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�e task allocation process in the Witkey mode is dynamic and open, in which Witkey is a rational person. Due to Witkey’s
individual rationality, in order to make the result of task allocation stable, task allocation must reach the Nash equilibrium.
However, the Nash equilibrium point does not necessarily have the highest total system revenue. In order to make the task
allocation result stable and have a high total system revenue, this paper proposes an incentive measure based on integral ranking to
improve user participation.WhenWitkey adopts the best response strategy to select task, the order of participating in the selection
will a�ect the individual income ofWitkey to a certain extent. �e higher the order, the greater the probability of obtaining higher
system income. Based on this idea, a dynamic task allocation algorithm with complex tasks in the Witkey mode is proposed by
combining incentive measures with best response strategy and reasonable bene�t allocation strategy.�e �nally simulation results
veri�ed the e�ectiveness of the proposed algorithm, and the impact of incentive measures on the total revenue of the system was
also examined.

1. Introduction

�e tasks in the Witkey platform are often complex or
complicated, which they cannot solve or even �nd suitable
partners to solve, and can only seek online help through the
Witkey platform. Guest model is relying on the individual or
cooperation team of wisdom and creative to create value to
obtain the way of income. For example, the user use the
Internet to solve the problems in science, technology, work,
life, learning, and other aspects and let knowledge, wisdom,
experience, and service turn into economic bene�ts [1]. �is
model well re�ects that the Internet is a new concept of
people-centered community where users achieve value
output through work and is a creative Internet knowledge
management mode. In the age of data, the free sharing of
information has promoted the vigorous development of the
Internet, such as the emergence of Wiki websites, search
engines, blog websites, etc., which have brought a lot of
convenience to our life and work. However, from the per-
spective of human resource management, whenever the use

of personal knowledge, wisdom, ability, experience, and
tasks need to cost a certain economic and time cost that do
not need any cost of resource sharing is not practical and
does not conform to the law of economics. Consequently,
cost-free mode to the end will only hinder the role of the
development of the Internet. Generally speaking, individuals
protect their core capabilities, which makes shared resources
di�cult to improve when a certain apex is reached. In
addition, the diversi�cation and continuous improvement of
online payment means enabling the Internet to price prices
for knowledge, wisdom, ability, experience, etc., according to
its need. It means that the era of completely free sharing of
Internet information has passed and is changing to the era of
the value of online resources [2]. �is shift is actually a
change in the state of intellectual freedom, which can ef-
fectively improve the enthusiasm of solution providers to
obtain more targeted problem-solving capabilities. More
importantly, under the value environment of Internet re-
sources, the employment mode of the Witkey model is more
�exible. It is no longer restricted by time, place, and way of
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work. -e Internet allows workers from all over the world to
work on a unified platform and a level playing field. -e
application of the Witkey model gives them more free
working hours, and the competitive and cooperative ways
can also bring them more ideas and creativity to the Witkey
model. So, making good use of the knowledge of users,
wisdom, service and experience of this platform can pay less
cost to get the same quality service or even higher quality
service to meet the needs of enterprises or individuals in
some aspects. It is clear that the Witkey model is good to
meet the supply and demand of service and a more efficient
and lower cost matching [3].

Rational people or rational agents are characterized by
self-interest. Compared with the task assignment of col-
laborative agents in the general sense, the task assignment of
rational users has some unique properties, such as the
following: (1) the task assignment of rational users must
meet the individual rationality [4, 5]. However, collaborative
agents always make decisions that maximize system benefits
within their capabilities (communication, computation,
etc.). (2) For rational users, in order to maximize their
individual benefits, they may deliberately make decisions
that harm the benefits of others or system. (3) For rational
users, after the completion of the task is completed, whether
the benefit distribution is reasonable directly affects whether
the cooperation can continue. Unreasonable allocation
schemes may affect the enthusiasm of rational users to
participate in future tasks and may even lead to their ter-
mination of the execution of the task midway. For coop-
erative agents, how to allocate the benefits is not a problem
that must be considered. At the same time, because the
income obtained after the task is usually a set value, for
rational users, the benefit allocation scheme must meet the
budget effectiveness of it [6, 7]. (4) In communication, in
order to obtain better personal benefits, rational users may
conceal personal information, such as geographical location,
cost, or even conceal the specific content of the task. For
collaborative agents, there is usually an implicit assumption
that they are willing to transmit all their information to other
agents or centralized managers as long as communication
conditions allow. (5) Under the same conditions, the system
income obtained from the rational user task allocation
cannot be greater than the system income obtained from the
task allocation of the collaborative agents.

