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In order to enable the driverless vehicle formation controller to automatically control the driving of the fleet, an intelligent
driverless vehicle control system based on the CAN controller is proposed. Expansion convolution of different expansion rates is
used to obtain multi-scale target information and to fuse the feature information at different scales during upsampling to enrich
the semantic information. Finally, the driverless CAN bus communication platform was established, the driverless monitoring
interface was developed, and the software program was written; experiments on the steering control, speed control, voltage,
current, speed, and angular speed acquisition, respectively, were performed. The experimental results show that the average
semantic segmentation accuracy of the obstacles in concentrated vehicles, pedestrians, and bicycles reached 84.6%, and the
detection and segmentation accuracy of the models was good. Therefore, the unmanned intelligent vehicle control system
designed in this paper can meet the performance requirements of the vehicle control. No matter whether the given desired path is
a straight line or a curve, the unmanned car can complete the path tracking control quickly, stably, and accurately.

1. Introduction

In recent years, with the progress of hardware and software,
unmanned driving technology has developed rapidly. For
driverless vehicles, accurate detection of obstacles is crucial
for safe driving [1]. With the development of deep con-
volutional neural network, semantic segmentation tech-
nology has been applied more and more widely in the field of
unmanned driving environment perception, especially ob-
stacle detection. For driverless vehicles, pedestrians, vehicles,
and cyclists on the road can all be regarded as “obstacles,”
which have a huge impact on the safe driving of driverless
vehicles. Semantic segmentation technology based on
convolutional neural network can detect and identify these
obstacles at pixel level, which can provide environmental
information for the decision, planning, and control of un-
manned vehicles [2]. The core problems to be solved in the
detection and identification of real scenes by driverless
vehicles are the improvement of detection speed of algo-
rithms, the accurate classification of obstacles in driving
scenes in various extreme environments, and the extraction

of road semantic information. Conventional visual algo-
rithms based on image features are difficult to play a
practical role in the highly dynamic environment of un-
manned driving [3]. In recent years, visual detection and
recognition algorithms based on neural network have be-
come a new force and achieved good results in various visual
detection and recognition applications. At present, using
deep learning method to detect, track, and identify dynamic
targets has become the mainstream. Deep learning methods
include supervised learning, unsupervised learning, and
semi-supervised learning, and its core problems mainly
include: Construction of training and testing data sets,
design of neural network structure, construction of loss
tunctions for different application scenarios, and design of
fast and efficient numerical optimization algorithms [4]. The
only way for deep learning methods to be applied effectively
to driverless vision is to comprehensively deal with all kinds
of problems listed above. The convolutional neural network-
based semantic segmentation subject frameworks mainly
include VGGNet and ResNet VGGNet-based semantic
segmentation models include FCN, SegNet, U-net, DeepLab,
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etc., while resnet-based semantic segmentation models in-
clude PSPNet, ICNet, DeepLab V3++ [5], etc. [6]. In view of
the structural characteristics of ResNet network, the se-
mantic segmentation network based on ResNet framework
has many layers and complex network structure, which
requires high performance of hardware facilities [7]. The
semantic segmentation network based on VGGNet frame-
work is much simpler than that based on ResNet framework,
but it often fails to meet the real-time requirements. For
driverless cars, the real-time performance of the system is
crucial, and the accuracy of segmentation results should also
be taken into account [8].

Yamane et al. proposed an object detection model
combining Bayes optimization with structured prediction,
which can improve the positioning accuracy of the identified
target through structured loss function [5]. Hua et al.
proposed THE MR-CNN/S-CNN/LOC model to improve
the accuracy of detection simultaneously through the can-
didate target region and depth feature map [9]. In this
method, the candidate regions were first divided into
multiple sub-regions with different classes, and then the
corresponding features of these regions were extracted by
MR-CNN. Yukun Zhu et al. proposed that segDeepM model
can improve the results of target recognition and detection
by dividing the environment information of target region
[10].

Inspired by the above semantic segmentation models, a
lightweight semantic segmentation model is proposed for
obstacle detection to meet the real-time and accuracy re-
quirements of unmanned vehicles. The model can greatly
reduce the calculation in the next sampling stage, and can
effectively extract the image features. In the upsampling
stage, the lightweight semantic segmentation model pro-
posed in this paper incorporates the multi-stage original
subsampling features, which improves the accuracy of the
segmentation model, and the extracted image features are
restored to the original image size, and the pixel level
segmentation is carried out according to the image
semantics.

