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Bene�ted from deep convolutional neural networks, various license plate detection methods based on deep networks have been
proposed and achieved signi�cant improvements compared with traditional methods. However, the high computational cost due
to complex structures prevents these methods from being deployed in real-world applications. �is paper proposes an e�cient
license plate detection method based on lightweight deep convolutional neural networks for improving the detection speed. To
extract high-level features from input images, this paper designs a lightweight feature pyramid generation module based on a
lightweight architecture and depth-wise convolutions. To further enhance feature pyramid, an e�cient feature enhancement
module is designed to fuse features generated by the region proposal network with backbone features. In the detection network, a
light head structure based on fully connected layers is employed to further reduce the computational cost of the model. In
experiments, �oating point operations and detection ratio are used to evaluate the e�cient of the proposed method. Experimental
results on public datasets show that the proposed method achieves the best trade-o� between speed and accuracy.

1. Introduction

Automatic license plate recognition is a key problem in
intelligent transportation systems as it is applied widely in
many scenarios, such as highway toll stations or parking lots.
An automatic license plate recognition system usually
consists of two stages: a license plate detection stage for
extracting license plates from input images and a license
plate recognition stage for predicting license plate charac-
ters. Since license plate detection provides detected license
plates for the following license plate recognition, its per-
formance has a huge impact on the performance of the
whole system. Most recent state-of-the-art license plate
detection approaches are based on deep convolutional
neural networks (CNN), where a deep CNN model is �rst
employed to extract features from input images, and a
detection head with fully connected layers is then adopted to
produce predicted results. Although these approaches
achieve great detection performance on public datasets,
there are still challenges that prevent them from being
deployed in real-world applications. First, these license plate

detection approaches are validated on public datasets that
contain images capturing under controlled conditions.
However, in real-world environments, license plate images
might be seriously distorted due to the e�ect of lightning
conditions and occlusions. Second, since these deep CNN
license plate detection approaches were conducted in lab-
oratory environments with powerful machines, they are not
e�cient for real-time applications in real-world scenarios
where resources are limited.

In this paper, an e�cient license plate detection method
based on deep CNN is proposed. For improving the de-
tection speed, ESPNetv2 [1], a lightweight yet high per-
formance network, is used to extract features from input
images. Based on the ESPNetv2 structure, this paper designs
an e�cient feature pyramid generation module which
employs depth-wise convolutions and 1× 1 convolutions to
reduce the computational cost. In the detection network, this
paper uses a light head structure for producing �nal de-
tection results. �e light head detection network uses pro-
posal boxes generated by a compressed region proposal
network (RPN) and feature maps produced by an e�cient
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enhancement module as inputs. Compared with most recent
license plate detection methods on public datasets, the
proposed method provides significant improvements on the
inference speed while achieving comparable detection ac-
curacy. Table 1 provides a summary of features of the
proposed method and recent methods for license plate
detection to highlight the key contributions of this paper.

$e remaining of this paper is organized as follows.
Section 2 provides brief reviews of recent license plate de-
tection methods and real-time object detection methods.
Section 3 provides theoretical basis of deep CNN. Section 4
introduces the details the proposed framework. Section 5
provides the experimental results and comparisons between
the proposed method and other methods on public datasets.
Finally, the conclusions are drawn in Section 6.

2. Related Work

2.1. License Plate Detection. With the success of YOLO
detection frameworks [2, 10], various approaches have been
proposed based on YOLO structures for license plate de-
tection [11, 12]. MD-YOLO [11] proposed a novel model
based on YOLO for multidirectional car license plate de-
tection. In this model, a prepositive CNN subnet is first
designed to produce attention regions from input images.
$en, attention regions are cropped and fed into MD-YOLO
branch for determining precise rotational rectangular re-
gions. Laroca et al. [12] introduced a real-time automatic
license plate recognition system based on the YOLO de-
tector. $e proposed method first detects vehicle regions
from input images based on a fast vehicle detection network
and then locates license plate positions based on vehicle
regions. $e authors also designed another two-stage net-
work for character segmentation and recognition. Another
approach for license plate detection is to design complex
structures for achieving high detection performance. For this
purpose, Li et al. [8] proposed a unified deep network for
locating license plate positions and recognizing license plate
characters.$e authors employed VGG-16 structure [13] for
extracting features. Proposal regions are produced by a RoI
pooling layer based on a region proposal network. For
license plate recognition, the authors designed a detection
network with fully connected layers to detect license plates
and used RNNs to identify plate characters. In [14], a license
plate detection method based on two deep networks was
designed. A shallow network is first used to remove most of
the background regions to reduce the computation cost, and
a second deep network is then assigned to detect license
plates in the remaining regions. $ese two networks are
trained end-to-end and are complementary to each other to
guarantee high detection performance with low computa-
tion cost. Recently, Wang et al. [15] proposed Fast-LPRNet
based on deep CNN for fast license plate recognition. Fast-
LPRNet removes fully connected layers to improve the
detection speed. $e experiments were implemented on the
FPGA hardware. Experimental results show that the Fast-
LPRNet achieves high detection accuracy with fast speed. In
[9], a license plate detection method based on predicted
anchor region proposal network and balanced feature

