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Feature fusion is an important part of building high-precision convolutional neural networks. In the �eld of image classi�cation,
though widely used in processing multiscale features of the same layer and short connections in the same receptive �eld, feature
fusion is rarely used in long connection operations across receptive �elds. In order to fuse the high- and low-level features of image
classi�cation, a feature fusionmodule SCFF (selective cross-layer feature fusion) for long connections is designed in this work.�e
SCFF can connect the long-distance feature maps in di�erent receptive �elds in a top-down order and apply the self-attention
mechanism to fuse them two by two. �e �nal fusion result is used as the input of the classi�er. In order to verify the e�ectiveness
of the model, the image classi�cation experiment was done on a number of typical datasets.�e experimental results prove that the
model can �t the existing convolutional neural network well and e�ectively improve the classi�cation accuracy of the con-
volutional network only at the cost of a small amount of calculation.

1. Introduction

With the wide application of deep learning in the �eld of
image classi�cation, various convolutional neural networks
emerge in an endless stream, and the classi�cation accuracy
records on public datasets are constantly refreshed. For the
purpose of e�ectively improving the classi�cation accuracy,
current convolution network models tend to be deeper,
wider, and more re�ned. For example, IResNet [1] has more
than 3,000 layers and can be trained on Cifar10 and
Cifar100,WRN [2] adopts wider convolution kernel, and the
Inception series [3–6] has a detailed design for each level.
Moreover, various improvement schemes for feature fusion
are proposed. For example, the Inception series use the
convolution kernels with di�erent sizes for feature extrac-
tion and fusion in the same layer, increasing the complexity
of the output features. ResNet [7] uses the residual con-
nections to connect the input and output features of the
backbone structure, increasing the network’s e�ective depth.
Res2Net [8] divides the feature channels into multiple
groups for volume accumulation so that the output contains
the characteristics of a variety of receptive �elds. Besides

that, SKNet [9] uses a self-attention mechanism for multi-
scale feature fusion, and ResNet [10] applies the group
feature dynamic weighting strategy to extract feature maps.

Among the existing feature fusion methods, most of
them are apt to increase the feature diversity within the scope
of the same kernel. �e networks, such as ResNet [7, 11] and
DenseNet [12], use local short-range connections to the
features of the same receptive �eld. From the perspective of
the network model structure in the �eld of image classi�-
cation, there are few studies on fusion of high and low-level
features across receptive �elds. However, similar studies
appear more in the �eld of target detection and semantic
segmentation, such as the FPN [13] model and U-Net [14]
model, which merge high-level features and low-level fea-
tures through long-distance connections to obtain high-
resolution or strong semantic features. Naturally, there raises
an issue that whether the long-connection fusion of features
between di�erent levels can improve the performance of the
classi�cation network. To �nd the solution, this paper makes
an exploration to the fusion methods that can improve
classi�cation performance. Firstly, the feasibility of applying
cross-layer long-connection feature fusion in the �eld of
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image classification is analyzed. &en, using a structure
similar to the pyramid model of FPN [13], the long-distance
feature maps in different receptive fields are connected in a
top-down order, and the self-attention mechanism [15] is
used to fuse them two by two. &e final fusion result can be
input to the classifier network to get better classification
results. Since this method can selectively fuse cross-layer
features, we named this fusion module as SCFF (selective
cross-layer feature fusion). SCFF can make the network no
longer propagate in the top-down order but make the fea-
tures of each receptive field directly related to the input
features of the classifier, thus enhancing the gradient
propagation during backpropagation and enabling the
network to fuse the characteristics of different receptive
fields with weight bias.

Since the deep network model structure in the field of
image classification is relatively unified, SCFF can be
combined with most networks. We conduct the comparative
experiments on multiple datasets on different network
structures, such as ResNet [10] series, Inception series [3–6],
VGG [16], and EfficientNet [17], and the experiments prove
that SCFF can be easily embedded in the current image
classification networks with a minimal increase of calcula-
tion but an effective improvement of the classification
accuracy.

&e contributions of the paper mainly lie in two aspects.
Firstly, an improved method that can integrate different
levels of feature information is proposed, which can effec-
tively improve the recognition performance. Secondly, this
method is easy to be combined with various network models
and its effectiveness has been verified on multiple datasets.

2. Research Methods

2.1. Benchmark Network. For its strong hierarchical nature,
the ResNet model is used as the benchmark network for our
research. As shown in Table 1, the network structure of
ResNet50 can be divided into three parts. &e first part is the
stem layer consisting of convolutional layer, BN (Batch
Normalization) operation, and activation function ReLU.&e
second part is composed of 4modules from stage-1 to stage-4,
and each stage is composed of several bottlenecks (the basic
residual module of ResNet) to formally extract image features.
&e third part is a classifier composed of a downsampling
layer and a full connection layer, which downsamples and
classifies the final features extracted earlier. &e stride of the
first bottleneck in each stage is equal to 2, so every time when
the feature passes through a stage, the size of the feature map
will be reduced to a quarter of the original, and the receptive
field will expand.&e downsampling of stage-1 is done by the
maxpool function with stride� 2. &erefore, when ResNet
performs feature extraction, it outputs the features of 4 dif-
ferent receptive fields, which provides convenience for us to
perform cross-layer feature fusion.

