
Research Article
Research on Reactive Power Optimization Strategy under the
Intelligent Improvement Model of the Distribution Network

Menglin Yu

Electrical and Electronic Engineering, Hubei University of Technology, Wuhan 430068, China

Correspondence should be addressed to Menglin Yu; 101910278@hbut.edu.cn

Received 24 May 2022; Revised 19 June 2022; Accepted 11 July 2022; Published 4 October 2022

Academic Editor: Qiangyi Li

Copyright © 2022Menglin Yu.�is is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In order to improve the reactive power optimization e�ect of the distribution network, this paper combines the multiagent deep
reinforcement learning algorithm to analyze the reactive power optimization strategy of the distribution network and constructs
an intelligent optimization model. Moreover, the simulation models of power conversion elements, power transmission elements,
control elements, and measurement elements in the platform are described, and the program structure and interactive functions
are analyzed. In addition, this paper proposes a reactive power optimization method for distribution networks based on data-
driven thinking. Finally, by using historical data and an arti�cial neural network, this paper extracts electrical quantity data such as
load power and distributed power output and environmental data such as temperature and wind speed to perform multiagent
analysis. �e experimental veri�cation shows that the reactive power optimization e�ect of the distribution network based on
multiagent and multiagent deep reinforcement learning proposed in this paper is very good.

1. Introduction

�e active distribution network is a necessary stage for the
development of the distribution network, which can be
described as to use advanced information communication
technology and power electronics technology to actively
control, coordinate, and optimize various controllable re-
sources such as distributed power supply, energy storage,
reactive power compensation devices and controllable loads
within its jurisdiction, so that it can actively participate in the
system operation process [1]. Operation optimization
technology is the core technology of an active distribution
network, and it is also the key to realize active control of the
distribution network. Compared with the operation mode of
the traditional distribution network, the structure of the
active distribution network is more complex, and the
equipment and constraints that need to be considered in the
operation control are more diverse. �is is a great challenge
for operators, and more targeted operation optimization
strategies need to be formulated [2]. Reactive power opti-
mization technology is an important part of active distri-
bution network operation optimization technology, and
reactive power optimization mainly achieves goals such as

reducing network loss and improving power quality by
optimizing reactive power �ow. Under the background of an
active distribution network, due to the uncertainty and two-
way power �ow brought about by the integration of high-
penetration renewable energy into the grid, it is necessary to
�exibly regulate various types of reactive power controllable
resources, so as to realize active consumption of renewable
energy, improve power quality, and ensure safe, stable, and
e�cient operation of distribution networks [3].

�e method based on a mathematical model is also a
kind of method that is widely used in distribution network
operation optimization. As the objective function, the
physical characteristics and safety requirements (such as
power �ow balance and voltage safety range) in operation
are used as constraints, and the control equipment decisions
are used as control variables (such as distributed power
reactive power output and CB gear). �e control decision is
obtained by solving the mathematical model, and the op-
timal power �ow of the active distribution network belongs
to this kind of method. �e advantage of this method is that
its control strategy is obtained by solving the mathematical
model, the optimal performance of the solution is guar-
anteed, and the control strategy can be considered to be the
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global optimal strategy [4]. Literature [5] designed a cen-
tralized distribution network reactive power compensation
system for the planning and operation of low-voltage dis-
tribution networks and realizes the optimal control of the
distribution network reactive power compensation equip-
ment capacity and real-time compensation amount through
the centralized control center. Literature [6] proposed a
centralized power system operation optimization model and
uses the interior-point algorithm to solve it. Literature [7]
used the Benders decomposition to divide the original
problem into a two-layer optimization problem, and the
upper and lower layers are alternately iterated to ensure the
control strategy. Literature [8] proposed a distribution
network voltage control method for coordinating and op-
timizing the reactive power and verified the effectiveness of
the proposed method through an urban distribution net-
work and rural distribution network, respectively. Tradi-
tional algorithms (such as interior point methods) often
have the problems of low solution efficiency and difficulty in
optimality and stability of solutions. Artificial intelligence
heuristic algorithms are widely used in solving nonlinear
programmingmodels due to their simple algorithm and easy
programming [9]. Literature [10] proposed an active dis-
tribution network day-ahead scheduling scheme with the
lowest operating cost of the distribution network as the
objective function and the active power output of renewable
energy as the control variable. Literature [11] considered
solving the voltage over-limit problem. Unfortunately, the
intelligent algorithm generally has the problem that the
solution obtained is the local optimal solution, so the ap-
plication of this kind of algorithm is limited to a certain
extent. In the background of an active distribution network,
the search for an excellent numerical analysis method for
solving the operation optimization problem has attracted a
great deal of attention [12].

