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In order to improve the e�ect of speech emotion research, this paper combines data mining technology to construct a speech
emotion research model and establishes a state space model of speech emotion risk problem. Moreover, this paper uses fuzzy
variables to describe the external uncertain environmental factors and intuitively shows the relationship between each technology,
that is, clearly shows how actions and external environmental factors a�ect their action results, which is helpful in understanding
the voice emotional risk problem from the root. In addition, this paper uses the basic knowledge of credibility theory to transform
the model and �nally transform the model into an optimal control problem.�rough the speech emotion simulation experiment,
it can be seen that themultilingual speech emotion analysis model based on data mining proposed in this paper has a good e�ect in
speech emotion analysis.

1. Introduction

Discrete speech emotion recognition processes emotions
into categories and this type of research suggests that there
are several basic emotions in the brain.�emost well-known
classi�cation criteria are six categories of emotions [1], in-
cluding happy, sad, surprise, fear, anger, and disgust.
However, scholars such as Baron-Cohen believe that cog-
nitive mental states frequently occur in daily interactions,
and they are not expressed through a few basic emotions.
�at is, a single sentiment label or limited discrete categories
cannot adequately describe such complex sentiments.
�erefore, some researchers consider replacing sentiment
classi�cation labels (namely, discrete sentiment) with con-
tinuous sentiment values (namely, dimensional sentiment)
in multidimensional space [2].

Reference [3] proposes an emotional space description
model consisting of Arousal (i.e., motivation, describing the
intensity of emotion) and Valence (i.e., valence, describing
the positive and negative degree of emotion). Among var-
ious continuous emotion space description models, the most
abundant emotion description model is a four-dimensional
space description model: Arousal-Valence-Power-Expec-
tancy. Dimensional speech emotion recognition is a speech
emotion research based on the emotion space description

model. Dimensional discretization speech emotion recog-
nition refers to using a transformation strategy to convert
continuous emotion values in each dimension into a limited
number of categories on the basis of dimension emotion
annotation and then classify and recognize the converted
emotion [4]. Reference [5] quanti�es continuous labels in
two dimensions of Valence-Arousal to four and seven classes
and predicts the quantized sentiment labels on a conditional
random domain model. �e selection of speech emotion
features is a crucial issue in speech emotion recognition [6].
Although the Low-level descriptors (LLD) features used in
each corpus are not the same, for example, the LLD features
related to energy, spectrum, and sound are used in the
AVEC2012 corpus, while the LLD features in the IEMOCAP
corpus mainly contain information related to energy,
spectrum and fundamental frequency [7]. �ese LLD fea-
tures contain rich emotional information and also lead to a
sharp increase in the number of features, which are basically
between 1000 and 2000. Too many features will bring in-
formation redundancy to a certain extent, and the depen-
dencies between features may also be uncontrollable, which
will greatly hinder the training of emotion recognition
models [8]. Subsequently, some researchers began to explore
some high-level features of knowledge-based features. Re-
search results have shown that knowledge-based features
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may be more predictive of emotion recognition [9]. Ref-
erence [10] proposed to use a disfluency feature and non-
verbal feature (Disfluency and Non-verbal, DIS-NV) to
identify the emotion in the dialogue and obtained a relatively
good recognition accuracy. Another essential part of speech
emotion recognition is the selection of recognition models.
(ese models can achieve a good result in emotion recog-
nition performance, but these models ignore the temporal
information in emotion features [11]. In comparison, Long
Short Term Memory Recurrent Neural Network (LSTM-
RNN) can learn long-distance dependency information of
features [12]. (at is, the LSTM model is more suitable for
long-distance information modeling in emotion recogni-
tion. Studies have shown that long short-term memory
networks [13].

Since the introduction of deep learning, many re-
searchers have begun to make breakthroughs [14]. People
attribute deep learning problems to three elements: data,
algorithms, and computing power [15]. Computing power
refers to the environmental problems required for deep
learning, mainly referring to the computing power of
computers. GPU has powerful floating-point computing
capabilities and efficient parallel computing capabilities,
especially for tasks requiring high-density computing such
as image processing, which provides strong support for
accelerating deep learning operations. Algorithms refer to
various methods of deep learning, and algorithms are in-
separable from the support of data. (e data determines the
upper limit of the algorithm, and the algorithm is just
constantly approaching this upper limit [16]. Given the
importance of data to algorithms, some organizations have
begun to build high-quality datasets around their research
directions or commercial application purposes.

(e public multimodal datasets are mainly used for facial
expression recognition, image description, visual question
answering, object and scene detection and recognition, and
semantic segmentation. (ese datasets have not paid much
attention to the problem of discrimination. Most of the
datasets are too coarse-grained for the classification of
emotional issues and almost do not contain expressions
related to discrimination. Some expression recognition
datasets, such as the RaFD dataset, contain categories related
to discrimination. (e RaFD dataset categorizes expressions
into 8 expressions . (is facial discrimination expression is
too obvious and the modalities are single, and other types of
discrimination such as various gesture discrimination and
implicit discrimination in some specific scenarios cannot be
effectively studied [17].(emultimodal high-level semantic-
oriented discrimination studied in the literature [18] is
mostly implicit discrimination in specific scenarios, and the
image and text alone do not convey any discriminatory
emotion, and when the two appear together, they will ex-
press discrimination emotion. (is kind of discrimination
constitutes a complex condition, and the currently published
datasets have not conducted in-depth research on this issue,
and this multimodal high-level semantic discrimination
problemmay have an early adverse impact on an individual’s
mental health and social stability. Manual detection of this
problem: (e problem of this kind of discrimination will

consume huge resources, so it is very necessary to establish a
high-quality dataset for this problem and make a little
contribution to the study of multimodal discrimination. (e
discrimination-oriented multimodal dataset constructed in
[19] focuses on the high-level semantics of images and texts
and also studies gestures with obvious discrimination in-
formation. (ere are many kinds of gesture discrimination,
which can be roughly summarized as pointing discrimi-
nation and face-to-face discrimination in terms of the po-
sitional relationship.

