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Remote sensing image scene classification is a challenging task due to the large differences within the same classes and a large
number of similar scenes among different classes. To tackle this problem, this paper proposes a single-object-based region
growth algorithm to effectively localize the most key area in the whole image, so as to generate more discriminative local fine-
grained features for the image scene. Concurrently, a local-global two-branch network is designed to utilize the features of the
images from multiple perspectives, respectively. Specially, the global branch extracts global features (such as contour, texture)
from the whole image, and local branch extracts more local features from the local key area. Finally, the global and local
classification scores are integrated to make the final decision. Experiments are performed on three publicly available data sets,
and the results show that this method can achieve higher accuracy compared to most existing state-of-the-art methods.

1. Introduction

With the continuous progress of remote sensing technology
and the upgrading of imaging equipment, acquisition of
high-resolution remote sensing images is easier than before.
High-resolution remote sensing images contain rich scene
semantic information, which is beneficial to the interpreta-
tion of remote sensing images. As an important means of
remote sensing image interpretation, remote sensing image
scene classification has received increasingly attention in
recent years. However, the complex background and a large
number of irrelevant scene information in remote sensing
images pose great challenges to the classification.

Feature extraction has always been a research hotspot as
the core problem of image classification. However, the large
intraclass differences and subtle interclass differences in
remote sensing images make it difficult to extract discrimi-
nating features. A key point to solving the above problem
is to find the local subtle differences, and most existing
methods first locate local regions and then extract local fea-
tures for classification. In order to accurately locate local key

areas, image patches containing objects need to be generated
first. Selective search [1] combines the advantages of exhaus-
tive search and segmentation and can search and capture all
possible object regions in a variety of ways. Zhang et al. [2]
used selective search to generate part proposals, and the
average recall of parts is 95% on the bird data set. However,
this unsupervised method requires additional annotation,
which is time-consuming and labor-consuming. To address
this problem, researchers proposed weak supervised learning
without labeled information. Zhang et al. [3] used CNN to
generate multiscale part proposals (all part proposals are
clustered) and then calculate an importance score of each
part cluster, and those parts with high scores are selected
as the useful areas. Despite the computational cost savings,
a number of proposals lead to overlap in the selected parts.

To tackle the above issues, we present a single-object-
based region growth algorithm to locate the most key areas.
Meanwhile, a global-local two-branch model as shown in
Figure 1 is designed to extract discrimination features from
the whole image and local key areas, respectively. Finally,
the classification scores of the two branches are fused to
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complete the final decision. Experimental results on the
RSSCN7, AID, and NWPU-RESISC45 data sets show that
the proposed method has excellent performance in terms of
accuracy.

The main contributions of this paper are as follows.

(1) A single-object-based region growth algorithm is
proposed, which can effectively discover and localize
the most important areas. More importantly, the

method does not require additional annotation
information during training and testing

(2) Unlike the traditional region growth algorithm, this
method treats the entire image as a region and
requires only one seed point. Furthermore, the
saliency value size of the pixels around the seed is
taken as a determination condition to incorporate
the new regions
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Figure 1: Overall framework of the proposed method. The green branch above extracts the global features, and the gray branch below
extracts the local features. The middle part can locate the local key regions and link the two branches.
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Figure 2: The component of the network. (a) The residual unit. (b) The overall architecture of the baseline network.
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Figure 3: Visualization of local region localization: (a) the saliency map and (b–j) the process of single-object-based region growth.
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(3) Most existing methods ignore the connection
between global and local. This paper designs a two-
branch model that combines the global and local
scores to promote each other

The remainder of this paper is covered as below. Section
2 briefly describes the related work of remote sensing image
scene classification and salient object detection. In Section 3,
the proposed method is described in detail. In Section 4, the
data sets, experimental results and analysis are presented.
Section 5 summarizes this paper.

