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In the age of internet, the demand of visually impaired groups to perceive graphic images through tactile sense is becoming
stronger and stronger. Image object recognition is a basic task in the field of computer vision. In recent years, deep neural
networks have promoted the development of image object recognition. However, existing methods generally have problems of
image details’ loss and edge refinement, which cannot improve the accuracy rate of object recognition for visually impaired
groups. In order to solve this problem, this study proposes a graphic perception system, which improves the attention mechanism.
This system mainly consists of three modules: mixing attention module (MAM), enhanced receptive field module (ERFM), and
multilevel fusion module (MLAM). MAM can generate better semantic features, which can be used to guide feature fusion in the
decoding process, so that the aggregated features can better locate significant objects. ERFM can enrich the context information of
low-level features and input the enhanced features into MLAM. MLAM uses the semantic information generated by MAM to
guide the fusion of the current decoded features and the low-level features’ output by ERFM, and gradually recover boundary
details in a cascading manner. Finally, the proposed algorithm is compared with other algorithms on PASCAL VOC and MS-
COCO data. Experimental results show that the proposed method can effectively improve the accuracy of graphic

object recognition.

1. Introduction

At present, blind people mostly use guide poles or other
guide devices to assist their daily life. Although these devices
can bring great convenience for the blind to travel, they
cannot let the blind perceive the appearance of the objects in
front of them. Blind people only know that there is an object
in front of them, but they cannot know the exact shape of the
object. Information is the basis for people to acquire
knowledge and communicate with each other. However, for
people with visual disabilities, because of visual impairment,
other perceptual abilities, such as hearing, touch, smell, and
taste perception, have become the main channels for them to
obtain information and explore their surrounding
environment.

In recent years, more and more researchers have used
modern electronic technology to create assistive devices
that can help visually impaired groups in their daily life
and learning, for example, braille dot display and screen-
reading software. [1]. Among them, the tactile sense is the

most important and necessary way for people with visual
disabilities to learn and recognize images and graphics
[2].

In the past, tactile images especially designed and pro-
duced for the blind were mostly made using traditional
techniques such as thermoplastic vacuum forming, thermal-
sensitive printing, and embossing [3]. We make figures and
images with protrusions on the surface that can be touched
and perceived by fingers. With the development of com-
puters and related software and hardware technologies,
electronic braille spot display was first developed, such as
Optacon made by Bliss et al. in 1969 [4]. In recent years,
researchers have made progress in the development of ex-
citation-related technologies, such as shape-memory alloys,
electromagnetic microcoils, air injection, acoustic radiation
pressure, pressure valves, and even ionic conductive polymer
gel film (ICPF). Subsequently, electronic haptic image dis-
play was successively developed, such as the novel BrailleDis
9000 pin-matrix [5], HyperBraillel [6], Dot View2 [7], and
sheet-type Braille displays [8].
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However, most of the previous studies are focused on
technical implementation, because the images they display are
still expressed in the way of traditional visual cognition. For
visually impaired groups, their understanding and recognition
of images rely on finger touch, which is fundamentally different
from the way that sighted people obtain information through
external stimuli. These images based on traditional visual
cognition are not efficient enough to provide them with ef-
fective and accurate information. Experience, skills, and other
factors will affect its perception effect. Therefore, how to design
and generate image content with clear semantics and easy for
blind people to recognize by touch is a great challenge.

Blind people rely on hearing and touch instead of sight to
obtain information. In the face of verbal information, blind
people can read for them by the real human voice and a
computer-simulated human voice through audiotape or
screen-reading software [9]. You can also use braille to sense
braille through your fingers and understand information
[10]. However, no matter in academic research or com-
mercial market, the problem of how to obtain graphic in-
formation by the blind has not been well solved.

In view of the problem that the existing visual-tactile
display images cannot effectively provide accurate infor-
mation for the visually disabled, this study makes a deep
study on these problems. The algorithm is compared with
other algorithms to verify the significance of the system
designed in this study for the visual impairment group in the
image recognition and provides a new way for the blind to
perceive the world, which has high practical value.