In view of the excellent characteristics of the optimal
solution of convex optimization [13] being the global op-
timum and high solution efficiency, the convex program-
ming method that converts a nonconvex problem into a
convex problem is more applied to the operation of the
distribution network optimization. Second-order cone
programming and semidefinite programming [14] are two
typical representatives of convex programming applied to
the optimization of active distribution network operation.
)e essence is to transform the original nonconvex model
into a convex model through a certain relaxation method.
)e model is easy to solve. Among them, second-order cone
programming has a simpler calculation and solution process
than semidefinite programming, so it is more widely used in
operation optimization. Literature [15] proved that the
second-order cone relaxation is strictly equivalent under the
conditions that the objective function is a strictly increasing
function and the node load has no upper bound. It has wider
applicability in the operation optimization. Literature [16]
constructed a reactive power optimization model of an
active distribution network and verified the optimization
stability and computational efficiency of the model. Liter-
ature [17] built a dynamic optimal power flow model and
evaluated the effectiveness and accuracy of the second-order

cone relaxation. Literature [18] built a mixed integer second-
order cone programming model for the unit combination
problem, used the interior point cut plane method to solve
the unit start-stop state regardless of the climbing constraint,
and proposed a simple and easy unit start-stop state cor-
rection method. OLTC is important adjustable equipment
for an active distribution network, which has a significant
impact on the operating characteristics of the system, es-
pecially the voltage level. Literature [19] constructed an
optimal power flow model for a distribution network with
OLTC and used segmental linearization technology to
achieve the accurate solution of OLTC gears. Literature [20]
considered the operation characteristics of various pieces of
equipment such as OLTC, CB, SVC, ESS, and DG and
proposed a multiperiod operation optimization method,
which provides effective guidance for the date scheduling
plan of distribution networks. Literature [21] used second-
order cone programming to perform convex relaxation of
the original multiobjective model and used the constraint
method to describe the Pareto efficient frontier.

2. Reactive Power Optimization Algorithm for
the Distribution Network

2.1. Distribution Network Modeling and Data Preprocessing
Based on the OpenDss Platform. In OpenDss, the modeling
of the distribution network is mainly performed through
programming. Firstly, the DSS file of a certain component is
independently written, and then, the component is modeled
so that the main program is modularized to clarify its logic.
When the parameters or models of components need to be
modified, they can be edited independently. For example,
when modeling the load, only some variables about the load
characteristics can be directly written, and these parameter
variables can be edited and stored as an independent DSS file
so that the main program can be directly called, which is
simple and easy to implement. )e modeling and
programming structure diagram of OpenDss is shown in
Figure 1.

)e iterative cycle diagram of OpenDSS when calcu-
lating power flow analysis is shown in Figure 2.

2.2. Modeling and Analysis of Distribution Network-Related
Models. )e three-phase load of the distribution network
has a balanced load and an unbalanced load. )ere are two
connection methods for the load, the star connection
method and the delta connection method, including single-
phase or two-phase loads. )e load of the distribution
network is mainly divided into three basic types: constant
current, constant power, and constant impedance. If the
rated power of the three-phase load is known, according to
the relevant information such as the node voltage and load
type where the load is located, through the corresponding
calculation, the corresponding values of the constant model
parameters can be obtained, that is, the constant power
parameter Sin, the constant current parameter Ii, and the
constant admittance parameter yi. )e star-shaped load is
shown in Figure 3.
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For star-connected loads, by giving the three-phase rated
power, we obtain the following formula:

Sin �

Sian

Sibn

Sicn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (1)

)en, it can be converted into corresponding constant
model parameters according to the load type and the node
voltage.