2. Related Work

2.1. Remote Sensing Image Scene Classification. Traditional
classification methods rely on some manually designed
low-level feature descriptors, such as texture descriptors
[4], histograms [5], and scale-invariant feature transform
(SIFT) [6]. However, there is an insurmountable semantic
divide between low-level and high-level features, which
makes classification results unsatisfactory. To solve this
problem, the bag-of-visual-words (BoVW) model [7] is pro-
posed to extract more discriminating mid-level features.
BoVW technology can integrate local features of an image
into a global representation by clustering, encoding, etc.
On this basis, Chen and Tian [8] proposed a pyramid of spa-
tial relations (PSR) model for the land cover classification.
The PSR model adopts a new concept of spatial relation to
merge both absolute and relative spatial information into
the BoVW, which can effectively deal with the problems of
translation and rotation in remote sensing image. Although
these methods have achieved good results, handcrafted fea-
tures cannot effectively deal with various challenges in
remote sensing image classification.

In recent years, the convolutional neural network (CNN)
has been widely used in computer vision tasks, such as image
classification [9], target detection [10], and object tracking
[11]. Different from the features designed manually, the
CNN model can learn more discriminatory deep features
from images. Consequently, CNN-based methods have
gradually become the mainstream of remote sensing image
scene classification. Zhao et al. [12] proposed an object-
based deep learning method, deep features are computed

from the fixed receptive window using a five-layer CNN,
and features are extracted using three different segmentation
scales. In order to extract more hidden information from the
features of different layers, Li et al. [13] proposed a multi-
scale feature fusion strategy for remote sensing image scene
classification. Xue et al. [14] used three popular CNNs to
extract features and performed classification after fusion of
these features.

2.2. Salient Object Detection. As one of the important pre-
processing methods in computer vision tasks, saliency object
detection is widely used in video object segmentation [15],
scene classification [16], and object detection [17], etc.

Early methods mainly detected salient objects by manu-
ally extracting features. For example, Itti et al. [18] extracted
color, orientation, and brightness features of the image
under different scales to calculate the saliency map. Yan
et al. [19] treated the product of global color contrast with
the central prior as saliency under a single scale. With the
development of deep learning, the combination of salient
object detection and the convolutional neural network has
also achieved great success. Li and Yu [20] used the multi-
scale features extracted by the convolutional neural network
to calculate the saliency map. Zhang et al. [21] proposed a
multilayer feature aggregation network, which can integrate
multilevel features into multiple resolutions. Then, combine
these feature maps at each resolution and predict the
saliency map with the combined features. Moreover, differ-
ent from the multiscale feature fusion approach, Wei et al.
[22] proposed selective convolutional descriptor aggregation
(SCDA) for salient object detection. First, the output feature
map of the last convolutional layer is aggregated in the depth
direction. Then, multiple object regions are found based on a
threshold segmentation method and finally retained the
largest connected region to locate the local image.

For remote sensing images, it is crucial to find the
unique region from complex scenes. Motivated by the idea
of convolution-descriptor aggregation in SCDA, we propose
a single-object-based region growth to find the boundary of
key area, which can be used to sample local images.

3. Proposed Method

In this section, we first introduce the important components
of the baseline network. Then, the extraction process of the
local key area is described in detail. Finally, the global-local
two-branch network shown in Figure 1 is designed to extract
the global and local features separately.

Deep convolutional neural networks have powerful
learning capabilities, but their performance degrade substan-
tially with increasing depth. The proposal of the residual
network [23] solves this problem to some extent and
achieves marvelous performance in image recognition. This
experiment mainly uses the 18-layers residual network
(ResNet18) as the baseline network.

3.1. Baseline. Residual network is mainly formed by the
residual block stacking shown in Figure 2(a). When the
input is x, the parameter Wi is learned through the residual

Input: Â, ½xs, ys�, T ;
1: For example: xs = 0 and ys = 0
2: xd = xs + 1, yd = ys + 1
3: Ts = E½xs, xd , ys, yd�/E½H,W�
4: while Ts < T then
5: if E½xs, xd + 1, ys, yd� > E½xs, xd , ys, yd + 1� do
6: xd = xd + 1
7: else
8: yd = yd + 1
9: Ts = E½xs, xd , ys, yd�/E½H,W�
10: return ½xs, xd , ys, yd�

Algorithm 1: Single-object-based region growth
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function Fðx, fWigÞ, and then, x is obtained directly
through a shortcut connection. Finally, the output is defined
as [23]

y = F x, Wif gð Þ + x: ð1Þ

As the network deepens, when the residual F approxi-
mates 0 infinitely, the residual block is equivalent to com-
plete a simple identity mapping, which will not degrade
network performance.