Due to the abovementioned differences, some existing
complex task allocation algorithms for cooperative agents
cannot be directly used to solve the complex task allocation
of rational users in the Witkey mode. In this paper, we study
the complex task assignment problem model in the Witkey
model and a task assignment algorithm based on best re-
sponse strategy is proposed. Based on this, a task assignment
algorithm called Task Allocation Algorithm Considering
Witkey Participation (TAACWP) is proposed to improve
user participation. -e final simulation results verify the
effectiveness of this algorithm.

-e remainder of this article is organized as follows.
Section 2 summarizes the current situation of domestic and
foreign research on related problems. Section 3 establishes a
problem model for complex task benefit allocation and task

assignment in the Witkey model. Section 4 describes the
basic idea of the TAACWP algorithm and analyzes its
convergence. Simulation results in Section 5 show that the
algorithm proposed in this paper can efficiently distribute
complex tasks and proceeds to rational users. Section 6
summarizes the work presented in this article.

2. Related Work

-is section analyzes the status of research at home and
abroad from two aspects of benefit allocation algorithm and
complex task allocation algorithm for rational agents.

Benefit allocation algorithm: When the task set ac-
complished by all possible sets of users is known, the so-
lution concept of the cooperative game can be used to make
benefit allocation if they are independent of each other [8, 9].
However, in practical applications such as Witkey, the task
set that a user set can accomplish is generally unknown, and
for n users, there is a possible set of 2n users with high
temporal and spatial complexity. Meanwhile, when a task is
assigned to a single set of users, the task cannot be reassigned
to other user sets, so the sets of tasks that can be accom-
plished by different user sets are also not generally inde-
pendent of each other.

In the CRA (Consensus-based Reward Allocation) al-
gorithm [10], a concept called “return” was introduced to
distribute benefits. Return is the ratio of the remuneration
each user receives to its cost. To achieve fairness, the CRA
tries to align returns for all users. -e fairness is reflected in
the higher the cost of users to get a more share of the
revenue. However, this is actually not conducive to the
improvement of the total system revenue. Instead, to in-
crease the total revenue of the system, it should be tried to
allocate tasks to lower cost users to complete. -e IRA
(Intermediary Recruitment Algorithm) algorithm can also
solve the benefit assignment and task assignment of complex
tasks, but the algorithm time complexity is high when the
number of services required is large [11].

Complex task assignment algorithm of rational agents:
Game theory is an effective method to study the decision-
making of rational agents. Learning algorithms based on
game theory mainly include the following: Best Response,
(BR) [12, 13], Fictitious Play (FP) [14], Computationally
Efficient Sampled FP (CESFP) [15], etc. Among them, for the
optimal response strategy to obtain good task allocation
results, then the benefits must be reasonably distributed, and
the best response strategy does not account for the allocation
of benefits. In virtual countermeasure algorithms, rational
user decisions are based on their own historical information,
which is not conducive to improving the quality of task
assignment.

Other similar studies on rational multiagent systems
have mainly focused on resource allocation [16–20] and the
single-agent task assignment [21–26]. -e difference be-
tween resource assignment and task assignment is that the
resources owned by the user in the resource assignment can
be transferred, while the services provided by the user in
Witkey customer cannot be transferred between the users
[24]. -e single-agent tasks are tasks that can be done
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without the collaboration of multiple agents. While there are
also tasks in theWitkey mode that can require only one user,
there are also many complex tasks that require multiple
users to complete [25].

In addition to the Witkey system, there are task allo-
cation modes where rational users participate in practical
applications and platforms such as crowdsourcing, such as
the public intelligence perception system [21–23, 26] and
space crowdsourcing [24, 25, 27, 28]. Existing crowd-
sourcing platforms propose corresponding benefits and task
assignment algorithms; however, the allocation algorithms
are mostly for single-user tasks [29]. Less consideration is
given to the cases when more users complete the task.
-erefore, in order to trade off the multiuser allocation
situation under complex tasks, this paper presents a mul-
tiuser-oriented complex task allocation algorithm.

3. Definition of the Problem Model

-is section gives the definition of the dynamic task allo-
cation problem model in the Witkey platform: the task
allocation in Witkey platform is a dynamic process. -e task
allocation model at the moment τ includes the following
three sets: Witkey set R(τ): � r1(τ), r2(τ), . . . , rn(τ)(τ)􏽮 􏽯,
service set S: � s1, s2, . . . , sl􏼈 􏼉, and task set
T(τ): � t1(τ), t2(τ), . . . , tm(τ)(τ)􏽮 􏽯, and n(τ) and m(τ),
respectively, represent the number of services available to
the Witkey platform and the task needed to be completed at
the moment τ, whose value changes over time. Assuming
that the Witkey platform needs at most l types of services to
complete complex tasks, a Witkey platform can provide at
most l of services. that is, l represents the maximum number
of services that users on the Witkey platform can provide.