In order to improve the effect of speech emotion analysis,
this paper combines data mining technology to build a
speech emotion research model to improve the effect of
speech emotion analysis.

2. Speech Emotion Recognition Algorithm

2.1. Expected Value of Fuzzy Variable Function

Definition 1. If it is assumed that ζ is a fuzzy variable defined
on the credibility space (Θ, P(Θ), Cr), and f: R⟶ R is a
mapping to a real number set, the expected value E[f(ζ)] of
the function is defined as follows:

E[f(ζ)] � 􏽚
+∞

0
Cr f(ζ)≥ r􏼈 􏼉dr − 􏽚

0

−∞
Cr f(ζ)≤ r􏼈 􏼉dr. (1)

Among them, at least one integral in the above formula is
finite.

We assume that ζ is a fuzzy variable on the credibility
space (Θ, P(Θ), Cr), and its credibility density function
ϕ(x) and credibility distribution Φ(x) both exist. If the
Lebesgue integrals 􏽒

+∞
−∞ xϕ(x)dx and 􏽒

+∞
−∞ xdΦ(x) are finite,

there is the following:

E|ζ| � 􏽚
+∞

−∞
xdΦ(x) � 􏽚

+∞

−∞
xϕ(x)dx. (2)

2.2. Parametric Model of Emotional Risk in Fuzzy
Environment. In order to introduce the emotional riskmodel
of hidden actions more clearly, we use Figure 1 to describe the
emotional risk game sequence of hidden actions, which is
helpful for the following understanding.

In previous studies, random variables are often used to
represent the external uncertain environmental factors.

Before the principal’s expected utility maximization model
is established, in order to more clearly describe the emotional
risk problem in the fuzzy environment, the notation and as-
sumptions used in this chapter are firstly given.

(e basic assumptions are as follows:

2.2.1. Symbol

e, is the effort level of the agent;
ψ(e), is the cost at which the agent’s effort level is e;
q, is the performance of the agent, that is the output;
Φ(x, e), is the reliability distribution function of q

when the effort level is e;
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ϕ(x, e), is the confidence density function of q when
the effort level is e;
t(q), is the emotional output that the agent receives
from the principal;
U(t), is the utility function of the agent for the
emotional output t;
S(q), is the income function of the principal is the
income brought by the output of q unit of the agent to
the principal;
V(S), is the principal’s utility function for revenue.

2.2.2. Assumptions

(1) (e output q is a fuzzy variable whose support is
Ω � [a, b], and its credibility density function sat-
isfies z2ϕ(x, e)/ze2 ≤ 0.

(2) (e emotional output t(x) is monotonically in-
creasing with respect to x, that is, dt(x)/dx≥ 0.
Moreover, there is a large positive number M that
allows us to obtain 0≤ dt(x)/dx≤M, that is, M is the
upper bound of dt(x)/dx, which means that the rate
of change of the emotional output is lower than a
certain level. (at is to say, the rate of change of the
acceptable emotional output set by the entrusted
input is lower than a certain value. Obviously, this
assumption is completely in line with the actual
situation.

(3) (e client’s revenue function S(x) satisfies
dS(x)/dx> 0, d2S(x)/dx2 ≤ 0, and there is S(0) � 0:

(4) (e utility function of the principal is
V(S(x)) − t(x), and we set
dV(S(x))/dx ≥ dt(x)/dx; that is, for the unit change
of the output q, the rate of change of the principal’s
utility for this part of the income is larger than the
rate of change of the emotional output.

(5) (e cost function of the agent’s effort satisfies
ψ(e)≥ 0, dψ(e)/de> 0 and d2ψ(e)/de2 > 0, which
indicates that as the effort level increases, the cost to
be paid increases. At the same time, as the effort level
increases, the cost required to improve the unit effort
level, that is, the marginal cost also increases.

(6) (e utility function of the agent is U(t(q)) − ψ(e).
Among them, U(·) satisfies dU(t)/dt> 0, d2U(t)/
dt2 ≤ 0; that is, the agent uses a fuzzy variable to
describe the agent’s output q, so the principal’s utility
V(S(q)) − t(q) is also a fuzzy variable. (erefore, the
expected utility of the principal is as follows:

E[V(S(q)) − t(q)]. (3)

Strictly speaking, a contract that induces an agent to
perform effort level e should satisfy: when the agent exerts
effort level e, the utility he obtains will be greater than that
obtained when he exerts any other level of effort. (ese
constraints are called incentive compatibility constraints,
which are expressed as follows:

e ∈ argmaxe′ ≥ 0 E[U(t(q))] − ψ e
’

􏼐 􏼑􏼐 􏼑. (4)

Among them, argmaxe′ ≥ 0(E[U(t(q)))] − ψ(e’)) refers
to the set of all e’ that maximize E[U(t(q))] − ψ(e’).

In order to ensure that the agent is willing to participate
in this contractual relationship and successfully complete the
agency task, the level of utility brought to the agent by the
contract provided by the principal cannot be lower than the
level of utility that the agent can obtain when the latter does
not participate in the contractual relationship (called retain
utility). (ese constraints are called the participation
constraints of the agent. Here, for the convenience of
analysis, it is usually assumed that the retained utility of the
agent is zero, and the participation constraint can be
expressed as follows:

E[U(t(q))] − ψ(e)≥ 0. (5)

In this game model, the principal takes action first. As
the designer of the contract, he has the right to design the
contract form that meets his own requirements. Here, the
emotional output designed by the client should meet the
following conditions: its rate of change should be limited
within a certain range, that is,

0≤
dt(x)

dx
≤M. (6)

(e above formula indicates that the rate of change of
emotional output must be greater than zero, but it must also
be limited to a certain value and cannot increase without
limit. (is assumption is perfectly reasonable.