pyramid network was proposed. $e predicted anchor re-
gion proposal network employs predicted location anchor
scheme to generate high-quality sparse proposal boxes.
Besides, the balanced feature pyramid network fuses dif-
ferent feature levels to get balanced information from each
resolution to improve the detection performance.

2.2. Real-Time Object Detection Methods. Real-time deep
CNN object detection is an important issue due to its ef-
ficiency when applying in real-world applications. $is issue
has attracted increasing attention from the research com-
munity in recent years. Normally, a real-time object de-
tection framework is based on one-stage object detection
structure where predictions are produced by applying a
detection head on the backbone feature maps. For example,
YOLO [10] and YOLOv2 [2] propose to simplify object
detection as a regression problem, which directly predicts
object bounding boxes and associated class probabilities
without proposal generation stage. Based on this idea, SSD
[3] further improves the detection performance by gener-
ating predictions of different object scales from different
layers of the backbone. DSSD [16] designs deconvolution
modules with deconvolution layers to add additional large-
scale context to features generated by the backbone network.
Different from one-stage structures, two-stage object de-
tection pipelines [17] usually require more computational
cost due to their complex structures. To improve the de-
tection speed of two-stage frameworks, recent methods
focus on modifying the detection head or adopting a
lightweight backbone architecture for extracting features.
For this purpose, R-FCN [4] designs fully convolutional
architectures to share computations between RoI subnet-
works to speed up inference when a large number of pro-
posal boxes are utilized. In [18], a light head detection
network was designed to build a fast two-stage object de-
tector. $e light head structure includes a single fully
connected layer for classification and regression, which
greatly reduces the computation cost. In addition, a large-
kernel separable convolution is used to produce feature
maps with small channels to speed up the detection speed.
Recently, $underNet [19] proposed a lightweight two-stage
generic object detector for real-time object detection.
$underNet consists of a lightweight backbone for
extracting features and a light head detection network for
producing final predictions. In addition, a context en-
hancement module and a spatial attention module are
designed to combine feature maps from multiple scales to
leverage local and global context information and refine
feature distribution.

3. Theoretical Basis of Convolutional
Neural Networks

$is section provides theoretical basis of CNN, which is
mainly used to design the proposed method.

CNN architectures are widely used in the deep learning
research community. CNN architectures usually contain
three major types of layers: convolution layers, nonlinear
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layers, and pooling layers. Convolution layer is the core
building block of a CNN architecture as most of the com-
putational budgets happen in convolution layer. Convolu-
tion layer employs a kernel (or filter) with learnable weights
to convolve with an input feature map to extract its features.
$ere are various types of convolutions, such as standard
convolution, depth-wise separable convolution [20], or
depth-wise dilated separable convolution [1]. A standard
convolution layer convolves a filter K ∈ Rn×n×c×c′ with input
features X ∈ RW×H×c to generate output features
Y ∈ RW×H×c′ as follows:

Yk,l,h � 
i,j,m

Ki,j,m,h.Fk+i−1,l+j−1,m,
(1)

where W and H are the spatial width and height of feature
map; c and c′ are the number of input and output channels; n
is the spatial dimension of the kernel. $e number of pa-
rameters in a standard convolution layer is (n.n.c.c′).