(1) Load with constant P and constant Q type

Constant power parameters
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Figure 1: OpenDss programming structure.
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(3) Loads with the constant impedance type
Constant impedance parameters
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In OpenDSS, the way to define the load is the load
characteristics, the load connection method (star, delta), the
power value, and other parameters.

)e definition of the photovoltaic model in OpenDSS is
shown in Figure 4.

)erefore, the output of the photovoltaic power
generation model established in OpenDss in this paper
can be approximately expressed by the following formula:

P � CIrrPmppFTEff. (5)

In the formula, C represents the total correlation coef-
ficient, which is a constant, Irr represents the current light
intensity, Pmpp represents the rated output power of the
solar panel at a specific temperature when the light intensity
is 1kw/ m2, and Eff represents the working efficiency of the
inverter.

Growing energy and environmental concerns are
driving the electric vehicle industry. )e large-scale in-
tegration of random charging loads such as electric ve-
hicles into the power grid will also be adverse. Compared
with conventional loads, the spatiotemporal distribution
of electric vehicle loads is characterized by large ran-
domness and strong discreteness. )ese characteristics
can cause voltage sags and voltage excursions at the EV’s
access point, destabilizing the system voltage. When the
user charges the electric vehicle, the electric vehicle
charging power formula is as follows:

PEV(t) � PEV·n(t) × SEV(t). (6)

IIt is 0 when fully charged and 1 when fully charged.

2.3. Reactive Power Control Optimization of the Distribution
Network Based on OpenDss. )e IEEE37 node three-phase
power distribution system is selected for simulation, and its
original system topology is shown in Figure 5. )e system
has a total of 37 nodes and 35 feeder branches. Among them,
the rated input voltage of the upper stage is 230 kV, the step-
down voltage is 4.8 kV through the bus transformer on 799
nodes, and the final voltage entering the system is 4.8 kV.
)rough the transformer on the feeder between nodes 709
and 775, the step-down is 0.48 kV. For this node model,
except for node 775, the rated voltage of the load on other
nodes is 4.8 kV.

Via

Iia

Sia

Sib
yib

yia yic

Sic

Iib Iic

Vic

Vib

Figure 3: Star load structure model.
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In order to make this study more in line with the actual
reactive power optimization study, this system is transformed
into an active distribution network. Distributed power sources
or random load equipment such as wind turbines (WTs),
photovoltaic (PV) generators, and electric vehicle (EV)
charging piles are set up in the power distribution system. )e
transformed topology is shown in Figure 6.

2.4. Traditional Reactive Power Optimization Mathematical
Model. )e traditional reactive power optimization
problem is to select the appropriate control variables
(such as generator terminal voltage, transformer tap
position, and switching capacitor bank) under the con-
dition of known system load parameters, various other
electrical component parameters, and grid topology.
Moreover, in the case of satisfying various types of
constraints of the system (such as power flow constraints,
and voltage constraints), the obtained control variables
are substituted so that a certain objective function of the
system can be solved optimally. Its mathematical model
can be expressed as follows:

minF(u, x),

g(u, x) � 0,

h(u, x)≤ 0,

(7)

where u represents the control variable used for reactive
power optimization and x represents the state variable in the
optimization process.

)e objective function of reactive power optimization is
mainly considered in terms of technology and economy.

According to the actual situation and the different problems
to be solved, the formulation of the objective function and
the focus are also different. )is topic comprehensively
considers factors such as distribution network operation
economy and operation reliability and determines the op-
timization objective as the smallest distribution network
active power loss, and the system voltage deviation is within
the qualified range and as small as possible.)erefore, in this
subject, the voltage quality is set as the subgoal, and a
common objective function is constructed, as shown in the
following formula:

minF � Ploss + λΔU � 
n

i,j�1
Gij U

2
i + U

2
j − 2UiUj cos θij 

+λ

����

1
n



n

i�1




Ui − UiN

UiN

 

2
.