�e principal
provided for the

deed

 

Agent accepts
(or refuses)

Agent performs
noncorroborable
effort (in natural
selection state)

Output results
achieved

Deed execution

Time orders

Figure 1: Emotional risk game process for hidden actions.
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Definition 2. If a set of contracts satisfies both the incentive
compatibility constraint and the participation constraint,
that is, formulas (14) and (16), then the set of contracts is said
to be incentive feasible.

(erefore, the principal’s expected utility maximization
model can be established as follows:

max(t(·),e)E[V(S(q)) − t(q)],

s.t,

e ∈ argmaxe′≥0 E[U(t(q))] − ψ e
’

􏼐 􏼑􏼐 􏼑,

E[U(t(q))] − ψ(e)≥ 0,

0≤
dt(x)

dx
≤M.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(7)

2.3. Model Analysis and Solution. In this section, in order to
find the optimal solution of model (16), we first analyze the
principal’s objective function and the agent’s incentive
compatibility constraints and participation constraints so as
to give the equivalent form of model (16).

(e client’s objective function can be written in the
following form:

E[V(S(q)) − t(q)] � 􏽚
b

a
[V(S(x)) − t(x)]ϕ(x, e)dx. (8)

Proof. We only need to verify that V(S(x)) − t(x) is
monotonically increasing with respect to x. According to
dV(S(x))/dx − dt(x)/dx, we have the following:

dV(S(x)) − t(x)

dx
�
dV(S(x))

dx
−
dt(x)

dx
≥ 0. (9)

(at is, V(S(x)) − t(x) is monotonically increasing with
respect to x. It can be obtained as follows:

E[V(S(q)) − t(q)] � 􏽚
b

a
[V(S(x)) − t(x)]ϕ(x, e)dx. (10)

(e proof is complete.
(e incentive compatibility constraint (14) can be

transformed into the following form:

e ∈ argmaxe′≥0 􏽚
b

a
U(t(x))ϕ x, e′( 􏼁dx − ψ e′( 􏼁􏼠 􏼡. (11)

□

Proof. Since there is dU(t)/dt> 0 and dt(x)/dx≥ 0, there is
dU(t(x))/dx � dU(t)/dt · dt(x)/dx≥0; that is, U(t(x)) is
monotonically increasing with respect to x. It can be seen
that

E[U(t(q))] � 􏽚
b

a
U(t(x))ϕ(x, e)dx. (12)

Furthermore, there is the following:

E[U(t(q))] − ψ(e) � 􏽚
b

a
U(t(x))ϕ(x, e)dx − ψ(e). (13)

(erefore, the incentive compatibility condition can be
transformed into the following form:

e ∈ argmaxe′≥0 􏽚
b

a
U(t(x))ϕ x, e′( 􏼁dx − ψ e′( 􏼁􏼠 􏼡. (14)

(e incentive compatibility constraint (19) can be fur-
ther transformed into the following:

􏽚
b

a
U(t(x))

zϕ(x, e)

ze
dx −

dψ(e)

de
� 0. (15)

□

Proof. First, we set

L(t, e) � 􏽚
b

a
U(t(x))ϕ(x, e)dx − ψ(e). (16)

(e first and second partial derivatives of L(t, e) with
respect to e are calculated separately below:

zL(t, e)

ze
� 􏽚

b

a
U(t(x))

zϕ(x, e)

ze
dx −

dψ(e)

de
, (17)

z
2
L(t, e)

ze
2 � 􏽚

b

a
U(t(x))

z
2ϕ(x, e)

ze
2 dx −

d2ψ(e)

de
2 . (18)

According to z2ϕ(x, e)/ze2 ≤ 0 and d2ψ(e)/de2 > 0, we
can know z2L(t, e)/ze2 < 0, that is,

L(t, e) � 􏽚
b

a
U(t(x))ϕ(x, e)dx − ψ(e), (19)

is a concave function of e. From the knowledge of calculus, it
can be known that themaximum point of L(t, e) exists and is
unique, and it makes the first-order partial derivative of
L(t, e) with respect to e to be zero. (erefore, formula (19)
can be transformed into the following:

􏽚
b

a
U(t(x))

zϕ(x, e)

ze
dx −

dψ(e)

de
� 0,

E[U(t(q))] − ψ(e) � 􏽚
b

a
U(t(x))ϕ(x, e)dx − ψ(e)≥ 0.

(20)
□

(rough the above analysis of the model, the incentive
compatibility constraints and participation constraints are
transformed into integral forms, and the following con-
clusions can be obtained.
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Model (16) can be transformed into the following form:

max(t(·),e) 􏽚
b

a
[V(S(x)) − t(x)]ϕ(x, e)dx,

s.t,

􏽚
b

a
U(t(x))

zϕ(x, e)

ze
dx −

dψ(e)

de
� 0,

􏽚
b

a
U(t(x))ϕ(x, e)dx − ψ(e)≥ 0,

0≤
dt(x)

dx
≤M.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(21)

(e incentive compatibility constraint (19) is equivalent
to the following:

dQ(x)

dx
� U(t(x))

zϕ(x, e)

ze
− ϕ(x, e)

dψ(e)

de
. (22)

Meanwhile, there is the following:
Q(b) � 0. (23)

Among them, there is the following:

Q(x) � 􏽚
b

a
U(t(y))

zϕ(y, e)

ze
− ϕ(y, e)

dψ(e)

de
􏼢 􏼣dy. (24)