For i ∈ 1, 2, . . . , n(τ){ }, j ∈ 1, 2, . . . , l{ }, RSi,j(τ) � 1
(RSi,j(τ) � 0) denotes that Witkey can(not) provide services
sj. TSNi(τ) indicates the number of skills the i th guest ri(τ)

has. aski,j(τ) represents the lowest price Witkey ri(τ) can
charge for the skills sj to complete task. If RSi,j(τ) � 0,
aski,j(τ) � 0. -is paper considers complex tasks in the
Witkeymode, so for j ∈ 1, 2, . . . , l{ } and k ∈ 1, 2, . . . , m(τ){ } ,
STj,k(τ) � 1 (STj,k(τ) � 0) indicates that the task tk(τ) re-
quires (not) services sj. For each Witkey, ri(τ) ∈ R(τ) at the
moment τ, it corresponds to an integral as dj(τ) ∈ N (N
representing the set of natural numbers). -e gains corre-
sponding to all tasks at the time τ are indicated as
U(τ): � u1(τ), u2(τ), . . . , um(τ)(τ)􏽮 􏽯. Each task corre-
sponds to a maximum waiting time expressed as
E(τ): � e1(τ), e2(τ), . . . , em(τ)(τ)􏽮 􏽯. For k ∈ 1, 2, . . . ,{

m(τ)}, ek(τ) ∈ N+.
-e benefit allocation scheme for all tasks is represented

as TS(τ). For k ∈ 1, 2, . . . , m(τ){ } and j ∈ 1, 2, . . . , l{ },
TSk,j(τ) represents the share of revenue that task tk(τ)

would give toWitkey who provides service sj at moment τ. If
the task tk(τ) can be completed at a moment τ and ri(τ)

choose to perform the task tk(τ) and provide services sj,
then the revenue TSk,j(τ) share will be obtained by ri(τ).
RTS(τ) denote the tasks chosen by Witkey and services
provided by Witkey at time τ. TSNk(τ) indicates the
number of skills required for the task tk(τ). RTSi,0(τ) is the

number of the task selected by ri(τ) ∈ R(τ) at the time τ.
-erefore, RTSi,0(τ) ∈ 1, 2, . . . , m(τ){ }. For
i ∈ 1, 2, . . . , n(τ){ }, j ∈ 1, 2, . . . , l{ }, and RTSi,j(τ) � 1
(RTSi,j(τ) � 0) means that it ri(τ) (not) provides services sj

for the task tRTSi,0(τ) at all times τ. If RTSi,0(τ) � 0, then for
∀j ∈ 1, 2, . . . , l{ }, RTSi,j(τ) � 0 is true.

-e task tk(τ) can be completed if tk(τ) acquired all the
required skills. Given the task selection scheme for all users
RTS(τ), the system gain at the time τ is defined as the sum of
all tasks that can be completed, recorded as SR(τ). -e
optimal allocation of complex tasks in the Witkey model is
the benefit allocation and task allocation scheme that can
maximize the system benefits.

-e status of Witkey and tasks at moment τ is indicated
as follows:

Status of the task: State of Witkey: At the moment τ, the
state of Witkey ri(τ) ∈ R(τ) is expressed as
ri(τ): � <RSi,·(τ), RTSi,·(τ), aski,·(τ), di(τ)>. In particu-
lar, RSi,·(τ) is row i of RS(τ); RTSi,·(τ): �

RTSi,0(τ), RTSi,1(τ), . . . , RTSi,l(τ)􏽮 􏽯; aski,·(τ) is row i of
ask(τ); di(τ) is the integral of Witkey ri(τ) at the moment τ.

Status of the task:�e status of the task tk(τ) ∈ T(τ) at
the moment τ is represented as
tk(τ): � < ST·,k(τ), TSNk(τ), uk(τ), TSk,·(τ)>. Among
these, ST·,k(τ) is the column k of ST(τ).
TSNk(τ) ∈ Z+tk(τ) represents the number of skills required
for the task tk(τ). uk(τ) represents the gains available after
the task tk(τ) is completed. TSk,·(τ) is the row k of TS(τ),
indicating the benefit distribution scheme of tk(τ) at the
time.

To facilitate analysis, the following assumptions are
made for the abovementioned problem model:

Hypothesis 1. Each guest can choose one task at any one
time and provide one service, while the number of specific
services required for each task is 1.

