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In order to improve the optimization e�ect of the �ight trajectory of the aircraft, this paper combines the thinking navigation
algorithm to optimize the �ight trajectory of the aircraft and analyzes the �ight trajectory of the aircraft through the intelligent
model. By processing the original satellite clock error data by the �rst-order di�erence method, the modeling data can be more
suitable for nonlinear characteristics. Moreover, this paper chooses a simple network structure and uses the MEA to select the
optimal initial parameters of the model for the BP neural network, which can avoid the local optimization of the BP neural
network results. In addition, this paper conducts experimental analysis on the MEA-BP model through �tting data of di�erent
lengths. e simulation test results show that the thinking navigation algorithm proposed in this paper has a very obvious e�ect on
the optimization of the �ight trajectory of the aircraft.

1. Introduction

 e trajectory optimization of the aircraft refers to the so-
lution of parameters such as speed and altitude during the
entire �ight process under the condition of given �ight
performance indicators (the shortest �ight time, and the
least fuel consumption in the whole process). Under the
action of the engine thrust, aerodynamic force, and the
gravity of the aircraft, we need to study the law of the
movement of the center of mass of the aircraft, that is, to
optimize the takeo� and landing performance of the aircraft,
as well as the climb, cruise, and descent performance.
 erefore, when studying the problem of aircraft �ight
performance, it is necessary to establish the equation of
motion of the center of mass of the aircraft.  e estab-
lishment of the equation of motion for the center of mass of
the aircraft is closely related to the �ight environment. In
addition to this, �ight performance is a�ected by the in-
teraction between the aircraft and the air, including the
aerodynamic characteristics of the aircraft, the total weight
of the aircraft, and the relationship of atmospheric and
environmental conditions to the aircraft. erefore, accurate
calculation of �ight performance must be based on reliable

atmospheric data, aerodynamic data, motorized data, and
aircraft data.

 e essence of civil aircraft �ight management system is
trajectory optimization and tracking. Modern aircraft tra-
jectory optimization is based on aircraft kinematics equations,
dynamic equations, and multiple constraints under the
premise of designing control variables according to �ight plan
requirements, �ight technical indicators, etc., and con-
structing target functionals.  erefore, the optimal control
variables are solved to �nd an optimal �ight trajectory that
satis�es a certain performance index.  e trajectory opti-
mization design is an important part of the overall design of
modern aircraft. In the overall design of the aircraft, trajectory
optimization and tracking play an important guiding role in
other subsystems such as overall layout analysis, overall pa-
rameter determination, aerodynamic design, material and
structural strength, control system, and power plant system. It
is one of the overall goals pursued by the design of civil
aviation aircraft to combine with the dynamic parameter
design to make all the subsystems of the aircraft cooperate
with each other to achieve the optimal performance indica-
tors. Only by considering multiple aspects can the designed
aircraft be more practical and valuable. In the three-stage
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(climbing, cruising, and descending) trajectory optimization,
in the trajectory optimization tasks of each stage, early people
focused on local point optimization and segment optimiza-
tion, and the performance indicators that were concerned
were the shortest time, themost fuel-efficient, and the shortest
distance climb. In index [1], the methods used mainly include
retrieval method, iterative method, dynamic variation
method, energy state management method, and singular
perturbation method. *e advantage of the retrieval method
[2] is that it is convenient and concise. *e disadvantage is
that it only considers the local optimum and requires a large
storage space. When the flight task and flight environment
change, the accuracy, and accuracy and search efficiency of
this method are low. *e iterative method in the static op-
timization method expresses the quantity to be optimized,
such as the cost of flight time and fuel cost, as an objective
function composed of certain parameters, and then substi-
tutes the objective function into the parameter estimated
value to continuously iterate to finally obtain the optimal
solution of the objective function. *e method is simple and
direct, but the disadvantage is that the whole trajectory cannot
be optimized. *e variational method transforms the tra-
jectory optimization problem into a state equation based on
the optimal control theory and uses the minimum value
principle or the variational principle to obtain the global
optimal solution [3].