Proof. Because there is the following:

Q(x) � 􏽚
x

a
U(t(y))

zϕ(y, e)

ze
− ϕ(y, e)

dψ(e)

de
􏼢 􏼣dy. (25)

(ere is the following:

dQ(x)

dx
� U(t(x))

zϕ(x, e)

ze
− ϕ(x, e)

dψ(e)

de
. (26)

Moreover, there is the following:

Q(b) � 􏽚
b

a
U(t(y))

zϕ(y, e)

ze
− ϕ(y, e)

dψ(e)

de
􏼢 􏼣dy

� 􏽚
b

a
U(t(y))

zϕ(y, e)

ze
dy − 􏽚

b

a
ϕ(y, e)

dψ(e)

de
dy

� 􏽚
b

a
U(t(y))

zϕ(y, e)

ze
dy −

dψ(e)

de

� 0.

(27)

(e proof is complete.
(e participation constraint (20) is equivalent to the

following:

dR(x)

dx
� [U(t(x)) − ψ(e)]ϕ(x, e). (28)

Meanwhile, there is the following:

R(b)≥ 0. (29)

Among them, there is the following:

R(x) � 􏽚
x

a
[U(t(y)) − ψ(e)]ϕ(y, e)dy. (30)

□

Proof. Because there is the following:

R(x) � 􏽚
x

a
[U(t(y)) − ψ(e)]ϕ(y, e)dy. (31)

(ere is the following:

dR(x)

dx
� [U(t(x)) − ψ(e)]ϕ(x, e). (32)

Moreover, there is the following:

R(b) � 􏽚
b

a
[U(t(y)) − ψ(e)]ϕ(y, e)dy

� 􏽚
b

a
U(t(y))ϕ(y, e)dy − 􏽚

b

a
ψ(e)ϕ(y, e)dy,

� 􏽚
b

a
U(t(y))ϕ(y, e)dy − ψ(e)≥ 0.

(33)

(e proof is complete.
Model (21) can be transformed into an optimal control

problem of the form:

max(t(·),e) 􏽚
b

a
[V(S(x)) − t(x)]ϕ(x, e)dx,

s.t,

dQ(x)

dx
� U(t(x))

zϕ(x, e)

ze
− ϕ(x, e)

dψ(e)

de
,

dR(x)

dx
� [U(t(x)) − ψ(e)]ϕ(x, e),

dt(x)

dx
� v(x),

0≤ v(x)≤M,

Q(a) � 0,

Q(b) � 0,

R(a) � 0,

R(b)≥ 0,

t(a) � 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(34)

Among them, Q(x), R(x) and t(x) are state variables,
and v(x) is a control variable.
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(rough the above analysis, the emotional risk problem
model in the principal-agent can be transformed into an
optimal control problem. Among them, Q(x), R(x) and l(x)

are state variables and v(x) is a control variable (refer to the
literature). (erefore, the necessary conditions for the

existence of the optimal solution of the model can be given
by using the Pontryagin maximum principle (refer to the
literature), and the specific solution steps are given.

First, the Hamiltonian function of model (45) can be
defined as follows:

H(Q, R, t, v, λ, μ, c, x) � [V(S(x)) − t(x)]ϕ(x, e) + λ(x) U(t(x))
zϕ(x, e)

ze
− ϕ(x, e)

dψ(e)

de
􏼢 􏼣

+ μ(x)[U(t(x)) − ψ(e)]ϕ(x, e) + c(x)v(x).

(35)

Among them, Q(x), R(x) and t(x) are state variables,
v(x) is the control variable, λ, μ and c are the corresponding
costate variables.

(e necessary conditions for the existence of optimal
solutions can be obtained by applying the Pontryagin maxi-
mum principle. (at is, if Q∗, R∗, t∗ and v∗ are the optimal
solutions of the optimal control problem (45), there are optimal
costate variables λ, μ and c such that Q∗, R∗, t∗, v∗ and λ, μ, c

satisfy the following equations and boundary conditions.

(1) Regular equation system

dQ(x)

dx
�

zH

zλ
,

dR(x)

dx
�

zH

zμ
,

dt(x)

dx
�

zH

zc
,

dλ(x)

dx
� −

zH

zQ
,

dμ(x)

dx
� −

zH

zR
,

dc(x)

dx
�

zH

zt
.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(36)

(2) Boundary conditions

Q(a) � 0,

Q(b) � 0,

R(a) � 0,

R(b)≥ 0,

t(a) � 0,

c(b) � 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(37)

(3) On [0, M], v∗ maximizes the Hamiltonian function
(24), that is,

H Q
∗
, R
∗
, t
∗
, v
∗
, λ, μ, c, x( 􏼁

� max0≤v≤MH Q
∗
, R
∗
, t
∗
, v, λ, μ, c, x( 􏼁.

(38)

(erefore, corresponding to the above problem, com-
bined with the specific form of the Hamiltonian function, the
expression of the necessary conditions for the existence of
the optimal solution is given, and the following conclusions
can be obtained.

(e optimal solution (t∗(q), e∗) of the emotional risk
model that maximizes the expected utility of the principal
satisfies the following conditions:

(1) Regular equation system

dQ(x)

dx
� U(t(x))

zϕ(x,e)

ze
−ϕ(x,e)

dψ(e)

de
,

dR(x)

dx
�[U(t(x)) −ψ(e)]ϕ(x,e),

dt(x)

dx
� v(x),

dλ(x)

dx
� 0,

dμ(x)

dx
� 0,

dc(x)

dx
� ϕ(x,e) −λ(x)

dU(t)

dt

zϕ(x,e)

ze

−μ(x)
dU(t)

dt
ϕ(x,e).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(39)

(2) Boundary conditions
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Q(a) � 0,

Q(b) � 0,

R(a) � 0,

R(b)≥ 0,

t(a) � 0,

c(b) � 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(40)

(3) On [0, M], v∗ maximizes the Hamiltonian function
(45), that is,

H Q
∗
, R
∗
, t
∗
, v
∗
, λ, μ, c, x( 􏼁

� max0≤v≤MH Q
∗
, R
∗
, t
∗
, v, λ, μ, c, x( 􏼁.

