Hindawi

Advances in Multimedia

Volume 2022, Article ID 8703380, 10 pages
https://doi.org/10.1155/2022/8703380

Research Article

@ Hindawi

Gated Channel Attention Mechanism YOLOv3 Network for Small

Target Detection

Xi Yang®, Jin Shi, and Juan Zhang

Physical Education College of Zhengzhou University, Zhengzhou 450044, Henna, China

Correspondence should be addressed to Xi Yang; yangxi@peczzu.edu.cn

Received 2 June 2022; Revised 12 July 2022; Accepted 16 July 2022; Published 12 August 2022

Academic Editor: Qiang Li

Copyright © 2022 Xi Yang et al. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In order to solve the problem of low recognition rate and high missed rate in current target detection task, this paper proposes an
improved YOLOV3 algorithm based on a gated channel attention mechanism (GCAM) and adaptive up-sampling module. Firstly,
darknet-53 is used as the backbone network to extract image basic features. Secondly, an adaptive up-sampling module is
introduced to expand the low-resolution convolutional feature images, which effectively enhances the fusion efficiency of the
convolutional feature images at different scales. Finally, GCAM is added to improve the network’s feature expression and
detection capability for small targets before the three-scale channels output the prediction results. The results show that the
improved method can adapt to multiscale target detection tasks in complex scenes and reduce the missing rate of a small target.

1. Introduction

Small target detection is an object detection technology that
can find and judge the category of the object in the image
with the help of computer vision [1]. At present, the
technology has been widely used in national defense, mil-
itary, transportation, industry, virtual reality, and other
fields [2]. In complex realistic scenes, small targets are
difficult to locate and identify due to different shooting
angles, nontarget object occlusion, imaging weather, and
lighting conditions. At the same time, the small-size target
lacks the appearance information to distinguish itself from
the background or similar categories, and it is easy to lose
feature information in the deep convolutional network, and
the detection is prone to miss and misdetection.

There are two ways to define small targets in target
detection, namely, the definition of relative size and the
definition of absolute size [3]. Relative size is defined by the
society of Photo-optical Instrumentation Engineers (SPIE).
A small target is defined as a target area less than 80 pixels in
a 256 x 256 pixel image. That is, less than 0.12% of 256 x 256
pixels is a small target. The other is the definition of absolute
size. In the MS COCO data set, targets with sizes less than
32 x 32 pixels are considered small targets. In 2016, a scholar

defined small targets as targets ranging from 16 x 16 pixels
to 42 x 42 pixels in an image of 640 x 480 pixels. According
to the data of pedestrians and nonmotor vehicle drivers in
traffic scenes, some scholars believe that objects with 30 to
60 pixels and less than 40% occlusion are small target
objects. Objects with pixel values ranging from 10 to 50
pixels were defined as small objects in the aerial image
dataset DOTA [4] and Wider Face dataset [5]. In the
pedestrian recognition dataset City Persons [6], targets
with a height of less than 75 pixels are defined as small
targets. In general, there is no precise and unique definition
of small goals, which need to be determined according to
the application scenario.

In recent years, small target detection in the large image
has become a research hotspot of domestic and foreign
scholars, playing an important role in industrial production,
satellite remote sensing, target tracking, and other fields [7].
Small target detection is generally used to accurately locate
small targets (generally smaller than 32 pixel x 32 pixel) in
large-size images, such as finding the designated targets
(cars, planes, etc.) in remote-sensing images and the posi-
tions of defects (scratches and black spots on ceramic tiles,
etc.) in industrial products and then marking the categories
of targets. The difficulty of small target detection lies in the
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small proportion of target in the original image, and the
detector cannot extract sufficient and effective features,
resulting in unsatisfactory small target detection results [8].

In recent years, the deep convolutional neural network
has been widely used in many methods of target detection.
According to the processing of candidate boxes, such de-
tection methods are divided into two categories [9]. (1)
Based on the one-stage target detection method, this method
takes the whole image as the input. Its purpose is to increase
the receptive field of the target on the image and return the
position and category information of the target at different
positions on the image. The most representative methods are
[10] and [11]. (2) Based on the two-stage target detection
method, target candidate boxes that may exist in the image
are firstly extracted, and then each region candidate box is
classified and location regression is performed. The repre-
sentative methods mainly include [12-14]. The first method
has fast detection speed and good adaptability to large
targets, but small targets are easy to miss detection. The
second method has relatively high accuracy in small target
detection, but the speed of feature extraction, detection, and
classification is relatively slow. Since each stage is separated,
it can be improved and optimized separately, which has a lot
of room for improvement.