(8)

)e power emitted by the system is equal to the power
consumed by the system. It is shown in the following
formula:

PGi − PLi � Ui 

n

j�1
Uj0Gij cos θij + Bij sin θij,

QGi + QCi − QLi � Ui 

n

j�1

Uj Gij sin θij − Bij cos θij . (9)
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Figure 4: Definition of the photovoltaic power model in OpenDss.
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In this paper, the control variables mainly select the
transformer taps. )e inequality constraints are as follows:

State variables

PGimin ≤PGi ≤PGimax

QGimin ≤QGi ≤QGimax

ULimin ≤ULi ≤ULimax

⎧⎪⎪⎨

⎪⎪⎩

i ∈ SG

i ∈ SG

i ∈ SL

. (10)

Control variables are as follows:

QCmin ≤QCi ≤QCmax

Tikmin ≤Tik ≤Tikmax


i ∈ SC

i ∈ ST

· (11)

In the formula, PGimin、 PGi、 PGimax represents the
active power of the generator and its output upper and lower
limits, respectively.

Each parameter and electrical quantity should strictly
abide by the above equations and inequality constraints. For
the comparison of the optimization effect of the optimized
system, this paper defines two optimization indicators as the
basis for the analysis of the optimization effect.

Among them, the system loss reduction rate and the overall
voltage deviation at a certain time are defined as follows:

fLR �
ΔP0 − ΔP
ΔP0

× 100%. (12)

In the formula, fLR is the system loss reduction rate at a
certain time, which is as follows:

ΔU �

����

1
n



n

i�1




Ui − UiN

UiN

 

2

× 100%. (13)

In the formula, UiN is the rated voltage value of the i-th
node of the system at this time and n is the number of system
nodes.

In this paper, it is determined that the system voltage is
within the acceptable range when the voltage deviation is
within 5%.

According to the above-mentioned various operations
and reactive power optimization based on traditional genetic
algorithms, the main process of reactive power optimization
based on the improved genetic algorithm in this paper is
shown in Figure 7.

)e specific formula is as follows:
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Figure 6: Topological diagram of the IEEE37 node power distri-
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Hj � f 
n

i�1
ωijxi), j � 1, 2, · · · , l,⎛⎝ (14)

where l represents the number of hidden layer nodes and f
represents the activation function of the hidden layer.

)e output of the output layer is calculated, and the
algorithm takes the obtained hidden layer outputH as input.
)e specific formula is as follows:

Ok � 
l

j�1
Hjωjk − bk, k � 1, 2, · · · , m. (15)

)e algorithm calculates the prediction error e of the
network according to the network prediction result O. )e
following formula is shown:

ek � Yk − Ok, k � 1, 2, · · · , m. (16)

)e algorithm updates the network connection
weights through correlation calculation according to the
prediction error e of the network. )e formula is as
follows:

ωij � ωij + ηHj 1 − Hj x(i) 
m

k�1
ωjkek,

i � 1, 2, · · · , n; j � 1, 2, · · · l,

ωjk � ωjk + ηHjek, j � 1, 2, · · · l; k � 1, 2, · · · , m.

(17)

In the formula, η is the learning rate.
Similarly, the algorithm updates the threshold of each

layer of network nodes.
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Figure 10: Change curve of the free entropy index, (a) load entropy, (b) PV entropy, (c)WTentropy, (d) EV entropy, and (e) environmental
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aj � aj + ηHj 1 − Hj  

m

k�1
ωjkek, j � 1, 2, · · · , l,

bk � bk + ek, k � 1, 2, · · · , m.

(18)

)ealgorithm is judgedwhether it satisfies the iteration end
condition. If it does not end, it continues to return to Step 2.
)e specific algorithm training flow chart is shown in Figure 8.

)e system may be in different states during actual
operation, p � (xi) ∈ [0, 1], (i � 1, 2, · · · m) represents the
probability of each state appearing, and the definition of the
system entropy value is shown in the formula:

H � −C 
m

i�1
p xi( ln p xi( . (19)

In the formula, C represents a constant andm represents
the number of states.

From formula (19), it can be seen that entropy mainly
has the following properties: According to the correlation
propertyp � (xi) ∈ [0, 1], (i � 1, 2, · · · m). When the prob-
ability of each state of the system is an equal probability, the
entropy of the system will reach the maximum value at this
time, and it has extreme value. In addition, the order of the
probability of occurrence of each state does not affect the
system entropy, and the two are irrelevant.

