the iterative
training of cross subject and cross view are shown in Fig-
ures 6 and 7. It can be seen from Figures 6 and 7 that the
accuracy of the model increases with the increase of training
times and tends to be stable and the loss value converges
when the iteration reaches 220 times. Based on the NTU
RGB-D dataset, the accuracy of cross subjects and cross
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FIGURE 5: Spatiotemporal graph convolutional block.

e 2 o =
N » v o
1

Accuracy
=1
(=)}

0.5
0.4
0.3 |
0.2 1 1 1 1 1 ]
0 50 100 150 200 250 300
Tterations/times
training
————— Test

()

Accuracy

02 1 1 1 1 1 Il
0 50 100 150 200 250 300
Iterations/times
training
—————— Test
(a)

3.0

Loss

0 50 100 150 200 250 300
Iterations/times
training
77777 Test

2.5

Loss

0.5 1 1 1 1 1 )
0 50 100 150 200 250 300
Iterations/times
training
————— Test

FIGURE 7: Accuracy and loss values in cross view.

angles obtained by the proposed method and the main-
stream method is shown in Table 1.

From Table 1, it is clear that literature [17] based on
variable parameter related skeletons and dynamic skeletons
based on 3D geometric relationships) does not take into
account deep space-time information, resulting in low ac-
curacy. Literature [18] mapped joints to 3D space and

extracted depth features through 3D CNN, thus effectively
improving accuracy to 67.96% and 73.69%. However, it does
not consider the time domain information of bone recog-
nition. Literature [19] considered the relative motion trend
of interframe and intraframe joint links. However, this
method only considers joint characteristics and ignores
topological relations, so the accuracy is limited. Literature
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TaBLE 1: Cross subject and cross view accuracy obtained by each algorithm for the dataset.

Data Methods

Cross subject % Cross view %

Literature [17]
Literature [18]
Literature [19]
Literature [20]
Proposed method

Bone sequence

51.19 53.87
67.96 73.69
78.91 88.44
85.33 90.82
89.84 91.12

TaBLE 2: Experimental results of northwestern-UCLA dataset.

Data Features

Methods Accuracy (%)

Manual extraction

Bone sequence

Combining causality and spatiotemporal graph convolution network

Spatiotemporal graph convolution network

Literature [17] 55.70
Literature [18] 75.40
Literature [19] 79.72
Literature [20] 85.40
Proposed method 87.95

[20] encodes spatial relations between joints to improve
accuracy. However, they lack appearance features, thus
limiting recognition ability. The proposed method uses
causality as auxiliary information to enhance the graph
convolutional network, thus improving the accuracy to
89.84% and 91.12%. It shows that the proposed method has
high accuracy in complex scenarios.

4.1.2. Northwestern-UCLA Dataset. The Northwestern-
UCLA dataset consisted of 1,494 sequences of 10 subjects
performing 10 types of exercises: bends, presses, hard pulls,
push-ups, planks, squats, pull-ups, pull-ups, dumbbell ex-
ercises, and barbell exercises. The dataset was collected from
three different perspectives. The first two cameras were
training data, and the rest were test data.

As shown in Table 2, literature [17] assumed that the
skeleton was perpendicular to the ground for projection
clustering discrimination, ignoring the spatial relationship
of the skeleton, resulting in low accuracy. Reference [18] is
better than reference [17] because it is based on variable
parameter-associated skeleton to represent motions, but it
ignores bone dynamic information. Literature [19] obtained
79.72% accuracy by considering the temporal characteristics
of joints, but it was difficult to distinguish similar move-
ments due to the lack of appearance information. In liter-
ature [20], multiperspective dynamic images are extracted to
cope with spatial changes and take appearance features into
consideration, but they lack timing features. This method
integrates causality and represents important dynamic in-
formation of joint effectively, and extracts color texture
information based on the heat map to obtain highly sepa-
rable expression of the motion. The accuracy is improved to
87.95%, which is 8.23% and 2.85% higher than literature [19]
and literature [20], respectively. It indicates that the pro-
posed method has high recognition ability under the con-
dition of different perspectives and diversified topics.

4.1.3. SBU Interaction Dataset. The SBU interaction dataset
contains the following 5 types of interaction: double squats,
double single-leg squats, high-five push-ups, reverse

Accuracy

proposcs | 1

Lierature (20] | 75

Literature [19] 90.95%

Lieratuee (15) | 55

Literature [17] F 86.35%

80 82 84 8 8 90 92 94 9%
(%)

FIGURE 8: Experimental results of SBU interaction dataset.

crunches, and boxing, which are divided into 5 cross sets.
Four of them were selected as training sets and the rest as test
sets. The average value of the verification results of each cross
set was taken as the final accuracy.

See Figure 8 for a comparison of the accuracy of the 5
algorithms. It shows that the accuracy of the proposed
method can reach 95.46%, which is more accurate than the
other four methods, indicating that the accuracy of the
proposed method is relatively high under a small sample
dataset.

4.1.4. Ablation Experiment. In order to further verify the
effectiveness of the proposed method, based on the above
dataset, the influence of the proposed method on accuracy
was studied by integrating causality and spatiotemporal
graph convolution network (see Table 3). As can be seen
from Table 3, compared with the spatiotemporal graph
convolutional network model, the accuracy of the model in
this paper has been improved by 12.90%, 7.29%, 8.15% and
3.13%, respectively. In this model, causal coefficients are
added as edge weights, and causality is used as auxiliary
information to enhance graph convolutional networks.
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TaBLE 3: Experimental results of different models.

Dataset Spatiotemporal graph convolution network (%) Proposed method (%)

NTU (cross subject) 77.06 89.96

NTU (cross view) 83.95 91.24

Northwestern-UCLA 78.81 86.96

SBU 93.56 96.69

(h)

FIGURE 9: Sample frames of each motion in the UCF motion dataset. (a) Barbell training. (b) Running. (c) Pull-ups. (d) Jumping rope. (e)

Swimming. (f) Cycling. (g) Flying swallow. (h) Plank support.

Therefore, it can better highlight the main joints in the
process of human movement, and its effect is far better than
other methods.

4.2. Experiments on the Dataset of Motion Training Posture.
The UCF Sports dataset was used, which consists of eight
training movements, including running, rope skipping,
swimming, swallows, cycling, pull-ups, and planks. These
movements are in a real moving environment, showing
variations in background, lighting conditions and occlusion,
making it a challenging dataset. A sample frame for each
motion is shown in Figure 9.

5. Conclusion

Considering the weight of joints in human motion from the
perspective of causality, this paper proposes a human mo-
tion recognition method combining causality and spatio-
temporal graph convolution network. Inspired by the
attention mechanism in RNN and CNN, causality is used as
auxiliary information in this paper to enhance the graph
convolutional network, so as to effectively improve the
weight of some joints with strong driving force in the neural
network. Experiments on three public motion recognition
datasets show that the accuracy of the proposed method is
significantly higher than that of the existing mainstream
recognition methods. It is proved that the proposed method
can effectively learn dynamic features and increase the

accuracy of motion recognition. In the future, this paper will
try to integrate other modal information, such as RGB and
skeleton data, and combine skeleton-based motion recog-
nition and pose estimation methods in a unified framework.
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