For the purpose of reducing computation cost andmodel
size, depth-wise separable convolution divides a standard
convolution into a depth-wise convolution layer and a 1× 1
pointwise convolution layer. Depth-wise convolution con-
volves a filter K′ ∈ Rn×n×c with input features X ∈ RW×H×c to
generate output features Y′ ∈ RW×H×c as follows:

Y′k,h,l � 
i,j

K′ i,j,h.Fk+i−1,l+j−1,h.
(2)

Since depth-wise convolution only filters input
channels, pointwise convolution with 1 × 1 filter is used
to compute a linear combination of the output of depth-
wise convolution. By combining depth-wise convolution

and pointwise convolution, depth-wise separable con-
volution reduces the computational cost by a factor of α
where

α �
n.n.c.c′

n.n.c + c.c′
. (3)

Based on depth-wise separable convolution, depth-wise
dilated separable convolution replaces depth-wise convo-
lution by depth-wise dilated convolution with a dilation rate
of r to filter input channels. By using dilated convolution,
depth-wise dilated convolution enables the convolution to
learn representations from an effective receptive field of
nr × nr, where nr is calculated as follows:

nr � (n − 1).r + 1. (4)

Depth-wise dilated separable convolution also reduces
the computational cost by a factor of α, but it can learn
representations from larger receptive fields.

Different from convolution layers, nonlinear layers apply
an activation function, such as ReLU or Sigmoid function,
on feature maps to enable the modeling of nonlinear
functions by the network. On the other hand, pooling layers
replace small neighborhood region on a feature map by
some statistical information, such as mean or max, about the
region to reduce spatial resolution on input features. A deep
CNN architecture usually stacks these layers to form a
feature pyramid that consists of multiple feature maps with
different resolutions. $e main computational advantage of
a deep CNN architecture is that all the receptive fields in a
layer share weights, resulting in a significantly smaller
number of parameters than a fully connected architecture.

Table 1: Summary of features of the proposed method and recent methods for license plate detection.

Method Purpose Based on Complexity Accuracy Advantages Disadvantages
Tiny-YOLO
[2]

Generic object
detection Deep learning Very low Low Fast detection speed; easy to

implement Low accuracy

YOLOv2
[2]

Generic object
detection Deep learning Medium High High accuracy; easy to

implement
Struggles to detect small

license plates

SSD-300 [3] Generic object
detection Deep learning High High High accuracy; easy to

implement High computational cost

R-FCN [4] Generic object
detection Deep learning High High High accuracy; easy to

implement High computational cost

Zhou et al.
[5]

License plate
detection

Traditional
machine
learning

High High High accuracy; no training
process

Low detection speed; cannot
detect license plates in difficult

conditions

Li et al. [6] License plate
detection

Traditional
computer
vision

Very high High High accuracy; no training
process

Very low detection speed;
cannot detect license plates in

difficult conditions

Yuan et al.
[7]

License plate
detection

Traditional
computer
vision

Very low High Very high detection speed;
no training process

Cannot detect license plates in
difficult conditions

Li et al. [8]
License plate
detection and
recognition

Deep learning Medium Very
high

Very high accuracy; unified
framework for license plate
detection and recognition

Low detection speed

Nguyen
et al. [9]

License plate
detection Deep learning High Very

high Very high accuracy Low detection speed

Proposed
method

License plate
detection Deep learning Low Very

high
Very high accuracy; fast

detection speed
Heavy data augmentation

method is needed for training
Features are based on experimental results.
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4. Methodology

$e overall structure of the proposed method is shown in
Figure 1. Input image is first fed into a lightweight backbone
network for extracting high-level semantic feature maps. In
order to obtain high detection performance, a feature
pyramid generation module is designed based on depth-wise
separable convolutions to generate feature pyramid. $e
compressed RPN then adopts feature pyramid to generate
proposal license plates. Meanwhile, intermediate feature
layer generated by the compressed RPN is employed to
produce enhanced features by a feature enhancement
module. Finally, the detection network with a light head
structure is designed to generate final predicted results.
Moreover, the proposed model utilizes the input resolution
at 320× 320 for both training and testing stages to increasing
speed. In the following of this section, each module of the
proposed method will be introduced in detail.