2. Related Work

Most common deep convolutional neural networks directly
use 3 x3 size convolution kernel to extract convolution
features, which leads to a large number of model parameters
and affects the execution speed and memory overhead of the
model. At the same time, with the increase of the depth of the
network, the problem of gradient disappearance will appear
in the training model, which makes it difficult to update the
weight of the shallow network in the back propagation,
resulting in the performance of the model reduced. Drawing
on ResNet residual module and Inception module in
GoogleNet, this paper proposes feature extraction block to
extract image features. The structure of feature extraction
block is shown in Figure 1.

The feature extraction block has two branches. One
branch directly uses 1 x 1 convolution to extract features, the
number of convolution kernels is 2#, and the step size s=2.
In the other branch, detachable convolution operation is
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FiGUre 1: Feature extraction block structure.

adopted. First, 1 x 1 convolution is used to extract features.
The number of convolution kernels is n/2, the convolution
step s=2. After that, 3 x 3 convolution was used to extract
features. The number of convolution kernels was n/2, and
the convolution step size was s = 1. Finally, 1 x 1 convolution
is used for dimension raising operation of feature channel.
The number of convolution kernels is 2n, and the number of
channels of the output feature map becomes 2n with con-
volution step s=1. Finally, the corresponding positions of
the output of the two branches are superposed, and the size
of the output feature graph is (h/2, W/2, 2n). The proposed
feature extraction block refers to the ResNet residual module
and fuses the low-level features with the advanced features,
which can refine the boundary and improve the edge seg-
mentation accuracy.

2.1. Fast Target Detection and Recognition Algorithm Analysis.
Deep neural network-based detection and recognition al-
gorithms have become the mainstream method in this field,
and they are far beyond the traditional visual algorithms in
most visual perception research directions. The most rep-
resentative example is that in 2012, the team led by Professor
Hinton constructed AlexNet using deep convolutional
neural network and trained it on the ImageNet data set,
successfully beating all the traditional target recognition
methods at that time. According to existing research, deep
neural network-based target detection and classification
algorithms can be divided into the following three cate-
gories: 1. Target detection and classification based on region
prediction represented by R-CNN, Fast R-CNN, and Faster
R-CNN; 2. Detection and classification algorithm based on
regression analysis represented by POLO and SSD; 3.
Search-based detection and classification algorithms rep-
resented by reinforcement learning and AttentionNet.

For deep neural network-based target detection and
classification algorithms, large training and detection da-
tabases are needed. As such data sets are generally large, the
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existing algorithm verification is generally based on the data
sets publicly available on the network. Among these data
sets, the most representative and most widely used are
ImageNet data set, COCO data set, and PASCAL VOC data
set. The images in these data sets are RGB images.

2.1.1. Data Set ImageNet. ImageNet contains more than 14
million color images and a thousand target categories, which
can be widely used for image target detection, location, and
classification. There are more than 100 images in the data set
that clearly marked the image pose and category informa-
tion, including SIFT features, target attribute values, and
target borders. The ImageNet data set is the largest image
Recognition data set in the world, and the LargeScale Visual
Recognition Challenge, a computer vision competition
based on it, has greatly advanced the field. In 2015, re-
searchers for the first time used software to surpass human
task processing capabilities on the ImageNet data set.
However, Olga Russakovsky points out that the program is
only capable of sorting a thousand categories, whereas
humans have far more than 1,000 categories.

2.1.2. Data Set VOC (Computational and Learning Visual
Object Classes). PASCAL VOC (Pattern Analysis Statistical
Modeling, Computational and Learning Visual Object
Classes) Data set is a kind of standardized data set for image
target classification and recognition. An image recognition
challenge based on this data set was held every year from
2005 to 2012. The data set contains five folders: Annotations,
ImageSets, JPEGImages, SegmentationClass, and Segmen-
tation0.ect. There are more than 10,000 images and 20 target
categories, these categories include: people, animals (cats,
dogs, cows, sheep, horses, and birds), means of trans-
portation (bicycles, motorcycles, cars, trains, and boats) and
some indoor objects (chairs, tables, sofas, televisions, potted
plants, and bottles). VOC data set consists of two parts,
namely, training set and test set, and its label information is
saved in XML format. Of the five folders described above, the
JPEGImage folder holds all the images in the data set, these
images are named “year_number” JPg and are approxi-
mately 500 x 375 in size for landscape and 375 x 500 in size
for portrait.

2.2. Road Semantic Segmentation Based on VGG16-FCN8
Network. The output of each layer of the convolutional
neural network is a three-dimensional tensor denoted by
Hx W xd, where H and W are spatial dimensions, and D
represents the dimension of features or channels. The first
layer of the network is & by W images. The higher level
corresponds to the position in the image to which their path
connects, which is called their local receptive field. Con-
volutional neural networks have inherent translation in-
variance. Their basic operations (convolution, pooling, and
activation) operate on the local input region, relying only on
the relevant spatial coordinates. For the data vector x;; at the
position (I, J) of a specific layer, the input corresponding to
the next layer can be expressed as:

Yij = fks({Xsi+5i+8j}()$5i’5j<k)' (1)

Here k represents the dimension of the convolution
kernel, S represents the sampling step, and f, represents the
type of layer. The functional form of (2) satisfies the fol-
lowing transformation rule ,

Frso s = (f 2 D st-1)s' 56’ (2)

A nonlinear filter based only on the above form is called a
full convolution network. A full convolutional neural net-
work can input images of any dimension and output images
of the same dimension.