(41)

For a special case, that is, the case where the utility
function of the agent is a linear function; that is, the case of
U(x) � kx, k> 0, the specific solution steps are discussed.

It can be known from the regular equation

dc(x)

dx
� ϕ(x, e) − λ(x)

dU(t)

dt

zϕ(x, e)

ze

− μ(x)
dU(t)

dt
ϕ(x, e)

� 1 −
dU(t)

dt
􏼢 􏼣ϕ(x, e) − λ(x)

dU(t)

dt

zϕ(x, e)

ze
.

(42)

(erefore, according to dλ(x)/dx � 0, dμ(x)/dx � 0
(that is, λ, μ is independent of x ) and boundary condition
λ(b) � 0, we have the following:

c(x) � − 􏽚
b

x
1 − μ(y)

dU(t)

dt
􏼢 􏼣ϕ(y, e) − λ(y)

dU(t)

dt

zϕ(y, e)

ze
dx􏼨 􏼩

� − 􏽚
b

x
[1 − kμ(y)]ϕ(y, e) − kλ(y)

zϕ(y, e)

ze
dy􏼨 􏼩

� (kμ − 1) − 􏽚
b

x
ϕ(y, e)dy + kλ􏽚

b

x

zϕ(y, e)

ze
dy.

(43)

Among the specific problems, ϕ(x, e) is known, then we
can find the specific expression of c(x) . It is also known
that on [0, M], v∗ maximizes the Hamiltonian function (34),
that is,

H Q
∗
, R
∗
, t
∗
, v
∗
, λ, μ, c, x( 􏼁

� max0≤v≤MH Q
∗
, R
∗
, t
∗
, v, λ, μ, c, x( 􏼁.

(44)

In the Hamiltonian function, there is only c(x)v(x)

which contains the control variable v(x), then v∗ maximizes
the Hamiltonian function, that is, v∗ maximizes c(x)v(x).
(erefore, it is only necessary to specifically determine the
switching point of v(x) according to the sign of c(x), that is,
when there is c(x)> 0, there is v∗x � M. When there is
c(x)< 0, there is v∗x � 0. Finally, combined with the
boundary conditions of dt(x)/dx � v(x) and t(x), the
specific expression of the emotional output t∗(x) can be

given. Among them, λ, μ is determined by the boundary
conditions. (e above solution process is described below
with a specific example.

We set
V(S) � In(1 + S), S(x) � x, U(x) � kx, k> 0,ψ(e) � e2

It can be known from the regular equation

dc

dx
� ϕ(x, e) − λ(x)

dU(t)

dt

zϕ(x, e)

ze
− μ(x)

dU(t)

dt
ϕ(x, e)

� 1 − μ(x)
dU(t)

dt
􏼢 􏼣ϕ(x, e) − λ(x)

dU(t)

dt

zϕ(x, e)

ze
.

(45)

(erefore, according to condition
dλ(x)/dx � 0, dμ(x)/dx � 0 (that is, λ, μ is independent of
x) and boundary condition c(+∞) � 0, we can get the
following:
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c(x) � − 􏽚
b

x
1 − μ(y)

dU(t)

dt
􏼢 􏼣ϕ(y, e) − λ(y)

dU(t)

dt

zϕ(y, e)

ze
dy􏼨 􏼩

� − 􏽚
b

x
[1 − kμ(y)]ϕ(y, e) − kλ(y)

zϕ(y, e)

ze
dy􏼨 􏼩

� (kμ − 1) 􏽚
+∞

x
ϕ(y, e)dy + kλ􏽚

+∞

x

zϕ(y, e)

ze
dy

� (kμ − 1) 􏽚
+∞

x
ϕ(y, e)dy + kλ

z

ze
􏽚

+∞

x
ϕ(y, e)dy

� (kμ − 1) 􏽚
+∞

x

1
e
exp −

y − a

e
􏼒 􏼓dy + kλ

z

ze
􏽚

+∞

x

1
e
exp −

y − a

e
􏼒 􏼓dy

� (kμ − 1)exp −
x − a

e
􏼒 􏼓 + kλ

z

ze
exp −

x − a

e
􏼒 􏼓

� kμ − 1 +
kλ
e
2 (x − a)􏼢 􏼣exp −

x − a

e
􏼒 􏼓.

(46)

(e cases are discussed in the following case by case. □

Case 1. λ> 0
When there is x> (1 − kμ)e2/kλ + a, there is c> 0, so

there is v(x) � M. At this point, there is t(x) � Mx + c1
When there is x≤ (1 − kμ)e2/kλ + a, there is c≤ 0, so

there is v(x) � 0. At this point, there is t(x) � c2. At the
same time, because there is t(a) � 0, there is c2 � 0, that is,

t
∗
(x) �

0, x≤
(1 − kμ)e

2

kλ
+ a,

Mx + c1, x>
(1 − kμ)e

2

kλ
+ a.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(47)

Among them, there is c1 � −M[(1 − kμ)e2/kλ + a]

(e expression of t∗(x) is brought into the incentive
compatibility constraint (3.7) to obtain the optimal effort
level e∗, which satisfies the following formula:

kM
(1 − kμ)

kλ
+ 1􏼢 􏼣exp −

(1 − kμ)

kλ
e􏼠 􏼡 � 2e. (48)

If we set a1 � (1 − kμ)(e∗)2/kλ + a, the optimal emo-
tional output t∗(x) is shown in Figure 2.