4.1. Lightweight Network for Extracting High-Level Semantic
Features. Deep object detection models often employ a
pretrained deep CNN architecture used for classification
task to extract feature maps from input images. For example,
VGG [13] was used in faster R-CNN for extracting object
features. VGG proposes to design very deep networks using
very small convolution filters. Recently, ResNet [21] has
been used as feature extraction network in many deep object
detectors. ResNet designs residual block which contains a
series of layers and a shortcut connection adding the input
and output of the block.$e residual block is very efficient to
build a deeper network. More recently, ResNeXt [22] and
ResNest [23] have been designed to improve feature ex-
traction process. Although these above deep CNN archi-
tectures extract high-quality object features, they require
intensive computations due to large numbers of parameters.
To tackle this problem, various methods have been proposed
to design a lightweight architecture to reduce the compu-
tational cost. For this purpose, MobileNets [20] proposes to
use depth-wise separable convolutions to build lightweight

deep neural networks. MobileNets significantly reduces the
number of parameters when compared to the network using
standard convolutions with the same depth in the structure.
Different from MobileNets, ShuffleNet [24] introduces
pointwise group convolution and channel shuffle to greatly
reduce computation cost while maintaining accuracy. Re-
cently, ESPNetv2 [1] proposed to use depth-wise dilated
separable convolution to build deep networks. Since depth-
wise dilated separable convolution employs large effective
receptive fields for extracting features, it achieves better
performance compared with depth-wise separable convo-
lution used in MobileNets architecture. For trade-off be-
tween the detection performance and computational speed,
this paper employs ESPNetv2 [1] as the feature extraction
network. Table 2 illustrates the detailed structure of
ESPNetv2. As shown in Table 2, ESPNetv2 consists of EESP
block and Strided EESP blocks. Based on the ESP block [1]
and depth-wise dilated separable convolution which learns
object representations from large effective receptive fields
while reducing the computational cost, EESP block is
designed to reduce complexity of the ESP block. In the EESP
block, group point-wise convolutions are first used to
project high-dimensional input feature maps into low-di-
mensional feature maps. $en, 3× 3 depth-wise dilated
separable convolutions are employed in parallel with dif-
ferent dilation rates to learn object representations from a
large effective receptive field. Learned feature maps are fi-
nally fused in a hierarchical fashion by the computationally
efficient hierarchical feature fusion algorithm [25]. In ad-
dition to EESP block, Strided EESP block is also designed to
add shortcut connection to an input image for down-
sampling operation. Strided EESP block uses strided depth-
wise dilated convolutions to learn object representations
efficiently at multiple scales and average pooling to better
encode spatial relationships and learn representations effi-
ciently. ESPNetv2 applies EESP and Strided EESP block
multiple times at each spatial level to increase the depth of
the network except the first spatial level where a standard
convolution operation is applied to extract information
from input image.

Compressed RPN

Enhancement
module

RoI Align

Input image

ESPNetv2 Feature pyramid
generation

Detection network

Proposal boxes

Figure 1: Overall structure of the proposed model.
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In a deep CNN architecture, feature maps at shallow
layers contain low-level information, while feature maps at
deep layers have high-level information which facilitates
the classification process. However, due to low resolution at
deep layers, the structure of objects may be destroyed,
especially for small objects, thus hindering the detection
accuracy of the model. To solve this problem, FPN [26]
proposed to combine feature maps at different layers to
generate a feature pyramid with high-level information.
Benefited from FPN, a great process has been made for deep
learning object detection methods, including both one-
stage and two-stage object detection methods [27, 28].
Although FPN provides a useful technique for extracting
high-quality object representations, its structure involves
many extra convolution operations, which increases the
number of parameters and computations. For achieving
faster speed while maintaining detection accuracy, this
paper designs an efficient feature pyramid generation
module based on depth-wise convolution [20] which can
reduce the computational cost. Figure 2 illustrates the
structure of the proposed feature pyramid generation
module. $e last output layers of ESPNetv2 are denoted as
{L2, L3, L4, L5}. Since L2 has high resolution, it is not
included in the feature pyramid for computational reason.
Instead, this paper applies a global average pooling layer on
L5 to generate L6. As a result, {L3, L4, L5, L6} is the final set
of feature maps used to produce feature pyramid. For
integrating multilevel feature maps, this paper first applies a
1× 1 convolution on each feature map of the final set to set
the number of channels at 256.$en, interpolation andmax
pooling operations are employed to resize each final feature
map to the same size as L4. Once the features are rescaled,
the fused feature map is generated by fusing rescaled feature
maps through concatenation operations. Based on the fused
feature map, output feature maps {O3, O4, O5, O6} are
obtained by using upsampling operations and depth-wise
convolutions. Specifically, O6 is obtained by applying an
upsampling layer and a 1× 1 convolutional layer, while O3,
O4, and O5 are obtained by applying depth-wise convo-
lution layers and 1× 1 convolutional layers. Since the
proposed feature pyramid generation module involves only
1× 1 convolutions and depth-wise convolutions, it is a
computation-friendly pipeline. However, feature maps

produced by simple concatenation operations are not
optimal, which reduces the performance of the following
detection network. To tackle this issue, this paper proposes
an enhancement module which will be elaborated in Sec-
tion 4.2.