At present, the research on aircraft trajectory planning
mainly focuses on UAVs and military aircraft, such as
terrain avoidance, terrain tracking, and UAV formation
flight trajectory planning in low-altitude penetration of
military aircraft. *e main applied planning algorithms are
as follows: grid method, artificial potential field method, A∗
search algorithm, sparse A∗ search algorithm, D∗ search
algorithm, genetic algorithm, ant colony algorithm, particle
swarm algorithm, etc. Scholars like Amin JN discussed
several problems of UAV track planning based on genetic
algorithm [4]. *e literature [5] applied the navigation al-
gorithm to online track optimization, but this method is
complicated and difficult to understand. *e literature [6]
proposed that the distance propagation method is used,
which can effectively solve some dynamic trajectory opti-
mization problems, but with the increase of the number of
grids, the optimization time increases significantly. *e
literature [7] uses the threat cost weighting method to
construct a Voronoi diagram and analyzes it according to
the characteristics of real-time trajectory planning. Two
(strategic and tactical) trajectory planning ideas are pro-
posed. *e dual-population particle swarm planning algo-
rithm proposed by the literature [8] uses a parallel search
strategy to meet the requirements of real-time planning. *e
literature [9] uses dynamic path algorithm and terrain
tracking. *e algorithm replans the helicopter’s online track
and improves the mission survivability of the aircraft. *e
literature [10] uses the differential evolution algorithm (DE)
to randomly search the space and points out that this al-
gorithm has the advantages of fast search and good ro-
bustness. Regarding the study of aircraft avoiding restricted
areas such as flight restricted areas and threats, the literature
[11] uses genetic algorithm to solve the flight trajectory with

constraints, and the literature [12] uses MILP method to
transform the trajectory planning problem into a linear
programming problem under constraints. In order to obtain
the optimal obstacle avoidance trajectory, the literature [13]
discusses the trajectory optimization problem of UAV in the
presence of flight restricted areas. *e goal of trajectory
planning is to detect and analyze real-time environmental
data in a timely and effective manner when the aircraft
reaches the destination, so as to change the preplanned flight
path in real time and reduce the probability of the aircraft
being threatened bymaneuvering.*e literature [14] applied
the adaptive genetic algorithm and D∗ search algorithm to
the offline and online trajectory planning of the aircraft
cruise segment on the basis of referring to relevant theories
and algorithms, and achieved good planning results.

With the complexity of the mathematical model of the
aircraft, the multicoupling and aerodynamic nonlinearity
phenomena in the flight process make this method almost no
longer applicable [15]. With the development of science and
technology and the study of nonlinear control theory, many
nonlinear control methods have appeared. Judging from the
current research work on aircraft track tracking, most
scholars focus on neural network control, fuzzy control, LQR
control, sliding mode control, and adaptive control. In the
literature [16], a method for decoupling the strongly coupled
transformation of the aircraft is given. When designing the
sliding mode control law, the motion model needs to be
linearized. *e literature [17] designed a sliding mode control
law to stably track the three-dimensional flight path of the
aircraft. *e literature [18] combined the predictive function
control command with the fuzzy inference compensation to
achieve the optimal track tracking control of the aircraft
problem, and the simulation shows the feasibility of this
method. *e literature [19] proposed an improved robust
adaptive control, which reduces the complexity of the control
law by introducing a dynamic surface, and uses the RBF
neural network approximation method to control the un-
certain parameters inside the model, and the overall reali-
zation of the pitch angle, attack angle, and level tail is
achieved. Deflected instruction tracking. *e literature [20]
designed a robust adaptive reverse thrust sliding mode tra-
jectory tracking method, which realized trajectory tracking
with state variables and angle of attack as commands, and
realized observation compensation for atmospheric distur-
bance and modeling error by designing an observer. And we
introduce the tangent function and attenuation factor to
reduce the signal chattering problem.

*is paper combines the thinking navigation algorithm
to optimize the flight trajectory of the aircraft, analyzes the
flight trajectory of the aircraft through the intelligent model,
and combines the intelligent algorithm to improve the
planning effect of the flight trajectory of the aircraft.