Recently, literature [15-17] have proposed several
methods for small target detection. In [15], deconvolution
technology is applied to all feature images to obtain mag-
nified feature images. However, the application of the
deconvolution module to all feature graphs has the limi-
tation of increasing model complexity and slowing down
detection speed. Tong et al. [16] obtained high accuracy and
speed by combining characteristic information and
deconvolution operations at different scales. Yan et al. [17]
use generative adversarial networks to generate high-reso-
lution features by using low-resolution features as the input
of GAN. However, these methods have some limitations,
and there is still a lot of room for improvement. Therefore,
this paper proposes a small target detection algorithm based
on an improved YOLOvV3 model and attention mechanism.
On the basis of YOLOv3, darknet-53 was used as the main
dry extraction network, and the original algorithm was
improved by introducing an adaptive up-sampling module
that could learn weight parameters and GCAM channel
attention mechanism. Finally, the improved network was
tested on the data set collected and annotated by ourselves.
Experimental results show that the improved algorithm has
better prediction results when the background interference
greatly affects the target detection. At the same time, it is
proved that the improved algorithm has good robustness
and strong antienvironmental interference ability and ef-
fectively improves the ability of target detection.

The innovations and contributions of this paper are
listed below:

(1) The algorithm uses darknet-53 as the backbone
network for image basic feature extraction

(2) The adaptive up-sampling module is introduced to
expand the low-resolution convolution feature map,
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which effectively enhances the fusion effect of con-
volution feature maps with different scales

(3) GCAM is added before the three scale channels
output the prediction results to improve the feature
expression and detection ability of the network to
small targets

This paper consists of five main sections as follows.
Section 1 is the introduction, Section 2 is state of the art,
Section 3 is a methodology, Section 4 is result analysis and
discussion, and Section 5 is the conclusion.

2. State of the Art

2.1. Introduce YOLOv3. Yolov3 is improved on the basis of
yolovl and yolov2. It is a single-stage target detection
algorithm. Unlike the R-CNN series, which divides the
target detection task into two steps of generating a can-
didate frame and identifying objects in the frame, it merges
the whole process to directly generate prediction results.
Compared with the two-stage target detection algorithm,
the single-stage target detection algorithm has the char-
acteristics of fast detection speed but low accuracy.
YOLOV3 adopts darknet-53 with residual connection as the
backbone feature extraction network. In addition, referring
to the Feature Pyramid Network (FPN) structure in [18], it
uses feature maps of three different scales to perform
multiscale feature fusion and output prediction results, so
as to achieve a balance between speed and accuracy in the
target detection tasks. The overall architecture of yolov3 is
shown below (see Figure 1). For 416 x 416 input images,
basic feature extraction is firstly carried out through dar-
knet-53 (full connection layer removed) backbone feature
extraction network, which contains 1 DBL module and 5
residual modules. Then, the outputs of the last three re-
sidual modules in the backbone network are input into the
feature pyramid structure as features of three different
scales for feature fusion. Finally, convolution operations
were performed on the fused feature layers in the three
channels to output the prediction results of 13 x 13, 26 x 26,
and 52 x 52 scales.

2.2. Prediction Target Box. YOLOV3 algorithm segmented
the image to be detected into Sx S grid cells of different
scales U (U=3) (e.g., 13x13, 26 x26, and 52 x52). They
correspond to the outputs of the three parallel network
branches on the right side of Figure 1. If the target object
center falls into a grid cell, the grid cell needs to predict the
target object. Figure 2 shows the relationship between the
input image and the S x S feature layer. For any of the above
grid cells, three prior boxes with different aspect ratios
should be predicted, and each prior box contains the con-
fidence Conf, category H, and location information cls of the
current grid.

The confidence represents the likelihood that the current
grid cell contains objects as

Conf}, = U, (Object) x IOUg;g‘, (1)
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FIGURE 2: Mapping relationship between the input image and Sx S feature layer.

where Conf!, represents the confidence of the tth prior box
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U, (Object) indicates that if an Object’s center falls into the
current grid, its value is 1. The value is 0 if no object center
falls into the current grid, i.e., the current grid is in the
background:

1, Objectsexistin the grid,

U, ;Object = «[ (2)

0, No object exists in grid.