It can be seen that the optimal emotional output t∗(x) is
a piecewise function. (at is, when the output result of the
agent is below the limit value, it will not be able to obtain the
emotional output. Only when the output result exceeds the
limit value, can he obtain a positive emotional output. At this
point, the sentiment output is a linear function with a
growth rate of M.

Case 2. λ< 0
When there is x≤ (1 − kμ)e2/kλ + a, there is c≥ 0, so

there is v(x) � M. At this point, there is t(x) � Mx + c3. At

the same time, we know t(a) � 0, then there is
t(x) � Mx − Ma.

When there is x> (1 − kμ)e2/kλ + a, there is c< 0, so
there is v(x) � 0. At this time, there is t(x) � c4, that is,

t
∗
(x) �

Mx − Ma, x≤
(1 − kμ)e

2

kλ
+ a,

c4, x>
(1 − kμ)e

2

kλ
+ a.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(49)

Among them, there is. c4 � M(1 − kμ)e2/kλ
(e expression of l∗(x) is brought into the incentive

compatibility constraint (3.7) to obtain the optimal effort
level e∗, which satisfies the following formula:

kM − kM
(1 − kμ)

kλ
e + 1􏼢 􏼣exp −

(1 − kμ)

kλ
e􏼠 􏼡 � 2e. (50)

If we set a1 � (1 − kμ)(e∗)2/kλ + a, the optimal emo-
tional output t∗(x) is shown in Figure 3.

It can be seen from the figure that the optimal emotional
output t∗(x) is a piecewise function. (e initial sentiment
output is a linear function with a growth rate of M that
increases as the output outcome increases. However, when
the output result increases to a certain amount a1, the
emotional output will no longer increase, that is, maintain a
fixed constant value. At this time, a certain number a1 is
large enough to ensure that the principal motivates the agent
to make the optimal level of effort it is trying to motivate.

We set V(S) �
�
S

√
, S(x) � x, U(x) � kx, k> 0,ψ(e) � e2

and output q as exponential fuzzy variables, and their
membership functions are as follows:

μ(x) � 2 1 + exp
πx
�
6

√
e

􏼠 􏼡􏼠 􏼡

− 1

, x≥ 0. (51)

(e distribution function is as follows:
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Φ(x, e) �

1 − 1 + exp
πx
�
6

√
e

􏼠 􏼡􏼠 􏼡

− 1

, x≥ 0,

0, x< 0,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ϕ(x, e) �

π
�
6

√
e
exp

πx
�
6

√
e

􏼠 􏼡 1 + exp
πx
�
6

√
e

􏼠 􏼡􏼠 􏼡

− 2

, x≥ 0,

0, x< 0.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(52)

It can be known from the regular equation:

dc

dx
� ϕ(x, e) − λ(x)

dU(t)

dt

zϕ(x, e)

ze
− μ(x)

dU(t)

dt
ϕ(x, e)

� 1 − μ(x)
dU(t)

dt
􏼢 􏼣ϕ(x, e) − λ(x)

dU(t)

dt

zϕ(x, e)

ze
.

(53)

(erefore, according to dλ(x)/dx � 0, dμ(x)/dx � 0
(that is, λ, μ is independent of x ) and boundary condition
c(+∞) � 0, we have the following:

c(x) � − 􏽚
+∞

x
1 − μ(y)

dU(t)

dt
􏼢 􏼣ϕ(y, e) − λ(y)

dU(t)

dt

zϕ(y, e)

ze
dy􏼨 􏼩

� − 􏽚
+∞

x
[1 − kμ(y)]ϕ(y, e) − kλ(y)

zϕ(y, e)

ze
dy􏼨 􏼩

� (kμ − 1) 􏽚
+∞

x
ϕ(y, e)dy + kλ􏽚

+∞

x

zϕ(y, e)

ze
dy

� (kμ − 1) 􏽚
+∞

x
ϕ(y, e)dy + kλ

z

ze
􏽚

+∞

x
ϕ(y, e)dy

� (kμ − 1) 1 + exp
πx
�
6

√
e

􏼠 􏼡􏼠 􏼡

− 1

+ kλ
πx
�
6

√
e
2 exp

πx
�
6

√
e

􏼠 􏼡 1 + exp
πx
�
6

√
e

􏼠 􏼡􏼠 􏼡

− 2

� (kμ − 1) + kλ
πx
�
6

√
e
2 exp

πx
�
6

√
e

􏼠 􏼡 1 + exp
πx
�
6

√
e

􏼠 􏼡􏼠 􏼡

− 1
⎡⎣ ⎤⎦ 1 + exp

πx
�
6

√
e

􏼠 􏼡􏼠 􏼡

− 1

.

(54)

(e cases are discussed in the following case by case.

Case 3. λ< 0
When there is x≤

�
6

√
(1 − kμ)e2/πkλ, there is c≥ 0, so

there is v(x) � M. At this point, there is t(x) � Mx + m1. At
the same time, we know t(0) � 0, then there is
t(x) � Mx.When there is x>

�
6

√
(1 − kμ)e2/πkλ, there is

c< 0, so there is v(x) � 0. At this time, there is t(x) � m2.
Among them, there is m2 � M(

�
6

√
(1 − kμ)e2/πkλ), that is,

t
∗
(x) �

Mx − Ma, x≤
�
6

√
(1 − kμ)e

2

πkλ
,

m2, x>
�
6

√
(1 − kμ)e

2

πkλ
.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(55)

Among them, there is m2 � M
�
6

√
(1 − kμ)e2/πkλ.