2. Thinking Navigation Algorithm

2.1. &e Basic &eory of Satellite Clock Error Forecasting.
Satellite clock error data, also known as phase data, are the
time offset data obtained by standard time and atomic clock
output time, in nanoseconds or seconds. In satellite
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navigation and positioning, phase data represent satellite
clock error data and receiver clock error data. *e raw phase
data can be directly used for navigation positioning and
satellite clock error prediction. However, the magnitude of
the phase data is large, and it is impossible to judge and
identify the location of outliers such as gross errors and clock
jumps. *erefore, the data need to be preprocessed before
the actual clock error forecasting. By making corresponding
mathematical changes to the phase data, the corresponding
frequency data can be obtained, and by processing the
frequency data, the gross errors and clock jumps existing in
the clock error can be effectively detected.

*e relative deviation of the standard output frequencies
of different frequencies can obtain frequency data, which is
defined as:

D �
fA − fB

f0
. (1)

In the formula, fA is the output frequency of the fre-
quency standard A, fB is the output frequency of the fre-
quency standard B, f0 is the nominal frequency, andD is the
obtained frequency data.

Over time, the actual output frequency of the atomic
clock will be affected by the internal components and the
external environment, and it usually presents a linear trend
of increasing or decreasing. When time changes, the fre-
quency of satellite clock also changes, and the rate of change
is called frequency drift rate or aging rate. *e calculation
formula is as follows:

zi �
yi+1 − yi

τ0
. (2)

In the formula, yi is the frequency value of epoch i, yi+1 is
the frequency value of epoch i+ 1, and τ0 is the sampling
interval of adjacent epochs.

*e frequency of atomic clocks is often not a specific value,
but fluctuates within a certain range. It obtains correct in-
formation on whether the atomic clock frequency is accurate
or not by comparing the actual frequency obtained by mea-
suring the 1BP neural network algorithm or calculation with
the nominal frequency. *e calculation formula is as follows:

A �
f − f0

f0
. (3)

In the formula, f is the actual frequency measured or
calculated, f0 is the real frequency, that is, the nominal
frequency, and A is the calculated frequency accuracy. Since
the frequency of atomic clocks fluctuates within a certain
range, the average of multiple measurement results is usually
taken as the final result.

2.2.PreprocessingofSatelliteClockErrorData. *e frequency
data are obtained from the phase data by mathematical
transformation, and the conversion formula is as follows:

yi �
xi+1 − xi

τ0
. (4)

In the formula, xi is the value of the satellite clock error
at epoch i, xi+1 is the value of the satellite clock error at epoch
i+ 1, τ0 is the sampling interval of the clock error data in
adjacent epochs, and yi is the obtained clock difference
frequency data.

After the detection of gross errors and clock jumps is
completed for the frequency data, the processed frequency
data can be recovered by the following formula to obtain
new phase data, that is, the clock error data.

xi � 􏽚
t

0
y(λ)dλ. (5)

In order to check the characteristics of phase data and
frequency data, in this paper, IGS postevent satellite clock
error is used for experimental analysis, and one day’s GPS
satellite clock error data are randomly selected with a
sampling rate of 30 s. Taking the PRN10 satellite as an ex-
ample, its satellite clock error data and corresponding fre-
quency data are given, as shown in Figure 1 and Figure 2.

It can be seen from Figures 1 and 2 that the clock error
data (phase data) of the No. 10 satellite are in a linear trend as
a whole, and its order of magnitude is 10–4. It is difficult to
see with the naked eye whether there are outliers such as
gross errors in the data. However, the frequency data ob-
tained through mathematical changes are far less than the
order of magnitude of the satellite clock error. Since the
gross error value is small, it is easier to find outliers such as
gross error using frequency data.

Most gross error detection methods are processed based
on satellite frequency data. Currently, the robust estimation
method based on median (MAD) is used more, and the
median representation is as follows:

MAD � Median
yi − m

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

0.6745
􏼨 􏼩. (6)

In the formula, yi is the satellite frequency data, and m �

Median yi􏼈 􏼉 is the middle number of the frequency data
sequence.

After the algorithm obtains the median (MAD), the
middle number m of the frequency data is added to the n
times of the obtained median, and the sum of the above two
items is compared with the magnitude of the absolute value
|yi| of each frequency. According to its relationship to judge
gross error, the formula is as follows:

yi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌>(m + n · MAD). (7)

Among them, the integer n is selected according to the
actual situation, and the other parameters are the same as
those in formula (6).