Generally, CNN network will be connected with several
tully connected layers behind the convolution layer, which
will transform the feature map generated by the convolution
layer into a feature vector with a fixed dimension. FCN is a
classification network at pixel level, which can be used for
image segmentation at semantic level. Different from CNN,
FCN can input images of any size and perform upsampling
of feature map through reverse pen stacking, and can restore
the output to the original image size to achieve the classi-
fication of each I pixel. In short, the difference between FCN
and CNN is that CNN’s full connection layer is replaced by
volumes and layers, which output marked images. We know
that CNN can automatically learn different levels of features.
The shallow perception area is small and the learning is local
features. Deeper layers can learn more abstract features. The
knowledge area is small, and the learning is local features.
Deeper layers can learn more abstract features. These ab-
stract features are less sensitive to the size, direction, and
position of information in the image, which helps to im-
prove the recognition performance. However, because these
features lose some details of the object in the picture, it is
difficult to give the specific outline of the object, and the
object to which each pixel belongs, so the precise seg-
mentation of the object cannot be satisfied. The full con-
volutional network FCN recovers the category of each pixel
from the abstract features.

2.3. Design of CAN Controller for Unmanned Intelligent
Vehicle

2.3.1. CAN Controller. Considering the diversification of
sensor output information formats, such as the rotation
angle value detected by the multi-turn absolute encoder, the
inclination angle output by the inclination sensor, the pose
value output by the GPS in RS232 format, and angular
acceleration output in RS485 format, the number of buses
increases. The simple computer serial port is not enough for
engineering use, and the reliability, flexibility, and real-time
performance will be deteriorated. At this time, these buses
must be “merged” into one category, so the RS232/RS485 to
CAN controller is designed.

2.3.2. CAN Bussing Technique. CAN bus technology itselfis a
serial data communication method, and its transmission rate
can reach up to 1 Mbps. According to the communication,
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FIGURE 2: Application of automobile CAN bus.

CAN bus has outstanding reliability, flexibility, and real-time
performance, and it is widely used as a very effective for-
mation of split stone J-type, real-time detection, and control
system.

The Controller Area Network bus was originally a digital
signal communication protocol designed by German Bosch
Company to solve many complex technologies and problems
in the automotive monitoring system. It belongs to a bus-type
serial communication network. In 1991, Bosch Company
formulated and released the technical specifications of
CAN2.0A and CAN2.0B. Among them, CAN2.0OA gave the
CAN standard message format, and CAN2.OB gave the
standard frame and extended frame format. With the for-
mation of the international standard of CAN bus, its appli-
cation scope is not only limited to the automotive industry but
also has been extended to a wide range of fields such as robots,
CNC machine tools, machinery industry, medical machinery,
textile machinery, and household appliances. The current
application of CAN in automobiles is shown in Figure 2.

3. Experimental Analysis

3.1. Experimental Environment and Data Sets. The semantic
segmentation model was built using the TensorFlow deep
learning framework. The hardware and software configu-
rations of the machine are shown in Table 1.

The selection of data sets has a crucial impact on the
training of the model. In order to make the trained semantic
segmentation model adapt to a variety of complex realistic
environments and realize the accurate detection of obstacles
such as vehicles and pedestrians, apolloScape data set
launched by Baidu Apollo in China and Cityscapes data set
promoted by Mercedes-Benz abroad were selected to train
the model.

3.2. Model Training. In order to give full play to the advan-
tages of the selected data set, the training model is divided into
two stages. In the first stage, training is carried out on foreign
Cityscapes data sets, mainly to obtain the weight parameter
data and semantic feature information of the preliminary
model fitting. In the second stage, training was conducted on
China ApolloScape data set to adjust and optimize the weight
parameters fitted in the first stage to make the model more

TaBLE 1: Experimental configuration.

Project Content

CPU Intel(R)Core(TM) i5-7500CPU@ 3. 4 GHz
GPU NVIDIA GeForce GTX 1070TI
Internal storage 8GB

Operating system Ubuntu 16. 04 LTS

CUDA CUDAJ9. 0 with CUDNN?7. 0
TensorFlow 1. 7 with Python2. 7

adaptable to China’s traffic environment and obtain more
accurate semantic segmentation results.