The innovations and contributions of this study are listed
as follows:

(1) Mixing attention module (MAM). MAM uses the
attention mechanism to enhance the saliency of
features from the fifth residual layer, so as to get
more attention to the semantic features of significant
objects. At the same time, in order to solve the
problem that the location information of significant
objects is constantly diluted in the decoding process,
it is used as the semantic guidance in the whole
decoding process, and the feature aggregation in the
decoding process is continuously guided to generate
a more specific significance map.

(2) Enhanced receptive field module (ERFM), which can
process the features from the lower layer. The edge
details of low-level features are quite rich but limited by
the receptive field, and more global information cannot
be obtained. Therefore, ERFM is considered to retain
the original edge details while obtaining a larger re-
ceptive field and enhancing semantic information.

(3) Multilevel aggregation module (MLAM), which ef-
ficiently aggregates features generated from the
above two modules, continuously extracts significant
parts of features in a cascading manner, and refines
the edge details of significant objects. The final sa-
liency map is generated.

This study consists of five main parts: the first part is the
introduction, the second part is the factors affecting graphic
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perception, the third part is the graphic perception algo-
rithm based on improved attention mechanism, the fourth
part is the experiment and analysis, and the fifth part is the
conclusion; besides, there are abstracts and references.

2. Factors Affecting Graphic Perception

Research studies show that there are many factors that affect
the perceptual effect of blind people in the process of
learning by touching images. It mainly includes the fol-
lowing three points: (1) user’s existing experience, memory,
and knowledge; (2) user’s touch skills; and (3) display of the
readability of images and graphics.

2.1. Existing Experience, Memory, and Knowledge of Objects in
the User’s Mind. People with visual disabilities are divided
into congenital disabilities and acquired disabilities [11].
People with acquired visual impairments used to have a
vision and have a better cognitive understanding of features
than people with congenital visual impairments. For ex-
ample, people with acquired visual impairment know the
features of the sky, trees, lakes, birds, and when they touch
the features of images of these objects again, and they can
quickly understand, recognize, and rerecognize them. But
the innate visual handicap people’s cognition of things is
through the description of others and memory. In these
descriptions, there may be many abstract visual concepts.
The sky is blue and big. Poplars in spring are straight up and
green. The water is blue. Birds will fly in the sky and so on.
Abstract words are difficult for people with congenital visual
disabilities to understand and remember and recognize, and
when they touch images, there will be more confusion.

2.2. User’s Touch Skills. In the process of perceiving tactile
images, the perception of speed of images is mostly related to
the perceiver’s perception mode. For example, studies have
shown that top-to-bottom scanning is more efficient than
left-to-right when touching images and graphics [12]. Stu-
dents with better knowledge of graphics will consciously
look for its prominent features, such as acute angles, lines,
protrusions, and depressions. However, students with poor
image recognition skills often lack systematic methods and
just cross walk along contours [13].

2.3. Display Image Availability. The two points mentioned in
Sections 2.1 and 2.2 are determined by the user’s personal
situation and education level. By improving the usability
design of tactile images, the effect of tactile images perceived
by blind people can be improved. Most of the tactile images
used by the blind are simply transformed from visual images,
without considering the perceptual characteristics of the
sense of touch. As shown in Figure 1, there are many
complex lines and regions crossing in the image, and the
semantic emphasis of the information is not prominent,
which leads to the time-consuming and laborious recog-
nition of such visual-tactile images by the visually impaired
and often confused [14].
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FIGURE 1: Learning materials of blind students.

In this study, this kind of image is called a “visual-tactile
image,” referred to as V-image.

At present, in the process of designing electronic tactile
displays for visually disabled people, most designers pay
attention to the appearance, use environment, and comfort
of products, but lack of comprehensive research on the
unique characteristics of tactile images. In fact, it is necessary
to understand the characteristics of touch, how it is similar
and different from vision, and how to design tactile images
according to these characteristics before forming the design
principles of tactile displays.