Hypothesis 2. At any moment, Witkey will only choose the
task that brings it the maximum individual benefit.

Hypothesis 3. For the tasks assigned by theWitkey platform,
Witkey has the right to refuse and choose another task that
can bring it more individual benefits.

Based on the above dynamic task assignment environ-
ment, this paper addresses the following dynamic task as-
signment problems:

max
RTS(1)...RTS(Γ)

SSR(Γ)

� max
RTS(1)...RTS(Γ)

􏽘

Γ

τ�1

􏽐
tk(τ)∈T(τ)∧completek(τ)

uk(τ)⎛⎝ ⎞⎠. (1)

SSR(Γ) represents the sum of all the tasks that can be
completed from time 1 to time Γ. RTS(1) . . . RTS(Γ) satisfies
the constraint of “Hypothesis 1”. If the value of
Completek(τ) is true, the value indicating that the task tk(τ)

can be completed under the task assignment state RTS(τ) at
the moment τ. Otherwise, the task tk(τ) cannot be
completed.
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4. Best Response Strategy and Intermediary
Recruitment Algorithm

4.1.BestResponseStrategy. t(i, τ) represents the task selected
by Witkey ri(τ) ∈ R(τ) at the moment τ, and the task se-
lection rule is shown in formula (2):

t(i, τ + 1)← argmax
tk(τ)∈T(τ)∧

sj∈S∧needk,j(τ)

TSk,j(τ) · RSi,j(τ),

(2)

where needk,j(τ) indicates whether service sj needed by task
tk(τ) is provided by otherWitkey except ri(τ) under the task
assignment status RTS(τ) in the moment τ.

Return False, if provided; Others, True. Meanwhile, the
benefit allocation strategy for all tasks meets the budget
effectiveness conditions shown in formula (3):

􏽘
sj∈S, STj,k(τ)�1

TSk,j(τ)≤ uk(τ).
(3)

At some point, when all Witkey, tasks, and the benefit
distribution scheme of tasks remain unchanged, all Witkeys
take turns to perform the strategy shown in formula (1) to
make the best choice. -e optimal task selection process is a
kind of weak noncircular game, and each weak noncircular
game has limited improvement characteristics [30]. -us,
the procedure will converge to a Nash equilibrium point.
Formula (1) ensures the individual rationality of the task
assignment and the stability of the task assignment results.

4.2. Intermediary Recruitment Algorithm. Because the in-
centives to increase users engagement examined in this
paper are based on existing task assignment and benefit
assignment algorithms, a simple description of the basic idea
of “intermediary recruitment algorithm” was given. -e
proposed algorithm simulates the operation mechanism of
the talent recruitment market with an intermediary to solve
the task selection problem of self-interest service agent.
Workers who provide services are seen as applicants, skills as
intermediaries, and tasks as companies to hire employees.
Unlike the real recruitment market, a “service intermediary”
only manages the workers who can provide specific services
and the tasks that need them. “service intermediary” pairs
workers and tasks based on information about the number
of workers who can provide the service, the costs, the
number of tasks that need the service, and the remuneration
that can be provided. -e proposed algorithm can reason-
ably distribute the benefits of complex tasks to a certain
extent and improve the total system income of task distri-
bution, but because the results of task allocation do not
guarantee individual rationality, the task distribution is not
stable.

-e steps of one task assignment by the intermediary
recruitment algorithm are described as follows:

Step 1. All “service intermediary” count basic information
about the workers who can provide the service and the tasks

that need the service. Witkey is sorted from small to large at
the minimum asking price, and the tasks are sorted from
large to small by the revenue share allocated to the corre-
sponding skills. Witkey and task were paired in order. It was
success, if the gain share was greater than the minimum
asking price, or the pairing failed.

Step 2. All tasks take turns to check whether all the required
services are paired successfully. For services without paired
success, try to increase the share of revenue allocated to
workers who can provide the service until it can be
increased.

Step 3. Check if all workers pair with only one task. If so, this
task assignment ends; otherwise, go to Step 4.

Step 4. For workers who pair more than one tasks, select a
task that brings the maximum individual benefits from the
paired successful task and reject other tasks. -e rejected
intermediary then entered the competitive price adjustment
phase until no task provided the worker with greater in-
dividual benefit beyond the worker’s currently chosen task,
at which point the worker paired only a successful task.

Step 5. -is round of task assignment ends. Update the data
and go to the next round of task assignment.