The calculation formula of Softmax function used by the
model is as follows:

_ €xp (“k (x))
k= Y5, exp(a;(x))

where x is the pixel position on the feature map, a; (x)
represents the value of the KTH channel corresponding to
pixel x in the last output layer of the network, and p (x)
represents the probability that pixel X belongs to class k.
The loss function uses negative class cross entropy:

L= Z w(x)log( Pix (x)), (4)

(3)

K

where p(,, (x) represents the output probability of pixel X
on the channel where the real label is located, w(x) rep-
resents the category probability that pixel X belongs to in the
real label, and the value is 1 or 0.

The training model adopts momentum gradient descent
method, the initial momentum is set as 9, the learning rate is
set as 0.001, the weight attenuation coeflicient is set as
0.0005, the batch data amount is set as 1, and the whole
training sample data is learned for 10 rounds. The curve of
the relation between the loss value and the number of it-
erations during the model training is shown in Figure 3. The
training sample data was iterated for 10 rounds, and the
weight parameters were updated for 100,000 times. In
Figure 3, the red curve represents the pre-training on the
foreign Cityscapes data set in the first stage, while the black
curve represents the retraining on the Chinese ApolloScape
data set in the second stage. As can be seen from Figure 3,
after the pre-training, the loss function converges faster and
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FIGURE 3: Loss function comparison curve.

TaBLE 2: Performance of semantic segmentation model.

mloU (%) Model size (MDb) Processing speed (FPS)
85.7 11.3 33

the loss value is close to 0, showing a better effect on the test
set and higher detection accuracy of obstacles.

3.3. Analysis of Experimental Results. Based on the proposed
semantic segmentation model, pedestrians, cyclists, cars,
and two wheelers (bicycle, electric car, and motorcycle) are
segmented and identified, respectively, represented by pink,
red, and blue on the picture. This model can effectively detect
the target obstacles such as vehicles and pedestrians. The
autonomous driving research platform is used to collect
actual road images, the trained language segmentation
model is used to detect obstacles, and the trained semantic
segmentation model has more accurate detection results for
obstacles such as vehicles and cyclists in the real scene. The
average pixel overlap rate (mlIoU) is often used to evaluate
the accuracy of the semantic segmentation model, which can
effectively measure the segmentation performance of the
model for target obstacles. 1000 images were selected in the
test data set, including 500 Chinese road images and 500
foreign road images, the Chinese road images were from the
Chinese ApolloScape data set and the foreign road images
were from the foreign Cityscapes data set. The performance
of the constructed semantic segmentation model is shown in
Table 2.

In the test set, the average accuracy of semantic seg-
mentation of obstacles such as vehicles, pedestrians, and
cyclists is 84.6%. In terms of the overall effect of detection and
segmentation, the designed and built model has a good de-
tection and segmentation accuracy. In the target detection
and segmentation of a single image, the time cost is about

30 ms, and the average is 33FPS. In terms of the time con-
sumed by detection and recognition, the model has met the
requirement of real-time segmentation of target objects. The
model size is 11.7 Mb and the memory usage is low, which
meets the requirements of the on-board computing model.

4. Conclusions

This paper studies the control system of the unmanned
intelligent vehicle. The core is to design the lateral control
unit and the longitudinal control unit for the unmanned
vehicle, and combine the characteristics of the vehicle and
the safety of the driving vehicle to complete the lateral
control system of the unmanned intelligent vehicle and
Design with longitudinal control system. In the lateral
control system, after setting the desired path for the un-
manned vehicle, the unmanned vehicle can quickly and
stably follow the given path and can drive at a certain speed.
At present, the main completed work:

To meet the requirements of real-time performance and
accuracy for vehicle terminal obstacle detection, a light-
weight semantic segmentation model is constructed using
feature extraction blocks, depthwise separable convolutions,
and dilated convolutions. The feature extraction block draws
lessons from the structure of residual modules, and the skip-
layer structure can refine boundary information by com-
bining low-level features with high-level features. The
depthwise separable convolution can effectively reduce the
number of parameters and computation of the model, and
the dilated convolution operations with different dilation
rates can extract multi-scale target information and enrich
the semantic information. The unmanned vehicle bus
control system is completed by designing a CAN converter,
and a stable experimental platform is built for the unmanned
vehicle control system experiment. And the monitoring of
the performance states of the unmanned vehicle is carried
out. From the monitoring data, it can be concluded that the
experimental platform established in this experiment can
meet the safety requirements of the unmanned vehicle. To
meet the requirements of full travel, using the unmanned
test vehicle as a platform combined with longitudinal control
and lateral control algorithms, it is verified that the un-
manned vehicle can accurately track the path and smoothly
adjust the vehicle running speed when the unmanned ve-
hicle has a given path in a straight line or a curve.
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