3.2. Extract Local Key Areas

3.2.1. Aggregate Mapping. Given the input image I, the
image is input into a pretrained convolutional neural net-
work as shown in Figure 2(b). The activation features gener-
ated by the last convolutional layer (layer4) are represented
as

Mc = I1, I2, I3 ⋯⋯ICf g, ð2Þ

where Ii ∈ RH×W is the feature map of ith channel inMc, C is
the number of channels, and H and W are the height and
width of feature maps, respectively. Therefore, there are C
feature maps need special attention. However, for different
feature maps, the semantics of their activation region may
be completely different or even appear with background
noise. To avoid the effects of background noise, a simple
and effective method is to add up the activation features of
each channel, which is defined as [22]

A = 〠
C

i=0
MC Iið Þ, ð3Þ

where A ∈ RH×W is called the “aggregation map.”
In order to locate key areas more accurately, the aggre-

gate map is scaled first. Moreover, to eliminate the impact

of negative values, the elements in A need to be normalized,
which is written as [14]

Â = An − Amin
Amax − Amin

, ð4Þ

where Â is the normalized data and Amax and Amin are the
values of the maximum and minimum in An.

Table 2: Comparison of overall accuracy (%) with different T on
the RSSCN7 data set.

Methods
20% training 50% training

0.4 0.5 0.6 0.4 0.5 0.6

ResNet18 92.30 92.30 92.30 94.90 94.90 94.90

Ours 93.79 94.13 93.90 96.43 96.63 96.50

Table 1: Comparison of different data sets.

Data sets
Image
size

Spatial resolution
(m)

Total Classes

RSSCN7 400 × 400 — 2800 7

AID 600 × 600 0.5-8 10000 30

NWPU-
RESISC45

256 × 256 0.2-30 31500 45

Figure 4: Some samples of key region localization in the RSSCN7 data set. The images from top to bottom are the following: original image,
aggregation map, location results based on SCDA, and single-object region growth separately.

Table 3: Size and test time of different models.

Methods Model size Test time (s)

ResNet18 89MB 0.0097

Ours 89 × 2MB 0.0151
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3.2.2. Single-Object-Based Region Growth Algorithm. After
the above process, the saliency map as shown in
Figure 3(a) is obtained. It can be seen from the figure that
the higher the saliency value of a position ðx, yÞ, the more
the possibility to become a key area. For the saliency map
of Â, total saliency value is expressed as

E H,W½ � =〠
H

〠
W

Â, ð5Þ

and the total saliency value within the region ½x1 : x2, y1 : y2�
in Â is defined as

E x1 : x2, y1 : y2½ � = 〠
x2

x1

〠
y2

y1

Â: ð6Þ

If E½x1 : x2, y1 : y2� > T × E½H,W�, the region ½x1 : x2, y1
: y2� is considered to be the most key area for image recogni-
tion. T is a hyperparameter in the range of ð0, 1�. In order to
find the most critical region quickly and accurately, the
single-object-based region growth algorithm is proposed,
which mainly consists of the following steps:

Step 1. initialization. Firstly, find the coordinate of the max-
imum value in Â and take it as the starting position½xs, ys�.
Then, the initial boundary of the salient region can be
marked as ½xs, xd , ys, yd�, where xd = xs + 1, yd = ys + 1

Step 2. single-object-based region growth. The initial bound-
ary is continuously expanded until reaches the termination
condition. Some implementation details are shown in
Algorithm 1.