3. Graphic Perception Algorithm Based on
Improved Attention Mechanism

As shown in Figure 2, a coding-decoding structure is
established in this study. First, ResNeXt101 is selected as the
feature extractor to extract the features of each layer of the
image. Second, MAM is used to generate a global semantic
feature to guide the decoding process, and the global se-
mantics are integrated into each layer feature of the decoder
through upsampling, convolution, and element accumula-
tion. In addition, the low-level features with more boundary
information are generated after ERFM. Finally, features at all
levels are sent into MLAM for effective aggregation of
features, and the final significance map is generated through
the cascade. Related contents will be described in detail in
the following chapters.

3.1. Mixing Attention Module. Images are sent into the
network and encoded to generate a series of features with
different information. The features of the highest level have
the strongest semantic representation ability, gradually fuse
with the features of the lower level in the decoding process,
and finally obtain the saliency map. However, the direct
decoding and fusion of such semantic information will result
in the loss of significant details. The reason is that different
channels of high-level features and different spatial locations
differently contribute to significance calculation. In partic-
ular, different channels may have different responses to the
same object, and different spatial locations of the same
channel may contain different objects. Inspired by the

literature [15], this study designs the mixing attention
module (MAM), and the module is divided into two parts,
respectively, that is channel attention mechanism and spatial
attention mechanism, which are used to capture different
channels and the most significant part of the different space
position, use the most significant semantic information,
effectively enhance the characteristic of high rise, and get
more robust global semantic characteristics. Figure 3 shows
the detailed structure of the module.

3.1.1. Spatial Attention Mechanism. For the high-level fea-
tures extracted from residual block 5, the width and height
dimensions are first expanded into one-dimensional vectors
and transposed to obtain the two-dimensional matrix
I € RBMXC wwhere C is the channel number of the feature,
and B and M are the height and width. Then, through three
parallel full-connection layers, M,, M, and M, the di-
mension of the channel is reduced to obtain three matrices
V=IM, Z=IM,, and Q = IMq, respectively. Then, G =
VZN is used to obtain the correlation matrix, where G,
represents the inner product of the x th row in V and the y th
row in Z, that is, the correlation of vectors at two different
spatial positions. Each line of correlation matrix G is nor-
malized by softmax function and constrained to (0, 1). Fi-
nally, the correlation matrix G is multiplied by Q, and the
channel dimension is restored through G full-connection
layer M, and the feature graph with enhanced spatial sig-
nificance I¥ = GQM, is obtained. The final feature expres-
sion is as follows:

I’ =0 (IM,(IM,)")IM,M,, (1)

Among them, the MV,MZ,Mq € RCXCH, M, e RC/4xC
and o(-) are the softmax function.

3.1.2. Channel Attention Mechanism. The operation of the
channel dimension is similar to the above. The features
extracted from residual block 5 are first expanded into
one dimension along with the width, then the high di-
mension, and then, transposed. The obtained I € REM*C
passes through three full-connection layers and the
outputs V = IM,, Z = IM_, and Q = IM,. It is considered
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that dimensionality reduction will bring too much in-
formation loss. Therefore, this algorithm does not reduce
the dimension of the channel. Then, the correlation
matrix is obtained by H = ZNV, where H,, represents the
inner product of the x th column in Z and the y th column
in V, that is, the correlation of two different channel
vectors. Similarly, each column of the correlation matrix
H needs to be normalized to (0, 1) by the softmax
function. Finally, by multiplying Q and H and passing
through a fully connected layer M, the feature graph with
enhanced spatial significance I® = QHM is obtained. The
final feature expression is as follows:

1€ = IMo((IM,)V 1M, )M, )

where M, M, M, M, € R“C. Finally, the output of the
two branches is combined. Considering the influence of
residual structure, this study adds the combined features and
input I to generate the final feature graph J € R®M*C, which
is formulated as follows:

Je RBMXC) (3)
where + represents the addition of feature graphs at the
element level. J is fed into the subsequent module after
transposing and recovering the dimension expansion.