When the satellite frequency data satisfy the above
formula, the data are judged as gross error andmarked. After
the gross error detection is carried out on all the frequency
data, according to the number of marked epochs, the fre-
quency data of the corresponding epoch are set to 0, and the
frequency data are filled by means of mathematical calcu-
lation. *e method is simple and easy to implement, and has
weak sensitivity to gross error size, strong error resistance,
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and good applicability to frequency data. Using this method,
the satellite frequency sequence in Figure 2 is processed for
gross error detection, and the processed satellite frequency
data are shown in Figure 3.

By comparing Figures 2 and 3, it can be seen that the
frequency data quality after using the median method to
remove gross errors has been significantly improved, and the
overall fluctuation is relatively stable. *e clock error data
with better quality are obtained by restoring the processed
satellite frequency data. Using these data for modeling
prediction will greatly improve the accuracy of the clock
error prediction value.

In order to judge whether there is a clock jump in the
clock difference data, this paper adopts the following
methods to detect: the algorithm first processes the satellite
frequency data using the median method mentioned above.
After the processing is completed, the epochs marked as
gross errors are stored, and sometimes adjacent epochs are
marked at the same time. *ere is a high probability of a
clock jump in this case.*e algorithm sums the adjacent two
items of the satellite frequency data to form a new data
sequence yi � yi + yi+1 and marks the epoch according to

the above stored gross errors. If yi only has a peak value in
the marked epoch, the epoch is considered to be a gross
error, and if both the marked epoch and its next epoch have
peak values, it can be judged that the abnormal value is a
clock jump. *e specific judgment is shown in Figure 4.

2.3. Commonly Used Clock Error Prediction Models. *e
quadratic polynomial model of satellite clock error forecast
is as follows:

xi � a0 + a1 ti − t0( 􏼁 + a2 ti − t0( 􏼁
2

+ ε. (8)

In the formula, i � 1, 2, . . . , n; xi is the value of the
satellite clock offset at time ti; t0 is the satellite clock ref-
erence time; a0, a1, a2 are the satellite phase, frequency offset,
and frequency drift at the reference time; and ε is the random
error of the model.

*e linearization formula of this model is as follows:

L � Ba + v. (9)

In the formula, there are

B �

1 t1 − t0 t1 − t0( 􏼁
2

1 t2 − t0 t2 − t0( 􏼁
2

⋮ ⋮ ⋮

1 ti − t0 ti − t0( 􏼁
2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

L �

x1

x2

⋮

xi

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

v �

v1

v2

⋮

vi

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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Figure 3: Frequency data of PRN10 satellite after removing gross
errors.
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Figure 2: PRN10 satellite frequency data.
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When the number of satellite clock errors exceeds three,
based on the principle of least squares, the estimation of the
parameters in the fitting function can be obtained as follows:

􏽢a � 􏽢a0 􏽢a1 􏽢a2􏼂 􏼃
T

� B
T

B􏼐 􏼑
− 1

B
T
L. (11)

*e fitting of the clock error sequence can be completed
by substituting the parameter estimates into formula (8).
After the model is determined, the time extrapolation can be
used to complete the prediction of the satellite clock error at
the next moment

􏽢xi+1

􏽢xi+2

⋮

􏽢xi+n

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

1 ti+1 − t0 ti+1 − t0( 􏼁
2

1 ti+2 − t0 ti+2 − t0( 􏼁
2

⋮ ⋮ ⋮

1 ti+n − t0 ti+n − t0( 􏼁
2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

􏽢a0

􏽢a1

􏽢a2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (12)

In the formula, n is the number of forecast clock errors.
In the actual satellite clock error prediction, the ap-

propriate polynomial order is generally selected according to
the actual satellite clock characteristics. When the frequency
drift of the satellite clock cannot be ignored, the quadratic
polynomial fitting model is often used in the actual clock
error prediction; otherwise, the linear model is used.

*e clock error prediction model with additional peri-
odic term is as follows:

xi � a0 + a1 ti − t0( 􏼁 + a2 ti − t0( 􏼁
2

+ 􏽘

p

k�1
Aksin 2πfk ti − t0( 􏼁 + φk􏼂 􏼃 + ε.

(13)

In the formula, the first half is the quadratic polynomial
model, and the latter is the periodic term. Among them,
Ak, fk, an dφk are related to the period term, which are

amplitude, frequency, and phase, respectively; p is the
number of main periods; and the rest parameters are the
same as formula (8).