The result of cls prediction of location information
contains four values, n;, n, n,,, and n,. The coordinates,
width, and height of the center point of the prediction box
are obtained by transforming the four predicted values
through the following formula:

_ n,
h,, =U,, *e",

hb = Ub * e"b.

The position relationship of predicted values in the cell
grid is shown in Figure 3.

U,, and U, are the width and height of the prior box. h,),
and h;, are the actual width and height predicted after the
conversion. h; and h; are the actual center coordinates
predicted after the conversion. C; and C; are the coordinates
of the upper left corner of the cell relative to the whole picture.

YOLOV3 uses a nonmaximum suppression algorithm to
filter the prediction box. For a certain target on the image to
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FIGURE 3: Position relationship diagram of the predicted value in
cell grid.

be detected, the detection frame C with the highest score is
selected first, and then the IOU value of the remaining frame
and C is calculated, respectively. When the IOU value ex-
ceeds the threshold, the enclosure that exceeds the threshold
is suppressed. Then, select the detection frame with the
highest score from the remaining detection frames and
repeat the above process until finally ensuring that only one
detection frame exists in each target.

3. Methodology

In the proposed algorithm, the up-sampling module in the
original network structure (Figure 1) is replaced by the
adaptive up-sampling module, and GCAM attentional
mechanism is added before the output of three-scale pre-
diction results, j;, j,, and j;. Compared with the original
network, it has the following two improvements.

The GCAM (gated channel attention mechanism) is in-
troduced to realize the interaction between the feature layer
channels. The correlation and importance of the information
of the feature layer of different channels are learned by
assigning the weight of the features of each channel. In ad-
dition, the attention mechanism also learns the important
relationship between the two feature layers before and after
filtering channel information. It effectively improves the
feature extraction ability of the network for small targets and
reduces the false detection and missed detection caused by the
complex background of remote-sensing images.

Meanwhile, an adaptive up-sampling module is intro-
duced to replace the original up-sampling operation. This
method can find the most suitable up sampling method for
training tasks by learning weight parameters autonomously,
effectively reducing the semantic loss of up sampling in a
low-resolution feature layer, and enhancing the fusion effect
of convolution at different scales.
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3.1. Gated Channel Attention Mechanism. The mechanism
of attention originated from the study of the human
thinking mode. When humans deal with a large amount of
information with varying degrees of importance, they
always pay selective attention to a part of all information,
namely, the important information, while ignoring the
rest. Since human beings have a limited capacity to
process information resources, to allocate these resources
properly, we need to select the most important part of the
information and focus on it. Similarly, the attentional
mechanism in deep learning is to select the most im-
portant part of the input information and give it a higher
weight so that the network can pay attention to this
information.

Some scholars began to explore ways to improve the
performance of the convolutional neural networks in
computer vision by using an attention mechanism. Cur-
rently, there are mainly two attention mechanisms com-
monly used in computer vision, channel attention
mechanism and spatial attention mechanism. The channel
attention mechanism considers that the importance of each
channel in the convolutional layer is different, and the
weight of each channel is adjusted to enhance network
feature extraction ability. The spatial attention mechanism
uses the idea of the channel attention mechanism to think
that the importance of each pixel in different channels is
different, and the weight of all pixels in different channels
can be adjusted to enhance the ability of network feature
extraction.

ECA (Efficient Channel Attention) is a classical
structure of the channel attention mechanism. As shown
in Figure 4, for a BxMxC input convolution layer,
features are compressed from the spatial dimension
through global average pooling operation. Thus, a
1 x1xC convolution layer with a global receptive field
matching the number of input channels is obtained. Then,
a 1x1 convolution ensures cross-channel information
interaction without dimensionality reduction. Finally, the
weight value is compressed to 0-1 by the sigmoid function
and then multiplied with the input convolution layer
channel by channel to complete channel importance
weight allocation.

GCAM is an improved gated channel attention mech-
anism based on ECA. The standard ECA structure directly
uses channel importance weights to perform subsequent
operations on the feature layer after input convolution fil-
tering. However, some important information may be fil-
tered in the original input feature layer. Therefore, GCAM
learns another set of weights to determine whether certain
channels of the original input feature layer should be
retained.

The structure of GCAM is shown in Figure 5. The
upper channel learns the importance weight j, of the
input features, and the lower channel learns the im-
portance weight j, of the original feature input layer and
the filtered channel layer. The calculation process is as
follows:
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where i represents an original feature input whose length,
width, and number of channels are m, b, and ¢, respectively,
and Conv(i) represents the convolution of the feature layer
with 1 x 1.