Step 3. scale the boundary. Scaling the values of the bound-
ary to range ½0, 1�

3.2.3. Local Area Sampling. Finally, the scaled boundary is
used to guide the sampling for the local image Il, which is
denoted as

I l = Fbilinear Ig, xs, xd , ys, yd½ �� �
: ð7Þ

3.3. Visualization of Single-Object-Based Region Growth. The
whole process of single-object-based region growth is shown
in Figure 3, which can help understand the Algorithm 1. For
convenience, the image size is set to 10 × 10 and the hyper-
parameter T is set to 0.5.

As shown in Figure 3, the class of the input image is the
industrial region. The initialized bounding box is shown in
Figure 3(b), and the result is ½6, 4, 7, 5�. Then, in order to
rapidly increase the total saliency value within the region,
the bounding box expands one step in a specific direction
each time after discrimination. After the region stops grow-
ing, the bounding box as shown in Figure 3(j) is ½3, 2, 9, 7�.
The final result can be seen that a large amount of back-
ground noise in the global image is eliminated, and the local
image almost contains the key object.

Further, to more intuitively evaluate the effect of local
regional localization, the method in this paper is compared
with SCDA, and the result is shown in Figure 4. It is obvious
from the results that the single-object-based region growth
can locate key areas more precisely, and the obtained local
regions contain less background noise.

3.4. Classification. As shown in Figure 1, global image passes
through the global branch above to obtain the feature map
and global classification score Sg. Then, find the boundary
of local key area on the aggregation map. Later, the enlarged
image is sampled to get the local image, and the local image
is input into the following local branch to get the local clas-
sification score Sl. Finally, the two classification scores are
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Figure 5: Confusion matrix under the 50% training ratio on the
RSSCN7 data set.

Table 4: Overall accuracy (%) comparison with other methods on
the RSSCN7 data set.

Methods
Training ratio Training ratio

20% 50%

CaffeNet [26] 85:57 ± 0:95 88:25 ± 0:62
VGG-VD-16 [26] 83:98 ± 0:87 87:18 ± 0:94
ResNet50-TEX-Net-LF [27] 92:45 ± 0:45 94:00 ± 0:57
VGG-M-TEX-Net-EF-6 [27] 86:77 ± 0:76 89:61 ± 0:54
VGG-M-TEX-Net-EF-6 [27] 85:65 ± 0:79 88:70 ± 0:78
Fine-tune MobileNet V2 [28] 89:04 ± 0:17 92:46 ± 0:66
SE-MDPMNet [28] 92:65 ± 0:13 94:71 ± 0:15
Contourlet CNN [29] — 95:54 ± 0:71
Dual Attention-Aware Net [30] 91:07 ± 0:65 93:25 ± 0:28
EfficientNetB3-attn [25] 93:30 ± 0:19 96:17 ± 0:23
Ours 94:13 ± 0:06 96:50 ± 0:11
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fused as the final decision. The formula is

S = Sg + Sl: ð8Þ

4. Experiments

4.1. Data Sets and Evaluation Metric. In order to verify the
effectiveness of the proposed method, experiments are car-
ried out on three public remote sensing image data sets.
The basic information of each data set is listed in Table 1.

RSSCN7 data set has 7 categories, including grass land,
forest, farm land, parking lot, residential region, industrial
region, and river and lake. These images come from different
seasons and weather changes and are sampled with different
scales.

Aerial image data (AID) set split into 30 categories, that
is, airport, bare land, baseball field, beach, bridge, center,
church, commercial, dense residential, desert, farmland, for-
est, industrial, meadow, medium residential, mountain,
park, parking, playground, pond, port, railway station,
resort, river, school, sparse residential, square, stadium, stor-
age tanks, and viaduct. There are a lot of similar features
between these images.

The NWPU-RESISC45 data set is grouped into 45 clas-
ses, including airplane, airport, baseball diamond, basketball
court, beach, bridge, chaparral, church, circular farmland,
cloud, commercial area, dense residential, desert, forest, free-
way, golf course, ground track field, harbor, industrial area,
intersection, island, lake, meadow, medium residential,
mobile home park, mountain, overpass, palace, parking lot,
railway, railway station, rectangular farmland, river, round-
about, runway, sea ice, ship, snow berg, sparse residential,
stadium, storage tank, tennis court, terrace, thermal power
station, and wetland. The NWPU-RESISC45 data set is cur-
rently the largest data set with small class differences and
large intraclass differences.