After the parameters p and fk are determined, the
unknown parameters in the model are solved by using the
clock difference data after substituting into formula (13). For
the convenience of calculation, we set as follows:

bk � Akcosφk,

ck � Aksinφk.
(14)

*en, the linearized form of formula (13) is as
follows:

xi � a0 + a1 ti − t0( 􏼁 + a2 ti − t0( 􏼁
2

+ 􏽘

p

k�1
bksin 2πfk ti − t0( 􏼁􏼂 􏼃􏼈

+ ck cos 2πfk ti − t0( 􏼁􏼂 􏼃􏼉 + ε.

(15)

Its matrix form is as follows:

L � Aa + v. (16)

In the formula, L is the n-dimensional satellite clock
error data, a � a0 a1 a2 b1 c1 · · · · · · bp cp􏽨 􏽩

T
is the

parameter to be determined, A is the coefficient matrix, and
the dimension is n × (2p + 3). *e specific expression is as
follows:

A � A1 A2􏼂 􏼃, (17)

Among them, there are

A1 �

1 δt1 δt
2
1

1 δt2 δt
2
2

⋮ ⋮ ⋮

1 δtn δt
2
n

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

A2 �

sin 2πf1δt1( 􏼁 cos 2πf1δt1( 􏼁 · · · sin 2πfpδt1􏼐 􏼑 cos 2πfpδt1􏼐 􏼑

sin 2πf1δt2( 􏼁 cos 2πf1δt2( 􏼁 · · · sin 2πfpδt2􏼐 􏼑 cos 2πfpδt2􏼐 􏼑

⋮ ⋮ ⋮ ⋮ ⋮

sin 2πf1δtn( 􏼁 cos 2πf1δtn( 􏼁 · · · sin 2πfpδtn􏼐 􏼑 cos 2πfpδtn􏼐 􏼑

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(18)

In the formula, δtn � tn − t0.
*e same polynomial model is solved, and the least

squares principle is used as the criterion to obtain the es-
timated value of the unknown parameter 􏽢a:

􏽢a � 􏽢a0 􏽢a1 􏽢a2
􏽢b1 􏽢c1 · · · · · · 􏽢bp 􏽢cp􏽨 􏽩

T
� A

T
A􏼐 􏼑

− 1
A

T
L.

(19)

After obtaining the parameter estimates in the model, we
substitute them into formula (13) to complete the model
fitting and then perform the clock error prediction at the
next moment as follows:

Clock data

Outliers,
tentatively

defined as the
gross error

Frequency
data

Adjacent
frequency

summation
data

Bell jumpGross error

Figure 4: Schematic diagram of the difference between gross errors
and clock jumps in satellite clock errors.
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L′ � A′􏽢a. (20)

In the formula, A′ � A1′ A2′􏼂 􏼃. Among them, there are

A1′ � 1 δtn+i δt
2
n+i

􏽨 􏽩,

A2′ � ⌊sin 2πf1δtn+i( 􏼁cos 2πf1δtn+i( 􏼁

. . . sin 2πfpδtn+i􏼐 􏼑cos 2πfpδtn+i􏼐 􏼑⌋.

(21)

*e basic contents of the grey model suitable for satellite
clock error forecasting are as follows.

We assume that there is a sequence of original clock
offsets, as follows:

X
0

� x
0
(1), x

0
(2), . . . , x

0
(n)􏽮 􏽯. (22)

*e new clock error sequence obtained by accumulation
is as follows:

X
1

� x
1
(1), x

1
(2), . . . , x

1
(n)􏽮 􏽯, (23)

Among them, x1(k) � 􏽐
k
i�1 x0(i), k � 1, 2, . . . , n.

*e differential formula of the grey model is as follows:

dx

dt
+ bx � u. (24)

Substitute the new data sequence generated by accu-
mulating satellite clock error data into the above formula, we
get

dX
1

dt
+ bX

1
� u. (25)

In the formula, t ∈ 0, +∞􏼂 􏼃.
Integrating formula (25) in the interval [k, k+1], we have

X
1
(k + 1) − X

1
(k) + b 􏽚

k+1

k
X

1
(t)dt � u. (26)

In the formula, k � 1, 2, . . . , n − 1.
Taking into account X0(k + 1) � X1(k + 1) − X1(k),

and expressing the integral in the form of mean, the above
formula can be written as follows:

X
0
(k + 1) � − bZ

1
(k + 1) + u. (27)

In the formula, Z1(k + 1) � (X1(k) + X1(k + 1)/2) is
the arithmetic mean of points X1(k)、X1(k + 1).