4.3. IncentiveMeasures. It can be seen from formula (1) that
in the process of choosing the optimal task according to the
optimal response strategy, the earlier he chooses the task, the
more likely it is to obtain greater individual benefits.
-erefore, for everyWitkey, ri(τ) ∈ R(τ) at the moment τ, it
is given an integral, recorded as dj(τ) ∈ N. Witkey turns the
optimal selection strategy in order of the integral from large
to small. If the Witkey ri(τ) ∈ R(τ) abandons the current
maximum individual gain in order to increase the total
system gain, the incremental value of the system gain is
added to the customer as a new integral.

di(τ + 1) � di(τ) +(SR(τ + 1) − SR(τ)), (4)

where SR(τ + 1) means that the total system revenue when
Witkey ri(τ) ∈ R(τ) gives up the current task that brings
itself maximum individual benefits and chooses to perform a
task that can get greater system benefits. At this time, other
tasks chosen by Witkeys except Witkey ri(τ) ∈ R(τ) are
satisfied with individual rationality. In other words, only
Witkey ri(τ) ∈ R(τ) sacrificed its own individual income,
thus increasing the total revenue of the system.-erefore, in
order to motivate Witkey ri(τ) ∈ R(τ) to participate in the
execution of tasks, the increased system revenue is added to
Witkey ri(τ) ∈ R(τ) as an integral. At the same time, the
increased system revenue can also increase its participation
in performing tasks to a certain extent.

4.4. Algorithmic Description. -is section provides a simple
description of the task assignment algorithm (Task
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Allocation Algorithm Considering Witkey Participation,
TAACWP) as shown in the Algorithm 1:

5. Simulation Results

In Section 5.1, the algorithm TAACWP is compared with the
other four algorithms for the average running time and the
average system gains under four different datasets. Section
5.2 validates the effectiveness of TAACWP’s task assignment
strategy and examines whether incentives have effects on
rational people.

Simulation environment:
Memory: 3.0G B; CPU, Intel (R) Pentium (R) CPU

G2030; Main frequency: 3.0GHz;
Operating system: Windows 7.
For the dataset, to our knowledge, there is currently no

standard database for Coalitional skill games. For resource-
constrained project scheduling issues, “Project Scheduling
Problem Library” is available [31]. It is its standard data-
base, but the resources in it do not have multiple skills.
Another similar dataset is the iMOPSE [32, 33], -e re-
sources have multiple skills (the resources can be con-
sidered as the service agent in the coalitional skills game),
but the task in iMOPSE requires only one resource. For
some other similar problems, the datasets used are artifi-
cially randomly generated [34, 35]. In this paper, dataset 1,
dataset 2, and dataset 3 are completely randomly generated.
Dataset 4 was generated based on iMOPSE and was spe-
cifically generated as follows.-e future needs to establish a
corresponding database for the coalitional skill game
problem model.

Dataset 1. (total of 15 runs, maximum number of iterations
Γ � 100, generated dynamic task assignment data of
1.1–1.20) generates date which satisfies the following rules at
the moment τ. (random(a, b) represents a random integer in
the set): n(τ) � 30, l � 15 and m(τ) � 30. For ri(τ) ∈ R(τ),
aski(τ)←random(1, 2), and RSNi(τ)←random(1, 3). For
tk ∈ T, uk←TSNk × random(1, m/2), TSNk(τ)←random
(2, 5), and ek(τ)←random(5, 10).

Dataset 2. (total of 15 runs, each maximum number of
iterations Γ � 200, generated dynamic task assignment data
of 2.1–2.20) generates date which satisfies the following rules
at the moment τ. (random(a, b) represents a random integer
in the set [a, b]): n(τ) � 30, l � 15 and m(τ) � 60. For
ri(τ) ∈ R(τ), aski(τ)←random(1, 2), and RSNi(τ)←
random(1, 3). For tk ∈ T, uk←TSNk × random(1, m/2),
TSNk(τ)←random(2, 5), and ek(τ)←random(5, 10).

Dataset 3. (total of 15 runs, each maximum number of
iterations Γ � 200, generated dynamic task assignment data
of 2.1–2.20) generates date which satisfies the following rules
at the moment τ. (random(a, b) represents a random integer
in the set [a, b]): n(τ) � 30, l � 15, and m(τ) � 60. For
ri(τ) ∈ R(τ), aski(τ)←random(1, 2), and RSNi(τ)←
random (1, 3). For tk ∈ T, uk←TSNk × random (1, m/2),
TSNk(τ)←random(2, 4), and ek(τ)←random(5, 10).