)e work of using neural networks for reactive power
optimization control of distribution networks is mainly
divided into two stages: training stage and operation stage,
corresponding to offline and online conditions, respectively.
In the offline training stage, the corresponding relationship
between the expression and characteristics of the distribu-
tion system. )is is similar to learning and imitating the
research ideas and work experience accumulated by actual
power workers when they face reactive power optimization
problems. In the online operation stage, it first efficiently and
quickly extracts the corresponding features of the system
from a large amount of measurement data and uses the
offline trained network model to input the current system
state. Moreover, it quickly finds the optimal reactive power
optimization strategy, which can be referred to and
implemented on the corresponding equipment by the
electric power workers.

)e offline training and modeling process of the neural
network is shown in Figure 9.

)e specific steps are as follows:

(1) Sample dataset sampling and preprocessing.
)rough OpenDss sampling according to the se-
lected original features, in the unit of hours, 8760 h of
sample data per year is obtained, and the free entropy
method is used to calculate the five types of free
entropy indicators corresponding to the feature
variables, which are used as the input of the network.
Due to the different dimensions between the feature
indicators, there are also certain differences in the
obtained input entropy values. In order to reduce the
difference between various types of data, this paper
adopts the maximum and minimum methods. First,
the input features of the samples are normalized, so

that the input of the neural network is all within the
[0,1] interval, as shown in the following formula:

Cinew �
Ci − Cimin

Cimax − Cimin
. (20)

Among them, Ci、 Cinew represents the value of the
i-th feature quantity in a single sample before and
after normalization. Ci is the data value
corresponding to the i-th feature in a single sample,
and the value of integer i ranges from [1, 5]. Cimax、
Cimin represents the maximum and minimum values
of the i-th feature index in all sample sets,
respectively.

(2) Verification of the reactive power optimization effect
of the distribution network is based on multiagent
deep reinforcement learning.

)is paper organizes and extracts multiple sets of his-
torical data for one year and extracts five types of free en-
tropy indicators: load entropy, fan entropy, PV entropy, EV

Table 1: Verification of the reactive power optimization effect of
the distribution network based on multiagent and multiagent deep
reinforcement learning.

NO Optimization effect
1 84.6526
2 84.7160
3 84.8038
4 82.0406
5 80.5930
6 78.5784
7 84.3043
8 77.5401
9 81.5772
10 81.0596
9 81.5772
10 81.0596
11 77.7660
12 83.7983
13 81.2451
14 79.6588
15 79.7166
16 86.8500
17 77.6380
18 83.7247
19 80.9164
20 76.1717
19 80.9164
20 76.1717
21 82.3120
22 81.7937
23 80.2767
24 80.0824
25 83.5390
26 76.4324
27 77.8484
28 79.7784
29 84.6774
30 82.9686
29 84.6774
30 82.9686
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entropy, and environmental entropy, as shown in Figure 10.
)ese indicators can well characterize the operation char-
acteristics of the distribution network.

)e reactive power optimization effect is evaluated
through multiple sets of simulation experiments, and the
research results shown in Table 1 are obtained.

)e above verification shows that the reactive power
optimization of the distribution network based on multi-
agent and multiagent deep reinforcement learning proposed
in this paper is very good.

3. Conclusion

)e optimization of distribution network operation under
deterministic conditions is based on the premise of accurate
prediction of distributed power output and load output and
does not consider the impact of short-term fluctuations and
randomness. However, under the existing conditions, the
output of renewable energy and the output of the load have
certain uncertainty. If the uncertainty is ignored, the op-
eration strategy often cannot meet the economical and ef-
ficient operation of the system, and even the safety of the
system operation is difficult to guarantee. In this paper, the
multi-agent deep reinforcement learning algorithm is used
to analyze the reactive power optimization strategy of the
distribution network, and an intelligent optimization model
is constructed to improve the reactive power optimization
effect of the distribution network. )e experimental verifi-
cation shows that the reactive power optimization effect of
the distribution network based on multiagent and multi-
agent deep reinforcement learning proposed in this paper is
very good.
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