*e matrix form of formula (27) is as follows:

L � Cb + v. (28)

In the formula, there are

L �

X
0
(2)

X
0
(3)

⋮

X
0
(n)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

C �

− Z
1)

(2) 1

− Z
1)

(3) 1

⋮ ⋮

− Z
1)

(n) 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

b �
a

u
􏼢 􏼣.

(29)

Based on the principle of least squares, the parameter

􏽢b �
􏽢a

􏽢u
􏼢 􏼣 � (CTC)− 1CTL of the grey model is obtained.

Substituting the obtained parameters into the differential
formula, taking into account the initial parameter
X1(1) � X0(1), we get

X
1
(k + 1) � X

0
(1) −

u

a
􏼔 􏼕e

− ak
+

u

a
. (30)

*e above formula can be used for prediction, and the
obtained prediction value is the new data after one accu-
mulation, and the accumulation and subtraction operation is
performed, and then, the prediction value of the original
clock error data before accumulation is as follows:

X
0
(k + 1) � X

1
(k + 1) − X

1
(k)

� 1 − e
a

( 􏼁 X
0
(1) −

u

a
􏼔 􏼕e

− ak
.

(31)

Formula (31) is the grey model suitable for satellite clock
error forecasting. *e model can perform modeling pre-
diction with more than 4 data volumes, and its effect is better
in the long-term prediction of clock errors.

*e autoregressive moving average model ARMA (p, q)
is expressed in the following form:

xt � φ1xt− 1 + φ2xt− 2 + · · · + φpxt− p

+ at − θ1at− 1 − θ2at− 2 − · · · − θqat− q.
(32)

In the formula, xt􏼈 􏼉 is the data sequence calculated by the
substitution model; φi and θi are the unknown autore-
gressive (AR) coefficient and moving average (MA) coeffi-
cient, respectively; p and q refer to the order of the
autoregressive model and the order of the moving average
model, respectively; and at􏼈 􏼉 is white noise, which conforms
to the normal distribution N 0, σ2􏼐 􏼑.
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2.4. BP Neural Network Algorithm. Neural networks are
effective in fitting and predicting nonlinear time series, in
which BP neural network is the most widely used. *rough
iteration, the output value is gradually approached to the
expected value of the output.

*e BP neural network structure can set up multiple
hidden layers. However, too many hidden layers will in-
crease the computational workload. In order to shorten the
calculation amount and speed up the calculation processing,
this paper sets the hidden layer as one layer. During the
training process, the input layer of each layer node is cal-
culated as follows:

Inn,j � 􏽘
n

j�1
ωijxi + θj. (33)

In the formula, n is the number of network layers, ωij is
the weight of the n-th layer of the network, θj is the
threshold of the n-th layer, xi is the input data, which
corresponds to the input layer in Figure 1, and
Inn,j � 􏽐

n
j�1 ωijxi + θj in the formula (33) is the intermediate

parameter of the model.
*e activation function often uses the sigmoid function

f(x) �
1

1 + e
− x. (34)

*e function is continuously differentiable, and it can
project data from − ∞, +∞􏼂 􏼃 into the interval [0, 1].

After the input layer is calculated, the corresponding
output layer is calculated as follows:

Outn,j � f Inn,j􏼐 􏼑 �
1

1 + e
− 􏽐

n
j�1 ωijxi + θj􏼐 􏼑

. (35)

In the formula, Outn,j is the output value obtained by the
BP neural network.

According to the gradient descent algorithm, the esti-
mated value Outn,j of the network output is compared with
the real value of the product released by IGS, and the error
value is obtained. *rough the error back propagation, the
BP neural network completes the update of the weight and
threshold parameters, and the update formula is as follows:

ω(t + 1) � ω(t) + ηε(t)y(t),

θ(t + 1) � θ(t) + ηε(t)y(t).
(36)

In the formula, t is the number of iterations; ε(t) is the
error term, that is, the difference between the expected
output value and the actual output result; η is the learning
efficiency of the neural network; and y(t) is the output value
of the neuron.