Dataset 4. Witkey and task data in dataset 4 are from the
following iMOPSE-based data, generating the following steps:

import: n(τ), m(τ), Γ
Output: the maximum total system revenue SSR(Γ) and its counterpart. RTS(1) . . . RTS(Γ)

(1) FOR τ ∈ 1, 2, . . . , Γ{ }

(2) Use the “intermediary recruitment algorithm” for a round of task assignment.
(3) Record the system benefits SSR(τ) at the moment τ.
(4) FOR i ∈ 1, 2, . . . , n(τ){ }

(5) Save all Witkey’s current task selection status RTS(τ).
(6) FOR k ∈ 1, 2, . . . , m(τ){ }

(7) FOR j ∈ 1, 2, . . . , L{ }

(8) Witkey i selects tasks and provides skills j.
(9) All others, except Witkey i, adopt the optimal reaction strategy selection task in turn in the order of integration from large to

small, and the results of guiding two consecutive rounds of the optimal reaction are exactly the same.
(10) Record the new system benefits. SSR′(τ)

(11) END FOR
(12) END FOR
(13) IF SSR′(τ)> SSR(τ)

(14) di(τ) � di(τ) + (SSR′(τ) − SSR(τ))

(15) ELSE
(16) Restore the task selection status for all Witkey customers. RTS(τ)

(17) END IF
(18) END FOR
(19) Update data forWitkey and tasks: Remove tasks that are beyond the “maximumwaiting time”, add new tasks and new customers,

and update Witkey’s points, skills, and other information.
(20) END FOR

ALGORITHM 1: TAACWP.
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Step 6. Draw300 user information (namely corresponding
Witkey): 100_20_22_15, 100_20_23_9_D1, 200_40_91_15,
100_20_45_15, 200_40_45_9, 100_20_47_9, 100_20_65_9,
100_20_65_15, 200_40_45_15, 200_40_90_9, 200_40_130
_9_D4, 200_40_133_15.

Step 7. Information for 400 tasks are extracted from the
datasets 200_40_91_15 and 200_40_133_15.

Step 8. Make RSNi(τ)⟵random(1, 2) and TSNk(τ)⟵
random(2, 5) established by randomly adding or deleting
the corresponding skills.

Step 9. For ri(τ) ∈ R(τ), aski(τ)⟵random(1, 2). For tk ∈
T, uk⟵TSNk × random(1, m/2) and ek(τ)⟵random
(5, 10).

For the dataset, the generation process of dynamic data is
as follows: At the moment τ, randomly select
random(1, N(τ)/10) Witkey data meeting the above con-
ditions to replace the Witkey data at moment (τ − 1), and
specifically which to replace is randomly determined. -e
tasks that can be completed and tasks that cannot be
completed are randomly replaced with new task data that
meet the above requirements.

5.1. Algorithm Performance Comparison. In this section, the
total sum of the system benefits SST(Γ) and the average

running time SST(Γ)/Γ of the TAACWP (where SST(Γ)
denotes the total time spent during the dynamic task as-
signment process): general genetic algorithm (GGA), SAA
algorithm (Service and Adams’ Algorithm, SAA) for Dataset
1, Dataset 2, Dataset 3, and Dataset 4 [36], Combinatorial
auction algorithm (Combinatorial Bids based Algorithm,
CBA) [37], and the VAA algorithm (Vig & Adams’ Algo-
rithm, VAA) [38]. Witkey in the CBA is self-beneficial, while
Witkey in the GGA and SAA is not. At moments
τ ∈ 1, 2, . . . , Γ{ }, the dynamic task assignments have con-
sistent data generation rules.

Dataset 1.1 was used to obtain the optimal parameters for
the GGA. With cross probability (CP) and variant proba-
bility (MP) taking different values, GGA runs 100 times, and
the average system gain is shown in Table 1(rows indicate the
value of MP, columns indicate the value of CP). Simulation
results show that the average system gain is greatest when CP
is 0.3 andMP is 0.1. Other parameters of the GGAwere set as
follows: population size 100 and maximum number of it-
erations 10000.

Under Dataset 1, 2, 3, and 4, TAACWP, GGA, CBA,
VAA, and SAA are shown in Tables 2–5, respectively.

-e results in Tables 2–5 show that the sum of system
gains from TAACWP is higher than the other four algo-
rithms and the average running time of TAACWP is shorter
than GGA. Among them, due to the excessive search space of
GGA, the system has the worst profit and the longest
running time.-erefore, based on the best response strategy,

Table 1: Mean system gains of GGA when CP and MP take different values.