The overall accuracy and confusion matrix are used to
evaluate the classification performance for this method.
Overall accuracy refers to the score of correctly classified
samples relative to all test samples, which is defined as [14]:

OA = 1
N
〠
m

i=0
Ri, ð9Þ

where m is the number of classes, Ri is the number of sam-
ples with correct classification of class i, and N is the total
number of samples in the data set.

4.2. Experiment Setup. To facilitate comparison with other
methods, two different training ratios are used for each data
set. For the RSSCN7 data set and AID, the training ratios are
fixed at 20% and 50%. For the NWPU-RESISC45 data set,
the ratios are fixed at 10% and 20%. During training, two
different methods are used to process the input images. For
the global branch, the input images are resized to 224 ×
224 and flipped horizontally at random. For the local
branch, the input images are resized to 448 × 448. Besides,
a total of 50 epochs are trained in this experiment. In the
training process, Adam algorithm is selected as the opti-
mizer, the initial learning rate is set to 1e − 4, and the atten-
uation is 0.1 every 20 epochs.

For reliable experimental results, we performed five
experiments based on the RSSCN7, AID, and NWPU-
RESISC45 data sets and calculate the mean value and stan-
dard deviation of the experimental results. All experiments
are conducted on the open-source machine learning library
PyTorch [24], and a GTX 1060Ti GPU is used for
acceleration.

4.3. Experimental Results and Analysis

4.3.1. RSSCN7 Data Set. In order to verify the performance
of the proposed method and find a satisfactory hyperpara-
meter T , a great quantity of experiments based on this
method are performed on the RSSCN7 data set. The results
are shown in Table 2.

According to the results, compared with ResNet18
model, the accuracy of the proposed method is significantly
improved. Meanwhile, a large number of experiments show
that the size of the local region will directly affect the classi-
fication results. As can be seen from Table 2, when the
threshold T is set to 0.5, the results are the best regardless
of the training ratio. Therefore, in all experiments below, T
is set to 0.5 by default.

Further, to analyze the spatial and temporal complexity
of the methods presented in this paper, the size and test time
of the model are calculated. It can be seen from the results in
Table 3 that although the model size is twice as big as
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Figure 6: The training loss and test accuracy under the 50% training ratio on the RSSCN7 data set.
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ResNet18, the test time is less than twice cost of ResNet18.
Thus, the computational complexity of the single-object-
based region growth algorithm is relatively low.

In addition, the overall accuracy is compared with other
ten methods. From Table 4, the classification overall accu-
racy of the proposed method has been significantly
improved regardless of the training ratio. Compared with
EfficientNetB3-attn [25], the classification accuracy of this
method is improved by about 0.83% under the training ratio
of 20% and 0.33% under the training ratio of 50%.

Figure 5 shows the confusion matrix for the global-local
two-branch model on the RSSCN7 data set with a training
ratio of 50%. Among them, the blank space means “0.” From
the figure, resident, industry, and parking are more likely to
be misclassified. In addition, using the RSSCN7 data set as
an example, we display the loss of the training procedure
and the accuracy during the test procedure in Figure 6.

4.3.2. AID Data Set. Our method is compared with the
others on the AID data set. Table 5 reports the classification
accuracy of different methods. The experimental results
show that the proposed method obtains the highest classifi-
cation accuracy of 94.67% and 97.10% for 20% and 50%
training ratios, respectively. Compared with other methods,
the classification accuracy of this method is 0.31 higher than
of dual attention-aware Net [30] for 20% training ratio and
is 0.49 higher than of ResNet101+SENet [31] for 50% train-
ing ratio.

When the training ratio is 50%, the confusion matrix of
experimental results is displayed in Figure 7. As can be seen
from the figure, resort and school are less than 90% accurate
because they are easily misclassified as other scenarios. In

Table 5: Overall accuracy (%) comparison with other method on
the AID data set.