2.5. &inking Evolution Algorithm. Mind evolutionary al-
gorithm (MEA) deals with optimization problems in the way
of evolution of human thinking. *e algorithm first uses the
convergence operation to optimize the individuals in the
subgroup, and then, the mature subgroups compete globally
through the alienation operation, which greatly improves
the optimization efficiency. Figure 5 is a schematic diagram
of the structure of the MEA.

We assume that there is a set of satellite clock offset data
x1, x2, . . . , xn􏼈 􏼉, and use the data at these n times to model
and predict the clock offset value at future times. Usually, the
number of output layers is the same as the number of output
data types, and the output value in this paper is the clock
difference. *erefore, the output node is set to 1, and the
neural network is used to establish the mapping relationship
between x1, x2, . . . , xN􏼈 􏼉 and xn+1􏼈 􏼉 (N is the number of
input nodes), and the idea of sliding window is adopted. On
the premise of keeping the number of samples unchanged,
the new prediction data are constantly used to replace the
previous known data, and the multi-epoch satellite clock
error prediction is realized.

According to formula (37) and formula (38), the algo-
rithm first calculates the mean square error E and then takes
the reciprocal of it to obtain the score function score of
various groups and individuals.

E �

�������������

1
m

􏽘

m

i�1
􏽢yi − yi( 􏼁

2

􏽶
􏽴

, (37)

score �
1
E

. (38)

In the formula, 􏽢yi is the output value after iteration, yi is
the sample value, and m is the total number of samples.

*e algorithm flow is shown in Figure 6.
After completing the neural network training using

n-dimensional modeling data, according to the neural
network structure, the number of input nodes is N, and the
number of output nodes is 1. *e algorithm adopts the idea
of sliding window to ensure that the number of samples
remains unchanged and so on to achieve multistep
forecasting.

We assume that X � x(1), x(2), . . . , x(n){ } is a set of
n-dimensional satellite clock error sequences, where x(i), i �

1, 2, . . . , n is the clock error data of different epochs. *e
algorithm divides the clock difference data into two groups
and makes the difference in turn to obtain a new first-order
difference data sequence

ΔX � Δx(1),Δx(2), . . . ,Δx(n − 1){ }. (39)

Among them, Δx(i) � x(i + 1) − x(i).

Global bulletin board

Subpopulation G1

Subpopulation G2

Subpopulation G3

Subpopulation G4

Subpopulation G6

Local bulletin board

Feature extraction

Environment

Subpopulation GN

Individual N1 Individual N2... individual Nm

Figure 5: :Schematic diagram of the structure of the MEA.
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After the original clock error is processed by one time
difference, different from the conventional operation, the
data used to solve the parameters in themodeling process are
the data sequence after one time difference. When deter-
mining the model, a neural network is used to model the
formed data sequence ΔX, and the satellite clock error of the
next m epochs is predicted: the algorithm models the n-1-
dimensional data, and after the modeling process is com-
pleted, the m-dimensional data sequence is predicted,
ΔX′ � Δx(n),Δx(n + 1), . . . ,Δx(m + n − 1){ }. *e algo-
rithm recovers the clock error of the epoch to be determined
by using the predicted first-order difference and the mod-
eling last clock error data x(n), that is,

x(k) � x(n) + 􏽘

k− 1

n

Δx(k). (40)

3. Comparative Test Analysis

In order to verify the optimization effect of the thinking
navigation algorithm on the flight trajectory of the aircraft,
the effect of the method in this paper is studied by means of
comparative experiments.

*e modeling uses 12 hours of data, the satellite clock
error data sampling interval is 30 s, and there are 1440 data in
total. In this paper, the input layer is set to 1, and the number
of hidden layer nodes is in the range of [1 ,10]. *is paper
takes the G02 satellite as an example and uses its clock error
data to conduct experiments. Different mean square errors
(RMSE) can be obtained by selecting different hidden layer
nodes. *e relationship between the two is shown in Figure 7.