MP 0.01 0.05 0.1 0.15 0.2 0.4 0.6 0.8CP
0.1 15214 14845 16544 15802 15816 11349 10389 10668
0.2 14302 15684 16283 16717 14756 11766 10763 10125
0.25 14956 14316 15957 16277 14465 11516 11235 11158
0.3 14449 14224 16762 14597 13470 11578 10739 10055
0.35 14144 15718 14795 14767 13133 11369 11157 10559
0.4 14566 15914 15635 14637 12424 11652 11620 10728
0.5 15852 16046 15328 14414 12829 11450 10663 10539
0.6 14909 14689 15480 14175 12905 11355 10598 10883
0.8 14913 15731 15479 12974 12803 10898 11053 10881

Table 2: Average system gain and the average runtime under dataset 1.

Dataset TAACWP Time GGA Time CBA Time VAA Time SAA Time
1.1 17698 6.01 16762 27.32 17189 0.002 17924 1.67 12000 0.001
1.2 19511 6.27 15963 27.16 16156 0.002 17392 1.70 11303 0.001
1.3 17864 7.11 14236 27.63 17611 0.002 17596 1.54 12539 0.001
1.4 17668 5.61 16456 26.68 17653 0.001 16952 1.58 12630 0.001
1.5 19215 5.25 14287 27.38 17068 0.002 16883 1.65 8903 0.001
1.6 18494 5.53 16325 27.51 16697 0.002 17536 1.56 10167 0.001
1.7 19966 6.02 15164 27.31 17187 0.002 18486 1.55 7475 0.001
1.8 18754 6.62 16386 27.98 17507 0.003 16726 1.76 10130 0.001
1.9 16258 6.02 16263 25.77 16456 0.002 18049 1.66 10963 0.001
1.10 17599 8.71 16458 26.61 19063 0.002 16853 1.62 11529 0.001
1.11 18138 6.50 16422 27.58 16948 0.002 16436 1.61 9485 0.001
1.12 18873 7.15 16271 26.82 18391 0.002 17061 1.55 11065 0.001
1.13 20405 7.10 15637 26.88 18083 0.002 17548 1.47 11033 0.001
1.14 19455 7.21 16537 26.43 17544 0.002 17707 1.59 7970 0.001
1.15 16665 4.53 16475 27.77 16286 0.002 17932 1.56 10514 0.001
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Table 3: Average system gain and average runtime under dataset 2.

Dataset 2 TAACWP Time GGA Time CBA Time VAA Time SAA Time
2.1 98889 19.13 67145 54.12 95559 0.003 91818 2.65 59957 0.001
2.2 98868 13.17 70007 55.88 91044 0.003 96430 2.27 57204 0.001
2.3 102754 13.87 66835 55.73 92218 0.003 96946 2.62 54673 0.001
2.4 97487 20.49 67438 53.30 93269 0.002 97227 2.43 50268 0.001
2.5 99675 16.77 66559 55.82 98196 0.002 96003 2.24 54019 0.001
2.6 101690 13.73 68807 53.80 93596 0.002 88263 2.73 51064 0.001
2.7 104171 14.54 67066 54.10 93662 0.002 90900 2.49 56126 0.001
2.8 101749 13.58 64140 55.47 92379 0.002 94131 2.31 63947 0.001
2.9 101272 18.88 66121 54.18 92403 0.003 93697 2.28 55298 0.001
2.10 103154 13.51 69793 54.15 89038 0.002 93130 2.26 50347 0.001
2.11 99485 13.76 65344 54.26 95301 0.002 92426 2.66 53932 0.001
2.12 106730 15.26 70054 53.63 93353 0.002 92942 2.29 51910 0.001
2.13 101287 14.93 69952 54.81 89924 0.002 94595 2.99 55466 0.001
2.14 96293 14.41 68418 54.01 90996 0.002 93706 2.38 49241 0.001
2.15 100234 14.01 69904 53.59 94990 0.002 97527 2.35 60336 0.001

Table 4: Average system gain and average runtime under dataset 3.

Dataset 3 TAACWP Time GGA Time CBA Time VAA Time SAA Time
3.1 57186 6.29 54630 41.39 52890 0.003 54032 3.42 47879 0.001
3.2 56372 6.38 57560 40.15 49564 0.003 54542 3.56 38207 0.001
3.3 58670 5.82 56900 43.72 52759 0.003 52792 3.31 45899 0.001
3.4 55647 5.79 58860 50.89 54387 0.003 55337 2.93 42465 0.001
3.5 55171 5.93 57957 50.85 52331 0.003 54270 3.89 42959 0.001
3.6 59095 6.27 55158 50.75 55796 0.003 52237 3.72 45613 0.001
3.7 58744 5.69 56413 50.06 54993 0.002 54087 2.97 47507 0.001
3.8 55763 6.21 55548 55.64 52884 0.003 53290 2.94 43793 0.001
3.9 56739 5.75 55401 55.82 54802 0.003 55517 3.84 40048 0.001
3.10 58789 5.53 56556 55.47 55285 0.002 53212 2.88 41612 0.001
3.11 58851 6.49 57071 55.47 52801 0.003 48991 3.29 45823 0.001
3.12 58704 6.18 55115 55.29 52322 0.003 53558 2.99 47562 0.001
3.13 56772 5.90 55749 55.25 54655 0.002 52154 3.15 44535 0.001
3.14 57485 5.45 55966 55.32 53265 0.003 53209 3.20 46139 0.001
3.15 57180 6.03 58899 55.70 54309 0.003 55750 4.10 43571 0.001