4.2. LightHeadDetectionNetworkBasedonEnhancedFeature
Maps. Since feature maps generated by the lightweight
feature pyramid generation module are not optimal, it is
necessary to enhance these feature maps with more semantic
information to improve the performance of the following
light head detection network. Based on the observation that
the RPN is trained to predict foreground objects, feature
maps generated by the first convolution layer in the RPN
contain discriminative information between foreground
objects and background regions so that they can be used to
further enhance feature maps generated by the lightweight
feature pyramid generation module. $erefore, this paper
proposes a lightweight detection head that produces pre-
dictions based on enhanced feature maps generated by an
enhancement module and object proposals produced by a
compressed RPN. Figure 3 illustrates the structure of the
proposed lightweight detection head.

Firstly, this paper modifies the original RPN for im-
proving its processing speed. Specifically, the first 3× 3
convolution layer in the original RPN is replaced by a 5× 5
depth-wise convolution layer followed by a 1× 1 convolu-
tion layer with 256 channels (Figure 3). By replacing the
traditional convolution layer with a large receptive field
depth-wise convolution layer and compressing output
channels, the compressed RPN can encode more context
information while reducing computational cost.

Secondly, as in FPN [26], this paper also applies the
compressed RPN to each level on the output feature pyramid
{O3, O4, O5, O6}. At each level, the compressed RPN adopts
corresponding input feature map to produce object pro-
posals. For predefined anchor boxes, due to small size of
license plates in natural scene images, this paper defines
anchor box with areas of {5, 15, 30, 60} on {O3, O4, O5, O6},
respectively. Each anchor box is associated with one aspect
ratio (width/height� 5) due to rectangular shape of license
plates. Since proposals are usually overlap each other, Soft-
NMS [29] is used to suppress overlapped proposals. At the
same time, a feature enhancement module is design to
enhance each feature level on the output feature pyramid
(Figure 3). In the feature enhancement module, feature maps
in the compressed RPN which contain discriminative in-
formation between foreground objects and background
regions are employed to generate enhanced feature maps. To
fuse feature maps generated by the compressed RPN and
input feature maps, a 1× 1 convolution layer followed by a
sigmoid layer is used. Here, 1× 1 convolution layer is used to
compares output channels while sigmoid layer is adopted to
constrain output values within [0, 1]. Since the feature
enhancement module involves only 1× 1 convolutions, its
computational cost is negligible.

Finally, benefited from the powerful feature maps gen-
erated by the feature enhancement module, this paper

Table 2: $e structure of ESPNetv2 used in this paper.

Layer Type Output size
Layer 1
(L1)

Standard convolution (3× 3× 32,
stride 2) 160×160

Layer 2
(L2) 1× strided EESP 80× 80

Layer 3
(L3)

1× strided EESP 40× 403×EESP
Layer 4
(L4)

1× strided EESP 20× 207×EESP
Layer 5
(L5)

1× strided EESP 10×103×EESP
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follows light-head R-CNN structure [18] to design a light-
weight detection head (Figure 3). Specifically, instead of
using two fully connected layers followed by two parallel
fully connected layers for classification and regression as in
R-CNN [30], this paper applies a single 1024-d fully con-
nected layer to reduces the computational cost of the de-
tection head without sacrificing accuracy. In addition, the
RoI align scheme [31] is employed to extract high-quality
object features for classification and regression based on
object proposals and input feature maps. For assigning a
proposal to appropriate feature level, this paper uses its size
to choose the best feature level as in [26]. With the light-
weight structure in the detection head, the proposed model
can strike the best trade-off between speed and accuracy.

5. Results and Discussion

5.1. Datasets. To evaluate the detection performance and
prove the robustness of the proposed method, this paper
conducts experiments based on two widely used public
license plate datasets: AOLP [32] and PKU vehicle dataset
[7]. Table 3 provides a summary of the two datasets.