It can be seen from the analysis in Figure 7 that the
overall fitting accuracy of the model is relatively stable,
fluctuating up and down at 0.3 ns. When the number of
hidden layer nodes is 5, the prediction accuracy suddenly
deteriorates, and the curve fluctuates greatly. *e reason is
that when there are too many hidden layer nodes, the BP
neural network algorithm is prone to “overfitting.” *at is,

although the model has a high fitting accuracy at this time,
the prediction accuracy suddenly deteriorates. If the number
of hidden layer nodes is not selected properly, it will seri-
ously affect the prediction accuracy of the model. According
to the experimental results and fully considering the fitting
and prediction accuracy, this paper selects 3 as the number
of nodes in the hidden layer of the BP neural network.

In summary, in this paper, the input layer node is set to 1,
the output layer node is set to 1, and the hidden layer node is
calculated to be 3.

*e random selection of initial parameters in BP neural
network will increase the convergence time and workload in
the training process, which may cause abnormal results in the
model solving process and affect the stability of the model.
Moreover, the results of the algorithm are easy to fall into the
local minimum, which reduces the performance of the model
to obtain the global optimum. In this paper, the MEA is used
to select the initial parameters required by the BP neural
network. In the MEA, the population size is set to 1440, and 5
winning subpopulations and 5 temporary subpopulations are
selected. In order to make the algorithm fully find the optimal
individual, the number of iterations is set to 200.

*e prediction performance of the BP model and the
MEA-BP model for satellite clock errors is compared. In
order to fully compare the forecasting effects, the clock offset
data of the first 12 hours are used to independently predict
the clock offset values of the next 3 hours, 6 hours, and 12
hours for 10 times. Figure 8 shows the changes of the RMS
values predicted by the two models.

In this experiment, the MEA-BP model and the tradi-
tional BP model are used to forecast the No. 2 satellite in
different time periods. It can be seen from Figure 8 that
under the same network structure, the multiple prediction
accuracy of the MEA-BP model and the BP model does not
fluctuate significantly, which proves the feasibility of the
network structure. When the forecast time increases, the
MEA-BP model obtains higher accuracy and has better
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Figure 7: *e relationship between the number of hidden layer
nodes and the model accuracy.
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Figure 6: MEA to optimize BP neural network process.
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forecast performance than the traditional BP model. In the
clock error prediction of the three time periods, the pre-
diction accuracy of the MEA-BP model is better than that of
the BP model. It shows that the initial parameters (weights
and thresholds) required by the BP neural network are better
selected by MEA, so as to avoid the local optimal results
obtained by the BP model, and effectively improve the ac-
curacy of the prediction results. Moreover, it shows the
feasibility of the MEA-BP model for clock error prediction,
so it is a relatively stable aircraft flight trajectory optimi-
zation algorithm.

On the basis of the above research, the role of the thinking
navigation proposed in this paper in the optimization of the
flight trajectory of the aircraft is analyzed through multiple
sets of simulation experiments, and the simulation evaluation
results shown in Table 1 are obtained.

From the above experimental research, it can be seen that
the thinking navigation algorithm proposed in this paper has
a very obvious effect on the optimization of the flight tra-
jectory of the aircraft.
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2 3 4 5 6 7 8 9 101
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0.28
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Figure 8: Variation of 10 times RMS of MEA-BP and BP forecast (a) (b) (c).

Table 1: Evaluation of aircraft flight trajectory optimization.

Num Trajectory optimization Num Trajectory optimization
1 88.48 10 91.48
2 88.49 11 90.77
3 88.05 12 91.57
4 89.39 13 89.74
5 90.29 14 90.46
6 91.14 15 91.02
7 89.40 16 91.06
8 89.07 17 91.11
9 88.04 18 89.94
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4. Conclusion

Track tracking is based on the precompleted flight track, and
it performs flight track planning in real time according to the
external interference, environment, and other internal and
external factors in the actual flight. When completing a
certain task or operation, it calculates and tracks the required
optimal flight path, and generates navigation and control
instructions. Correspondingly, it controls the force and
attitude angle of the aircraft (including engine thrust, attack
angle, roll angle, and heading angle) to make the aircraft fly
along the planned flight path. *is paper combines the
thinking navigation algorithm to optimize the flight tra-
jectory of the aircraft and analyzes the flight trajectory of the
aircraft through the intelligent model. *e simulation test
study shows that the thinking navigation algorithm pro-
posed in this paper has a very obvious effect on the opti-
mization of the flight trajectory of the aircraft.
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