Table 5: Average system gain and average runtimes under dataset 4.

Dataset 4 TAACWP Time GGA Time CBA Time VAA Time SAA Time
4.1 28356 4.99 24097 26.66 21444 0.001 26436 1.89 10537 0.001
4.2 29577 5.58 21171 27.39 26450 0.002 26002 1.88 6223 0.001
4.3 26597 6.39 25060 27.04 18570 0.001 24468 1.66 7833 0.001
4.4 28915 5.36 22402 27.82 22526 0.002 24569 1.76 5557 0.001
4.5 24871 5.52 23887 27.89 18883 0.001 25044 1.64 8975 0.001
4.6 24741 5.26 22859 28.20 20704 0.001 25961 1.82 9570 0.001
4.7 23595 5.42 22458 27.90 21528 0.002 20988 1.79 8145 0.001
4.8 24539 6.76 21405 27.98 23309 0.002 24874 1.61 8903 0.001
4.9 27705 5.27 24335 27.53 23508 0.001 21206 1.67 12335 0.001
4.10 21916 5.61 21926 27.37 25429 0.001 20719 1.67 5781 0.001
4.11 24597 5.65 25674 26.99 23422 0.002 24038 1.81 7432 0.001
4.12 28734 5.68 22845 27.91 20681 0.001 22990 1.72 9104 0.001
4.13 27083 5.94 21768 28.28 20304 0.001 25470 1.66 11840 0.001
4.14 23969 4.66 22941 27.47 25587 0.002 21247 1.63 7687 0.001
4.15 26703 5.17 22949 27.32 25816 0.001 24959 1.85 11133 0.001
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the adjustment of task income allocation scheme by using
the intermediary allocation algorithm can also improve the
system income when the service agent is self-interested.

5.2. Validation of the Effectiveness of the TAACWP Incentive
Measures. -is section examines the effect of incentives on
the total system benefits of the TAACWP algorithm, in
which the TAACWP algorithm with no incentives is
recorded as TAACWP1.-e simulation results are shown in
Table 6:

-e simulation results from Table 6 show that the system
benefits of TAACWP are greater than TAACWP1. -e
simulation results further show that using incentives can
guarantee the higher system gain, even if the user is rational.

6. Conclusion

In this paper, we propose an optimization algorithm that
motivate rational Witkey to participate in performing tasks.
-e users in the Witkey model are rational people, who
always choose the tasks that can bring them the most
personal benefits and are easy to accomplish. -e task re-
quester’s goal is to acquire all the required skills and then
complete the task. For rational Witkey, the stability of the
task assignment results can be guaranteed only when the
benefits are reasonably distributed and the task assignment
achieves a Nash equilibrium. However, the self-interest will
inevitably affect the improvement of the total system in-
come. By encouraging Witkey to give up the task that brings
itself greater individual benefits, it is necessary to choose the
task that can maximize the total benefits of the system.
Consequently, certain incentives must be taken. In the
process of selecting tasks according to the optimal response
strategy, the execution order will partly affect the individual
benefits of Witkey. According to this feature, this paper
proposes the incentive measure for additive integral, pro-
poses the TAACWP algorithm to solve the benefit distri-
bution of complex tasks in Witkey mode, and the final
simulation results verify the effectiveness of the algorithm.

We also came to another conclusion: adding incentives
seems to yield more benefits, but may not be the best option
in all cases because of the computational cost. Future re-
search work will further summarize the dynamic charac-
teristics of Witkey task assignment; consider the Witkey
integrity, skill level, and other characteristics; and improve
the dynamic task assignment model. Moreover, we also will
consider applying the proposed algorithm to various
crowdsourcing platform task allocation scenarios and shop
floor scheduling. On this basis, the task assignment algo-
rithm meets the characteristics of individual rationality,
budget effectiveness, privacy protection, and stability of task
assignment results.
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