Finally, the two weight parameters learned and feature
input are integrated, as shown in formula (5), to obtain the
final output feature layer j:

J=ixjy+ (%) x (1= jy) (5)

3.2. Adaptive Up-Sampling Module. Due to the small
number of pixels in the low-resolution image, many details
will be lost when it is up sampled. Therefore, it is one of the
core problems of up sampling to reduce the loss of detail
features as much as possible and improve the feature re-
covery ability of low-resolution images.
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Traditional up-sampling methods include linear inter-
polation and inverse pooling. Linear interpolation uses
geometric relations to estimate the newly added pixels
through the known pixels. Taking nearest neighbor inter-
polation as an example, when the picture is enlarged, the
new pixel is directly generated using the color of the nearest
original pixel. The antipooling is to do some simple zero-
filling and expansion operations on the image. Firstly, the
location information of the maximum value in the process of
pooling is recorded. Then, when the image size is enlarged by
antipooling, only the location of the maximum value is
restored, and other values are directly set to 0. Although the
traditional sampling method is simple and fast, it will
produce obvious serration, which leads to the loss of the
original image details.

New up-sampling methods based on deep learning in-
clude transpose convolution. Transpose convolution is a
special convolution operation. This is an adaptive up-
sampling method, which uses the fitting of weight param-
eters to keep the details of the up-sampled image consistent
with the original image as much as possible.

The traditional sampling method is low in computation
and relatively simple in implementation, but it will inevi-
tably lead to the loss of original detail features due to the
limited number of pixels in low-resolution images. Trans-
pose convolution can learn weight parameters to better fit
the original image, so it can ensure that the details of low-
resolution images can be restored as much as possible.
However, its implementation is complicated and requires a
lot of calculation. Therefore, this paper proposes an adaptive
up-sampling module (see Figure 6). Using 1 x 1 convolution,
we can keep the width and height of the input feature layer
unchanged while reducing the channel dimension to reduce
network parameters and reduce the amount of computation.
In the design of transpose convolution, due to the uneven
overlap in the process of transpose convolution operation,
some parts of the image will be darker than other colour
checkerboard effect. When the convolution kernel size of
transpose convolution can be divisible by the step size, this
effect will be relieved.

4. Result Analysis and Discussion

Multiscale target detection experiments were carried out on
the dataset collected and annotated by ourselves. The dataset
contains 420 optical images with an average scale of about
1300 x 900. There are 3,324 labeled targets with a resolution
of 0.8~2.0 m, and each image contains at least one target.

TaBLE 1: Definition of boundary area and number of targets based
on instance size distribution.

Target Scale Quantity
Small target (0, 60%) 1347
Medium target (602, 120 1975
Large target (120, +c0) 332

In order to avoid overfitting, data expansion is carried
out by rotation and inversion. During training, the exper-
iment randomly assigned 70% of the dataset to train and the
remaining 30% to testing. According to the scale of the
dataset (1300 x 900) and the target distribution information,
the corresponding boundary box scale (small target: S < 607,
medium target: 60° < $ < 1207, and large target S > 120°) was
defined. Statistics are made on target scales in the collected
data set, and the results are shown in Table 1. The number of
small targets in the collected data set accounts for 36.8% of
the total number of targets.

The experimental hardware environment was Inter E5-
2680 CPU, 256G memory, NVIDIA TITAN RTX GPU, and
Ubuntu 16.04 operating system. PyTorch was used as a deep
learning framework for training and testing. In this paper,
the end-to-end training method is adopted.

Average Precision (AP) is used as the evaluation index of
target detection results. AP calculates the average accuracy of
recall rate between 0 and 1, that is, the area enveloped by the
accuracy-recall curve. Therefore, the higher AP value rep-
resents better detection performance. Precision P and recall
rate R can be expressed as follows:

Nu
N, +F

u u

>

(6)
Nu

r=—"—
N, +F,

where N, is a true example, F,, is a false positive example,
and F, is a false negative example.

Compared with other algorithms, the detection results
are shown in Figure 7.