AOLP dataset [32]: the dataset consists of 2049 images
containing Taiwan license plates. Images in the dataset were
captured in different weather conditions, locations, and

time. For evaluating the detection performance of license
plate methods in different scenarios, images in this dataset
are grouped into three subsets: access control (AC), traffic
law enforcement (LE), and road patrol (RP). AC subset
contains 681 images captured when a vehicle traverses a
fixed passage with a significantly lower speed than normal or
comes to a full stop. On the other hand, LE subset contains
757 images captured by a roadside camera when a vehicle
violates traffic laws. $erefore, images in the LE subset may
have heavily cluttered backgrounds with multiple road signs
or pedestrians. Finally, RP subset contains 611 images
captured by a camera mounted on a patrol car. As a result,
images in the RP subset may have arbitrary viewpoints and
distances. Since there is no standard split for AOLP dataset,
this paper employs AC and LE subsets as the training sets
and uses RP as the testing set.

PKU vehicle dataset [7]: the dataset contains 3828 im-
ages with Chinese car license plates captured in different
scenarios. Based on capturing environment, images in the
dataset are divided into five groups (G1–G5). Specifically,
while images in G4 were captured during nighttime, images
in other groups were captured during daytime. In addition,
images in G1, G2, and G3 were taken on highways, while
images in G4 and G5 were taken on city roads and at in-
tersections with crosswalks, respectively. Moreover, there is

1×1 Conv

1×1 Conv

1×1 Conv

1×1 Conv

1×1 Conv

1×1 Conv

1×1 Conv

1×1 Conv

resize & concat

2×2 Up-sampling

5×5 Depth-wise
Conv

5×5 Depth-wise
Conv

5×5 Depth-wise
Conv

L3

L4

L5

L6

O4

O5

O6

fused feature
map

O3

Figure 2: $e structure of the proposed feature pyramid generation module.

5×5 depth-wise 
conv

Sigmoid layer

1×1 conv (256 
output channels)

Classification
+ Regression

1×1 conv +
BatchNorm RoI Align

FC layer (1024-d)

Classification Regression

Proposal boxes

Enhanced
features

Compressed RPN

Enhancement module

Detection head

+

Figure 3: $e lightweight detection head with the compressed RPN and the feature enhancement module.
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one license plate for each image in G1, G2, G3, and G4, while
images in G5 contain multiple license plates. As there is no
standard split for this dataset, this paper employs CarFlag-
Large dataset [8], which contains 460000 images containing
Chinese license plates, to train the proposed network.

5.2. Implementation Details. $e proposed method is
implemented based on Pytorch framework with NVIDIA
Titan X GPU. All input images for both training and testing
stages are resized to 320× 320.$is paper employs pretrained
ESPNetv2 model trained on the ImageNet dataset. $e
proposed model is trained end-to-end using synchronized
SGD with a weight decay of 0.0001 and a momentum of 0.9.
$e batch size is set to 8 for single GPU. Since the proposed
model uses images with low resolution for training, heavy
data augmentation method [3] is employed to improve
training results. $e proposed model is trained for 50K it-
erations on AOLP dataset and 100K iterations on CarFlag-
Large dataset. $e learning rate is set at 0.001 and decays by a
factor of 0.1 at 50% and 75% of the total iterations.

For evaluation metrics, as there is no uniform criterion
for evaluating the detection performance of different license
plate detection methods, this paper employs the detection
ratio [7] as evaluation metric. Specifically, for each detected
result, only when the IoU value between the detected license
plate and the ground truth is greater than 50%, the detected
license plate is considered to be correct. Here, the IoU value is
defined in (5), where DL denotes the area of the detected
license plate and GL represents the area of ground truth
license plate. Furthermore, this paper compares the inference
speed of different license plate detection methods to validate
the low computational complexity of the proposed method.