3.2. Enhanced Receptive Field Module. Although for the low-
level features, the edges are very detailed. However, due to
the limited number of downsampling, the receptive field is
relatively limited and the global information cannot be
captured. In the decoding process, if only the low-level
features are simply used, although, the edge details are
utilized. But the spatial details of features are not fully ex-
plored. Inspired by the literature [16], this study designs the
enhanced receptive field module (ERFM) as shown in
Figure 4. After low-level features pass through this module,
the receptive field is enlarged and more spatial details are
provided on the premise that edge details are not lost.
First, four parallel branches (I,x=1,2,3,4) are
designed for feature W € R“FM  here I, adopts a
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convolution kernel of 1x1, and the remaining three
branches adopt a convolution kernel of 3 x 3. Different void
rates are set for the three branches. Different voids are set
according to the resolution of low-level features. For features
with smaller resolution, smaller void rate is set, and for
features with larger resolution, larger void rate is set. In this
study, the maximum void rate is set as D= (5, 8, 11), and it
keeps shrinking with the narrowing of the feature map. Its
specific setting will be explored in the ablation experiment.
Then, the output of the four branches is spliced with channel
dimension, and a 1x1 convolution is used to obtain the
fused features.

3.3. Multilevel Aggregation Module. In the decoding process,
it is crucial to make efficient use of the features of each layer.
Previous related works only carried out simple splicing and
fusion of high-level features and low-level features, and the
results were very rough. Therefore, this study designs a
multilevel aggregation module (MLAM). It can effectively
aggregate features from different layers and different spatial
scales. The input of this module is divided into three parts:
semantic feature B, generated by MAM, low-level feature L
enhanced by ERFM, and feature B, currently decoded.
Figure 5 is a schematic of this module.

The whole polymerization process is divided into two
stages. The first stage is the fusion of semantic features with
the current decoding features. First, B, is convolved with two
parallel 1 x 1 convolutions. After the splicing and fusion of
the first branch and B, in the channel dimension, it is added
with the results of the second branch to complete the first
fusion, and the high-level feature B is obtained. Formulaic
expression is as follows:

B= fconv (fcat (fcanv (Bl)’BZ)) + fconv (Bl)’ (4)

feony (+) refers to the convolution operation, and f_,(-)
refers to the splicing operation of channels. The second stage
is the aggregation of the high-level feature B obtained by the
first-stage fusion and the low-level feature L enhanced by
ERFM. This stage is divided into two parallel branches:

bottom-up and top-down. Bottom-up is the aggregation of B
to L, at which L remains unchanged. After an upsampling
and a 1 x1 convolution, B is spliced with L to obtain the
aggregation graph I/, Formulaic expression is as follows:

= feom(Feu(L fup (B)))- (5)

Among them, f, (-) refers to the upsampling operation.
Top-down is the aggregation from L to B, in which B remains
unchanged, and L first goes through a parallel pooling oper-
ation. Maximum pooling can extract the information with a
larger response value in features, that is, the salient information
contained in features. Average pooling can obtain global in-
formation on features. After such parallel pooling, feature L has
stronger representational power and has the same spatial size as
B. At this point, it is spliced with feature B in the channel
dimension, and the fusion is completed by 1x 1 convolution.
Finally, upsampling is performed to obtain the final I'—?.
Formulaic expression is as follows:

Il—>b = fup(fconv(fcat(B’ favg (L) + fmax (L))))’ (6)

Smax () and f,.. (), respectively, represent maximum-
pooling and average-pooling operations. Finally, the ag-
gregation features obtained from the two branches are also
aggregated. The final expression is as follows:

K= fconv(fcat(llg’b’lb*)l))' (7)

4. Experiment and Analysis

This part first introduces the experimental settings, in-
cluding the experimental environment, datasets, compari-
son methods, and evaluation indicators. Then, the system
verifies that the proposed algorithm can effectively improve
the accuracy of image recognition through experimental
comparison with a variety of comparison methods.