(e expression of t∗(x) is substituted into the incentive
compatibility constraint (19) to obtain the optimal effort
level e∗, which satisfies the following formula:

0 a a1 x

t⁎(x)

Figure 2: Optimal emotional output t∗(x).

0 a a1 x

t⁎(x)

Figure 3: Optimal emotional output t∗(x).
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�
6

√
kM

π
·
(1 − kμ)e

kλ
1 − 1 + exp

(1 − kμ)e

kλ
􏼠 􏼡􏼠 􏼡

−1
⎡⎣ ⎤⎦,

+

�
6

√
kM

π
−In 1 + exp

(1 − kμ)e

kλ
􏼠 􏼡􏼠 􏼡 + In2􏼢 􏼣 − 2e � 0.

(56)

Case 4. λ> 0when there is x> 2
�
6

√
(1 − kμ)e2/πkλ, there is

c> 0, so there is v(x) � M. At this point, there is
t(x) � Mx + m3. Among them, there is
m3 � −2

�
6

√
M(1 − kμ)e2/πkλ.when there is

x≤ 2
�
6

√
(1 − kμ)e2/πkλ, there is c≤ 0, so there is v(x) � 0. At

this point, there is t(x) � m4. At the same time, because
there is t(0) � 0, there is m4 � 0, that is,

t
∗
(x) �

0, x≤
2

�
6

√
(1 − kμ)e

2

πkλ
,

Mx + m3, x>
2

�
6

√
(1 − kμ)e

2

πkλ
.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(57)

Among them, there is m3 � −2
�
6

√
(1 − kμ)e2/πkλ.

(e expression of t∗(x) is brought into the incentive
compatibility constraint (3.7) to obtain the optimal effort
level e∗, which satisfies the following formula:

2
�
6

√
kM

π
·
(1 − kμ)e

kλ
1 + exp

(1 − kμ)e

kλ
􏼠 􏼡􏼠 􏼡

−1

− 1⎡⎣ ⎤⎦

+

�
6

√
kM

π
In 1 + exp

2(1 − kμ)e

kλ
􏼠 􏼡􏼠 􏼡 − 2e � 0.

(58)

In particular, when there is λ> 0 and μ> 1/k, for any x,
there is c(x)> 0. At this point, there is v(x) � M, then there

is t(x) � Mx + m1. At the same time, because there is
t(0) � 0, there is t∗(x) � Mx. (e optimal emotional output
t∗(x) is shown in Figure 4.

At this time, the optimal emotional output is a mono-
tonically increasing linear function whose slope is the upper
limit M of the rate of change of emotional output set by the
client in advance.

(e expression of t∗(x) is brought into the incentive
compatibility constraint to obtain the optimal effort level e∗,
and its expression is as follows:

e
∗

�

�
6

√
(In2)kM

2π
. (59)

By observing the expression of e∗, we can know the
relationship between the optimal effort level e∗ and M and
the relationship between the optimal effort level e∗ and k,
which are shown in Figure 5.

From the above analysis, it is easy to draw the following
conclusions.

Conclusion 1. As shown in Figure 5(a), e∗ changes with the
change of M, that is, the size of e∗ and M are proportional. It
increases as M increases. It shows that if the M set by the
principal in advance is larger, that is to say, the larger the
upper limit of the change rate of the emotional output that it
can accept in advance, the more it can motivate the agent to
make a higher degree of effort. Conversely, too high a level of
effort cannot be motivated.

Conclusion 2. As shown in Figure 5(b), e∗ is proportional to
the size of k, which decreases as k decreases. It shows that if
the principal knows that the agent’s sensitivity to the change
of the emotional output is very small, it is reluctant to
motivate the effort level that is too high. On the contrary, if
the agent is very sensitive to the change of emotional output,

0 x

t⁎(x)

Figure 4: Optimal emotional output t∗(x).

0 M

e⁎
6 (ln 2) k

2π
·M

(a)

0 k

6 (ln 2) M
2π k·

e⁎

(b)

Figure 5: Optimal effort level curve (a) (e relationship between
optimal effort levels e∗ and M. (b) (e relationship between op-
timal effort levels e∗ and k.
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Embedding
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Embedding
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Figure 6: Flowchart of the emotion analysis model. (e proposed
SABG model directly trains key sentiment words by combining the
Self-Attention mechanism. (e structure of the SABG model is
shown in.
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Figure 8: Structural diagram of the emotion analysis model.
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Figure 7: Structure diagram of SABG model.
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the principal is more willing to motivate the agent to pay a
higher level of effort, that is, e∗ is proportional to the rate of
change of the agent’s utility function about the emotional
output.

3. Multilingual Speech Emotion Research
Based on Data Mining

(is paper proposes the GE-BiLSTM model. (e key part is
that the pretrained language model is used to obtain word
vectors containing contextual information by training the
language model, and combined with the global word vector
generated by the traditional Glove, the connection between
words is improved. Training word vectors for the purpose of
a language model can better capture emotional factors, and a
bidirectional LSTM network further extracts text features
and improves classification accuracy. (e flow chart of the
emotion analysis model is shown in Figures 6–8.

(e effect of the multilingual speech emotion research
model based on data mining proposed in this paper is
verified, and the results of the statistical speech emotion
research are shown in Table 1.

(rough the speech emotion simulation experiment, it
can be seen that the multilingual speech emotion analysis
model based on data mining proposed in this paper has a
good effect on speech emotion analysis.