Methods
Training ratio Training ratio

20% 50%

VGG-VD-16 [26] 86:59 ± 0:29 89:64 ± 0:36
VGG-TEX-Net-LF [27] 90:87 ± 0:11 92:96 ± 0:18
ResNet50-TEX-Net-LF [27] 93:81 ± 0:12 95:73 ± 0:16
Fine-tune MobileNet V2 [28] 94:13 ± 0:28 95:96 ± 0:27
Dual Attention-Aware Net [30] 94:36 ± 0:54 95:53 ± 0:30
EfficientNetB3 [25] 93:43 ± 0:33 95:37 ± 0:41
ResNet101+SENet [31] 93:69 ± 0:35 96:61 ± 0:21
CNN-CapsNet [32] 93:79 ± 0:13 96:32 ± 0:12
RADC-Net [33] 88:12 ± 0:43 92:35 ± 0:19
MG-CAP(Sqrt-E) [34] 93:34 ± 0:18 96:12 ± 0:12
Ours 94:67 ± 0:07 97:10 ± 0:09
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Figure 7: Confusion matrix under the 50% training ratio on AID
data set.

Table 6: Overall accuracy (%) comparison with other method on
NWPU-RESISC45 data set.

Methods
Training ratio Training ratio

10% 20%

ResNet101 [31] 89:41 ± 0:16 92:52 ± 0:17
VGG-16-CapsNet [32] 85:08 ± 0:13 89:18 ± 0:14
Inception-v3-CapsNet [32] 89:03 ± 0:21 92:60 ± 0:11
RADC-Net [33] 85:72 ± 0:25 87:63 ± 0:28
MG-CAP(bilinear) [34] 89:42 ± 0:19 91:72 ± 0:16
Fine-tune VGG16 [36] 87:15 ± 0:45 90:36 ± 0:18
Fine-tune GoogLeNet [36] 82:57 ± 0:12 86:02 ± 0:18
GANet [37] 87:96 ± 0:23 91:36 ± 0:18
MF2Net [35] 90:17 ± 0:25 92:73 ± 0:21
ResNet34 + SFFM [38] 86:28 ± 0:34 91:11 ± 0:13
DS-CapsNet [39] 89:27 ± 0:22 91:62 ± 0:18
Ours 90:71 ± 0:13 93:25 ± 0:09
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Figure 8: Confusion matrix under the 20% training ratio on the
NWPU-RESISC45 data set.
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addition, center, school, park, and square are all prone to
misclassification. Finding the discriminative features
between the classes is a key way to further improve the clas-
sification performance.

4.3.3. NWPU-RESISC45 Data Set. From Table 6, it can be
seen the classification accuracy of our method is the highest
compared with other advanced methods, which proves its
validity. When the training ratio is 10%, the accuracy of this
method is 90.71%, which is 0.54% higher than the second
highest MF2Net [35]. When the training ratio is 20%, the
accuracy of this method is 93.25%, which is 0.52% higher
than MF2Net.

When the training rate is 20%, the confusion matrix of
NWPU-RESISC45 data set is shown in Figure 8. The
NWPU-RESISC45 data set contains a large number of
remote sensing images with complex background, thus
hardly substantially improving their classification accuracy.
The results in the figure show that the scenarios with low
classification accuracy have church, commercial area, dense
residential, freeway, industrial area, medium residential, pal-
ace, river, wetland, and railway station. To further improve
the classification accuracy, new solutions still need to be
found.

5. Conclusion

In this paper, a single-object-based region growth is pro-
posed to locate the most important region in remote sensing
images. Further, the global-local two-branch network is
designed for remote sensing scene image classification.
Global branches extract texture and contour information
from the whole image, and local branches can extract more
discriminative fine-grained features. Two branches promote
each other and can improve the problem of large-scale vari-
ation. The experimental results show the effectiveness of the
proposed approach compared with other state-of-the-art
methods on three widely used remote sensing data sets. In
future work, the model should be further optimized. How
to lighten the model while maintaining high accuracy is a
problem that needs further research.
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