The detection accuracy of [19] is 86.2%. Compared with
[19], the accuracy of [20] as a single-stage target is insuf-
ficient. In [21], 84.6% detection accuracy was achieved while
considering detection speed. Compared with [21], decon-
volution feature fusion is adopted in [22] to improve the
detection ability of multiscale targets. On the basis of [21],
the pyramid feature fusion method was introduced in [23].
The improved YOLOvV3 algorithm achieves the optimal
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average detection accuracy, which is 4.7% higher than the  small targets and can effectively reduce the missed detection
algorithm in [21]. It shows that the improved YOLOv3  rate of small targets.

algorithm can efficiently detect small targets in the complex

backgrounds on the basis of satisfying real-time detection.

As can be seen from Figure 8, compared with [19-23], the  4.1. Ablation Experiment. In order to quantitatively analyze
method in this paper has a stronger detection ability for ~ the influence of the adaptive up-sampling module, ECA
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TaBLE 2: Results of ablation experiments for each module.
Modules AP/% (I0U =0.5) Frame frequency/s
YOLOV3 86.50 31.3
Add adaptive up sampling 89.20 26.4
Add ECA 88.80 29.7
Add GCAM 89.60 31.2
Proposed 91.60 25.4

(®)

FIGURE 9: Detection results of different types of targets. (a) YOLOv3 algorithm. (b) Proposed algorithm.

channel attention, and GCAM channel attention on the
target detection accuracy, an ablation experiment was
designed [24]. And the average detection accuracy and frame
rate at IOU=0.5 were used as evaluation indexes to char-
acterize the algorithm performance [25]. The ablation results
are shown in Table 2.

As can be seen from Table 2, the adaptive up-sampling
module is added on the basis of the YOLOV3 algorithm, and
the average accuracy is improved from 86.5% to 89.2%, with
an overall improvement of 2.7%. Due to the increase of the
adaptive up-sampling module, the detection speed slows
down, and the frame rate decreases from 31.3 frame/s to 26.4
frame/s. ECA channel attention mechanism was added on the
basis of the YOLOv3 algorithm, the accuracy was improved
by 2.3%, and the frame rate decreased by 1.6 frame/s. GCAM
channel attention mechanism was added on the basis of the
YOLOV3 algorithm, and the accuracy was improved by 3.1%
from 86.5% to 89.6%, with little change in frame frequency.
The GCAM channel attention module (the proposed algo-
rithm) was added on the basis of the addition of the adaptive
up-sampling module. The accuracy was improved from 86.5%
to 91.6%, and the detection speed was 25.4 frame/s.

4.2. Migration Experiment. In addition to the performance
comparison of the algorithm in the data set, the detection
model trained on the above data set is also migrated to
different types of target detection. Thirty five different types
of pictures were collected. The average detection accuracy of
the improved YOLOV3 algorithm and YOLOV3 algorithm is
0.561 and 0.428, respectively, and the migration accuracy of
the improved YOLOV3 algorithm is 0.133 higher than that of
the YOLOV3 algorithm. The detection results are shown in
Figure 9.

Figure 9 shows the detection effect of the detection
model of the YOLOv3 algorithm and the improved method
on the target. According to the detection results, compared
with the YOLOV3 algorithm, the detection model trained by
the improved method can detect different types of targets
more effectively. This is because the feature fusion process
not only improves the feature extraction ability but also
enhances the feature generalization ability to a certain ex-
tent, making the model have better migration ability. The
migration experiment results prove that the detection model
learned by the improved algorithm has certain portability
and versatility.
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5. Conclusion

Aiming at the problem that the feature recovery ability of
sampling on low-resolution convolution feature map is weak
for small targets in the process of multiscale feature fusion,
an adaptive up-sampling module is designed to replace the
traditional interpolation operation so that the network can
independently select the interpolation method suitable for
the task of the target training set, so as to enhance the effect
of feature fusion at different scales. To solve the problem that
small targets contain little feature information and high
positioning accuracy, this paper proposes a gated channel
attention mechanism, which realizes the interaction between
feature layer channels, and learns the correlation and im-
portance of feature layer information of different channels
by assigning weights to the features of each channel. Ab-
lation experiments and migration experiments demonstrate
the completeness and universality of the method. Results
show that the proposed method can effectively enhance the
ability of small target representation and reduce the rate of
small target detection. On the basis of satistying the real-time
detection, it can realize the efficient detection of small and
medium targets in complex background images. It is proved
that the improved algorithm has good robustness and strong
antienvironmental interference ability. However, the algo-
rithm improved by the YOLOv3 model and attention
mechanism still has error detection and missing detection
phenomenon in some extreme cases, and the follow-up work
will continue to optimize the detection effect of the network
in extreme cases.
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