4. Conclusion

Currently, research on sentiment analysis methods focuses
on pretrained language models. (e model learns the
context-sensitive representation of each word in the input
sentence through massive text data, thereby learning gen-
eralized grammatical and semantic knowledge and then fine-
tuning the network for specific downstream tasks. Pre-
trained language models have achieved good results in
various natural language processing tasks. However, due to
the long training time and high computational overhead
caused by its large model, it is difficult to deploy it on
computers and servers with limited computing power.
(erefore, how to compress the model under the premise of
ensuring performance and obtain higher accuracy through
lightweight models has become a further research direction.
In order to improve the effect of speech emotion analysis,
this paper combines data mining technology to construct
speech emotion research model. (rough the speech emo-
tion simulation experiment, it can be seen that the

Table 1:(e effect of multilingual speech sentiment analysis model
based on data mining.

Num Speech sentiment analysis
1 83.28
2 87.49
3 84.98
4 87.14
5 84.67
6 86.67
7 84.29
8 81.27
9 86.92
10 87.97
11 87.04
12 83.18
13 88.47
14 88.64
15 88.57
16 87.80
17 86.27
18 88.60
19 81.69
20 81.72
21 87.67
22 82.44
23 88.97
24 84.86
25 82.24
26 88.25
27 84.00
28 86.05
29 86.57
30 83.98
31 81.37
32 82.58
33 88.90
34 83.17
35 86.54
36 85.94
37 88.71
38 83.58
39 84.51
40 82.94
41 85.17
42 81.58
43 81.98
44 87.27
45 82.09
46 84.58
47 82.71
48 84.27
49 84.16
50 87.80
51 84.38
35 86.54
36 85.94
37 88.71
38 83.58
39 84.51
40 82.94
41 85.17
42 81.58

Table 1: Continued.

Num Speech sentiment analysis
43 81.98
44 87.27
45 82.09
46 84.58
47 82.71
48 84.27
49 84.16
50 87.80
51 84.38
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multilingual speech emotion analysis model based on data
mining proposed in this paper has a good effect in speech
emotion analysis.
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Garcia, “Towards emotion recognition from contextual in-
formation using machine learning,” Journal of Ambient In-
telligence and Humanized Computing, vol. 11, no. 8,
pp. 3187–3207, 2020.

[6] S. G. Koolagudi, Y. V. S. Murthy, and S. P. Bhaskar, “Choice of
a classifier, based on properties of a dataset: case study-speech
emotion recognition,” International Journal of Speech Tech-
nology, vol. 21, no. 1, pp. 167–183, 2018.

[7] M. F. Alghifari, T. S. Gunawan, and M. Kartiwi, “Speech
emotion recognition using deep feedforward neural network,”
Indonesian Journal of Electrical Engineering and Computer
Science, vol. 10, no. 2, pp. 554–561, 2018.

[8] Y. Gu, Y. Wang, T. Liu et al., “EmoSense: computational
intelligence driven emotion sensing via wireless channel data,”
IEEE Transactions on Emerging Topics in Computational In-
telligence, vol. 4, no. 3, pp. 216–226, 2020.

[9] N. Alswaidan andM. E. B. Menai, “A survey of state-of-the-art
approaches for emotion recognition in text,” Knowledge and
Information Systems, vol. 62, no. 8, pp. 2937–2987, 2020.

[10] L. Tan, K. Yu, L. Lin et al., “Speech emotion recognition
enhanced traffic efficiency solution for autonomous vehicles
in a 5G-enabled space–air–ground integrated intelligent
transportation system,” IEEE Transactions on Intelligent
Transportation Systems, vol. 23, no. 3, pp. 2830–2842, 2022.

[11] M. F. Alghifari, T. S. Gunawan, S. A. A. Qadri, M. Kartiwi, and
Z. Janin, “On the use of voice activity detection in speech
emotion recognition,” Bulletin of Electrical Engineering and
Informatics, vol. 8, no. 4, pp. 1324–1332, 2019.

[12] P. Buitelaar, I. D. Wood, S. Negi et al., “Mixedemotions: an
open-source toolbox for multimodal emotion analysis,” IEEE
Transactions on Multimedia, vol. 20, no. 9, pp. 2454–2465,
2018.

[13] M. Md Saad, N. Jamil, and R. Hamzah, “Evaluation of support
vector machine and decision tree for emotion recognition of
Malay folklores,” Bulletin of Electrical Engineering and In-
formatics, vol. 7, no. 3, pp. 479–486, 2018.

[14] T. S. Kumar and T. Senthil, “Construction of hybrid deep
learningmodel for predicting children behavior based on their
emotional reaction,” Journal of Information Technology and
Digital World, vol. 3, no. 1, pp. 29–43, 2021.

[15] F. Mendoza-Palechor, M. L. Menezes, A. Sant’Anna, M. Ortiz-
Barrios, A. Samara, and L. Galway, “Affective recognition
from EEG signals: an integrated data-mining approach,”
Journal of Ambient Intelligence and Humanized Computing,
vol. 10, no. 10, pp. 3955–3974, 2019.

[16] J. Moon, F. Ke, and Z. Sokolikj, “Automatic assessment of
cognitive and emotional states in virtual reality-based flexi-
bility training for four adolescents with autism,” British
Journal of Educational Technology, vol. 51, no. 5, pp. 1766–
1784, 2020.

[17] D. M. Schuller and B. W. Schuller, “A review on five recent
and near-future developments in computational processing of
emotion in the human voice,” Emotion Review, vol. 13, no. 1,
pp. 44–50, 2021.

[18] S. Demircan and H. Kahramanli, “Application of fuzzy
C-means clustering algorithm to spectral features for emotion
classification from speech,”Neural Computing & Applications,
vol. 29, no. 8, pp. 59–66, 2018.

[19] E. Ford, M. Oswald, L. Hassan, K. Bozentko, G. Nenadic, and
J. Cassell, “Should free-text data in electronic medical records
be shared for research? A citizens’ jury study in the UK,”
Journal of Medical Ethics, vol. 46, no. 6, pp. 367–377, 2020.

Advances in Multimedia 13