4.1. Experimental Settings. Experimental Environment. The
experimental environment was four NVIDIA 1080TI GPUs,
CUDA 8.0, and CUDNN 7.0. The batch size of experimental
training was set to 32. In the experiment, ImageNet 2012
dataset was used for pretraining of VGG16. Without loss of
generality, the learning rate of training in the initial state is
set as 2x107°. At the 300th and 350th training periods, the
learning rate was adjusted to 2x107* and 2x 107>, respec-
tively. At the 400th cycle, the training ended.

Dataset. The experimental datasets include PASCAL
VOC [17]and MS COCO [18]. PASCAL VOC and MS
COCO datasets contain 20 and 80 object classes, respec-
tively. In the PASCAL VOC dataset, the training dataset is
PASCAL VOC’s trainval training dataset, and the test
dataset is PASCAL VOC’s test dataset. In the MS COCO
dataset, the training dataset is trainval35K. It contains
80,000 images, and the rest are a test dataset.

Contrast Method. The algorithm in this study adopts
VGG16 as the backbone network. Therefore, VGG16 image
recognition methods were used for comparison, including
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literature [19], literature [20], literature [21], and literature
[22].

Evaluation Indicators. In this study, the average accuracy
of AP (average precision) and mAP (mean average preci-
sion) are selected as the core indexes of multiscale object
recognition performance. AP and mAP are defined as
follows:

ZreRu (7')

GU =
IR|

>

. (8)
mAP = ) AP (x),
x=1

where R is the set of recall rate. U (r) is the accuracy when the
recall rate is r. X is the total number of categories. AP(x) is
the average accuracy of classification x.

4.2. Experimental Results. Table 1 shows the average accu-
racy of experiments on 20 classes of objects in the PASCAL
VOC dataset. The average accuracy of the proposed algo-
rithm on the PASCAL VOC dataset is 80.4%, which is the
best among all the algorithms. The mean accuracies of lit-
erature [22], literature [21], literature [20], and literature
[19] were 80.9%, 79.4%, 76.8%, and 74.4%, respectively.
Obviously, the algorithm in this study has achieved the best
accuracy in image recognition.

In order to further verify the accuracy of the proposed
algorithm for image recognition, this part is further
verified on MS COCO dataset. In the experiment, liter-
ature [19] is a two-step image recognition method, while
other methods are single-step image recognition
methods. In image recognition, the finer the image, the
larger the size of the original input image; and the more
information in the image, the better is the image
recognition effect. In the single-step comparison method,
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TaBLE 1: Experimental results of PASCAL VOC dataset.

Methods Literature [19] Literature [20]

Literature [21] Literature [22] Proposed

mAP (%) 74.4 76.8

79.4 80.9 82.6

Bold value represents the ideal value.

both the latest literature [21] and literature [22], and the
algorithm in this study set the image input size as
512 x 512 to compare the experimental results.

Table 2 shows the experimental results on the MS COCO
dataset. Frame per second (FPS) refers to the number of de-
tected images per second. Obviously, under the same input
conditions, the proposed algorithm has a lower FPS than the
literature [21] and literature [22] algorithms. In other words,
the operation efficiency of the proposed algorithm is better
than that of the literature [21] and literature [22] algorithms.
Experiments also verify the influence of different IoU (inter-
section over union) on image recognition accuracy. In the
experiment, [oU was set to 0.5, 0.75, and 0.95, respectively. It is
not hard to see that with the increase in IoU value, the average
accuracy of all algorithms decreases. However, in three dif-
ferent IoU experiments, the proposed algorithm achieves the
best average accuracy of multiscale image recognition. Liter-
ature [22] is a better algorithm for image recognition.
Therefore, this part focuses on comparing the algorithm
proposed in this study with the literature [22] algorithm.
Obviously, when IoU is 0.5, 0.75, and 0.95, the average accuracy
of this algorithm is 58.4%, 39.1%, and 33.8%, respectively,
which are 3.9%, 3.6%, and 0.8% higher than the literature [22]
algorithm. Finally, the experiment verifies the recognition
accuracy of objects with different scales when IoU=0.75. As
can be seen from Table 2, the recognition accuracy of the
algorithm in this study for small-scale, medium-scale, and
large-scale objects is 16.6%, 37.8%, and 45.2% respectively,
which is 0.4%, 1.4%, and 0.8% higher than that of the literature
[22] algorithm. Experimental results show that the proposed
algorithm can effectively improve the recognition accuracy of
multiscale objects.