IoU �
DL ∩  GL

DL ∪  GL
. (5)

5.3. Detection Results on AOLP Dataset. To prove the effi-
cient of the proposed method, this paper compares the

detection performance of the proposed model with that of
recent fast object detectors, including Tiny-YOLO [2],
YOLOv2 [2], SSD-300 [3], and R-FCN [4]. $ese generic
object detectors were designed for fast detection speed based
on lightweight structures. $e results are shown in Table 4.
$e proposed model obtains the best detection ratio on the
RP subset of AOLP dataset. Specifically, the proposed model
improves detection ratio by 33.85 points, 17.55 points, 15.85
points, and 15.05 points compared with Tiny-YOLO,
YOLOv2, SSD-300, and R-FCN, respectively. For evaluating
the complexity of the proposed model, this paper uses
floating point operations (FLOPs) to calculate the compu-
tational cost of different models on AOLP dataset. Results
are shown in Table 4. All results are reported based on
mmdetection codebase [33]. By using a lightweight feature
extraction network and a light head detection network, the
proposed model uses fewer FLOPs compared to YOLOv2,
SSD-300, and R-FCN. Compared with tiny-YOLO, the
proposed model acquires higher FLOPs. However, the
proposed model achieves significant higher detection ratio
than tiny-YOLO. It should be noted that although the
proposed model employs low resolution input images for
both training and testing, it achieves better detection per-
formance than methods used high resolution input images.
$is result shows that the proposed lightweight feature
extraction network and feature enhancement module are
very efficient for producing high-level semantic information
feature maps which improve the performance of the sub-
sequent detection subnet.

5.4. Detection Results on PKU Vehicle Dataset. For PKU
vehicle dataset, this paper compares the detection results of
different license plate methods as shown in Table 5. In
Table 5, methods proposed by Li et al. [8] and Nguyen [9] are
based on deep networks, while methods designed by Zhou
et al. [5], Li et al. [6], and Yuan et al. [7] employ handcrafted
features and a traditional classifier to locate license plates. It
is obvious from Table 5 that these recent methods using deep

Table 3: $e summary of license plate datasets used in this paper.

Datasets Subsets Number of images Number of license plates Year License plate distance

AOLP dataset
AC 681 681

2012 NearLE 757 757
RP 611 611

PKU vehicle dataset

G1 810 810

2016 Far
G2 700 700
G3 743 743
G4 572 572
G5 1152 1438

Table 4: Detection results on the RP subset of AOLP dataset.

Model Feature extraction network Input resolution Detection ratio (%) MFLOPs
Tiny-YOLO [2] Tiny darknet 416× 416 65.5 3490
YOLOv2 [2] Darknet-19 416× 416 81.8 17400
SSD-300 [3] VGG-16 300× 300 83.5 31750
R-FCN [4] ResNet-50 600×1000 84.3 58900
Proposed method ESPNetv2 320× 320 99.35 5210
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networks achieve better detection accuracy than methods
using hand-crafted features. Comparison results in Table 5
show that the proposed method obtains comparable de-
tection accuracy on all subsets compared to other deep
CNN-based methods (i.e., methods proposed by Li et al. [8]

and Nguyen [9]). However, the proposedmodel significantly
improves the detection speed. Specifically, the proposed
model takes 72ms for processing an image, while methods
proposed by Nguyen [9] requires 420ms. Method proposed
by Yuan et al. [7] is faster than the proposed method since it

Table 5: Detection results on the PKU vehicle dataset.

Method
Detection ratio (%)

Inference time (ms)
G1 G2 G3 G4 G5

Zhou et al. [5] 95.43 97.85 94.21 81.23 82.37 475
Li et al. [6] 98.89 98.42 95.83 81.17 83.31 672
Yuan et al. [7] 98.76 98.42 97.72 96.23 97.32 42
Li et al. [8] 99.88 99.71 99.46 99.83 98.68 283
Nguyen [9] 99.88 99.86 99.73 99.83 99.41 420
Proposed method 99.38 99.71 99.73 99.65 98.68 72

Figure 4: Examples of detection results of the proposed method on PKU vehicle dataset.
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uses simple linear SVMs. However, the proposed method
obtains better detection accuracy on all five subsets. $e
results show the efficiency of the proposed method in terms
of detection accuracy and inference speed. Figure 4 shows
some examples of detection results of the proposed method
on PKU vehicle dataset.

6. Conclusions

$is paper proposes an efficient license plate detection
method based on lightweight structures. For feature ex-
traction, a lightweight feature extraction network is designed
to produce high-level semantic information feature maps
from input images. $e feature extraction network includes
a deep backbone network to extract base feature maps and
an efficient feature pyramid generation module to
strengthen the base features. In the detection stage, a light
head detection network is employed to produce final pre-
dictions. $e light head detection network adopts proposal
boxes produced by a compressed RPN and enhanced feature
maps generated by an enhancement module as inputs.
Experimental results on two public datasets show that the
proposed method achieve the best trade-off between speed
and accuracy.
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