The MR (miss rate) indicates the miss rate commonly
used in the target detection field. FPPI (false positives per
image) refers to the error detection rate per frame (the ratio
of the number of negative samples predicted by the model as
positive samples to all samples). The lower the MR-FPPI
curve is, the better is the performance of the graph per-
ception algorithm on the test set. Figures 6 and 7 show the
MR-FPPI changes in the proposed algorithm and various
comparison algorithms on the PASCAL VOC dataset and
the MS COCO dataset, respectively. As can be seen from the
figure, the curve of the proposed algorithm is the lowest on
PASCAL VOC datasets and MS COCO datasets, and rapidly
decreases, achieving the best detection performance.

This section also explores the influence of iteration times on
model’s learning efficiency. As shown in Figure 8, the training
accuracy of the algorithm in this study tends to be stable after
about 10 cycles of iteration, and the model begins to converge.

TaBLE 2: Experimental results of MS COCO dataset (bold is the best
result).

Average Average

Methods  Input size FPS accuracy (IoU) accuracy (scale)

05 075 095 S M L
Literature 1000x600 7 427 - 219 — _—
(19]
[Lzlge]fat“re 384x384 15 495 271 274 — — —
[Lzlﬁrature 512x512 22 485 30.3 28.8 109 31.8 43.5
Btze]rat“re 512x512 22.3 545 355 33 163 363 44.3
Proposed  512x512 20.7 58.4 39.1 33.8 16.7 37.7 45.1

Bold values represent the ideal values.

Miss rate

1073 1072 107! 10° 10!

False positives per image

- -~ Literature [19]
Literature [21]
Literature [20]

FiGure 6: The MR-FPPI result of the PASCAL VOC dataset.

--— Literature [22]
—— Proposed

The graphic perception system designed in this study
can also map the received binary edge image data to the
electrode array so that the blind person can generate the
corresponding electrical stimulation. Figure 9 shows the
schematic diagram of electrical stimulation corre-
sponding to a two-dimensional electrode array when the
camera shoots several aircraft. The solid circle represents
electric stimulation, and the hollow circle represents no
electric stimulation. Blind people can perceive what they
are “seeing” as an object, for example, an airplane,
through electrical stimulation of the skin on their
abdomen.
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FIGURE 9: Schematic diagram of two-dimensional electrode array electrical stimulation.

5. Conclusions

Information is the basis for people to acquire knowledge
and communicate with each other. However, for people
with visual disabilities, because of visual impairment,
other perceptual abilities, such as hearing, touch, smell,
and taste perception, have become the main channels for
them to obtain information and explore their sur-
rounding environment. Image object recognition is a
basic task in the field of computer vision. However,
existing methods cannot improve the accuracy rate of
object recognition for visually impaired groups. In order
to solve this problem, this study proposes a graphic
perception system that improves the attention mecha-
nism. The system consists of three parts: mixing attention
module, enlarged receptive field module, and multilevel
aggregation module. First, the module of increasing the
receptive field is used to process the low-level features
extracted from the feature extraction network so that it
can increase the receptive field while retaining the
original edge details, so as to obtain more abundant
graphics and image information. Then, the last layer of
the feature extraction network is processed by the mixing
attention module to enhance its representational power
and serve as semantic guidance in the decoding process to
guide the feature aggregation. Finally, the multilevel
aggregation module can effectively aggregate the features
from different levels to obtain the perceptive object
graphics. Compared with other algorithms on PASCAL
VOC and MS-COCO data, the experimental results show
that the proposed method can effectively improve the
accuracy of graphic object recognition.
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