2.2. Feasibility Analysis. What is to be considered first is the
feasibility of cross-layer feature fusion between modules in
image classification. &e network structure used by

conventional image classification algorithms is similar to
ResNet’s top-down sequential extraction mode. Although
DenseNet adopts a complex dense connection model inside
the stage, there is still a single route of feature transfer
between stages. We set that the input feature of the first layer
stage is y0,W is a convolution operation, and then the output
feature of the i-th layer can be defined as

yi � W yi−1( , 0≤ i≤ 4 . (1)

&e yi of each layer is calculated from yi−1 through
complex convolution. During the convolution process, the
receptive field of yi becomes larger, the number of feature
channels increases, and the size of the feature map becomes
1/4, which can be described as

yi · s �
1
4

 
i− j

yj · s, 0≤ j< i≤ 4. (2)

&erefore, before the output features yi of different stages
are fused, their sizes must be unified. &at is, it is necessary
to downsample and channel-expand the features of the
upper layer. In fact, no matter what downsampling method
is adopted, the output data will lose certain effective features
compared with the input data.&erefore, in each stage of the
ResNet, after the feature passes through the first bottleneck
with stride� 2, it also needs to go through the bottleneck
with stride� 1multiple times for feature extraction to reduce
the impact of downsampling feature loss on network ac-
curacy. However, if the feature maps with a loss of effective
features are directly fused, it may have a negative impact on
the classification results.

If the feature loss during downsampling has a negative
effect, will the feature fusion between stages have a positive
effect? &ere may be two answers. Firstly, the feature fusion
of different stages is based on long connections across layers
as a carrier, and long connections can provide additional
gains to the network. For example, the concept of auxiliary
networks is introduced in the Inception series [3]. &e
network sets optional parameters to output the features of
the intermediate layer through auxiliary networks. &ese
features will eventually participate in the error calculation
with a certain weight, which is equivalent to building a long
connection between the final output layer and the inter-
mediate layer. By adding auxiliary classifiers connected to
these intermediate layers, the author would expect to en-
courage discrimination in the upper stages of the classifier,
increase the gradient signal that gets propagated back, and
provide additional regularization. In addition, the ROR [18]
network optimizes the operation of the network by building

Table 1: &e network structure of ResNet50.

Output_size Layer_name ResNet50
112×112× 64 Stem conv, maxpool
56× 56× 256 Stage-1 Bottleneck× 3
28× 28× 512 Stage-2 Bottleneck× 4
14×14×1024 Stage-3 Bottleneck× 6
7× 7× 2048 Stage-4 Bottleneck× 3
1× 1× 2048 Classifier avgpool, fc
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dense long connections between di�erent layers. Secondly,
during feature extraction, it is inevitable that some valid
features will be missed or erroneous features will be gen-
erated. After such errors occur, it will increase the di£culty
of extracting valid features later, and eventually lead to
errors in the classi�cation results. �erefore, the features
closer to the input are often closer to the original features,
and the error is smaller. So, it can be considered to use the
upper-layer features to fuse the lower-layer features, thereby
reducing the error of the lower-layer feature output. Of
course, the premise of achieving this goal is to minimize the
e�ective feature loss when the upper-layer features are
downsampling.

2.3. Module Design

2.3.1. E�cient Network Architecture. As analyzed above, the
loss of accuracy of downsampling is a problem that cannot
be ignored when designing the long connection fusion of the
ResNet, and it is di£cult to solve in a simple way. �us, this
paper is to reduce the loss as much as possible. �e pyramid
model of the FPN [13] fuses the features of di�erent scales
generated by the network from high to low so that the output
results contain richer semantics. Accordingly, the structure
as shown in Figure 1 is designed. Figure 1 is the original
structure of the ResNet, and Figure 2 is the overall structure
of SCFF, where D-S is the downsampling module and F-F
(Feature Fusion) is the feature fusion module. �e output
feature after fusion of the i-th layer is described as follows:

Yi �
X1, i � 1,

F Xi, D Yi−1( )( ), 1< i≤ 4.
{ (3)

In the formula above, Xi is the feature output by stage-i,
D is the downsampling algorithm, and F is the fusion al-
gorithm. Each Xi except X1 will be fused with the previous
layer. �us, the advantages of this design lie in as follows:
First of all, it does not interfere with the feature extraction on
the backbone, which is only used as a feature extractor to
generate features {X1, X2, X3, X4} with di�erent receptive
�elds for SCFF to perform feature fusion on the original
network, and the intrusion to the original network is very
small; secondly, the fusion features output by each stage will
only undergo a minimum downsampling and then fuse with
the features of the next layer so that di�erent downsampling
methods and feature fusion algorithms can be combined to
minimize the loss of features; thirdly, each layer Yi contains
{X1, . . ., Xi } information, which enables the �nal output of
SCFF to integrate the feature map information of all re-
ceptive �elds; last but not least, as each layer of Yi contains
the information of {X1, . . ., Xi }, the output features of each
stage are associated with the �nal input features of the
classi�er through SCFF, which enhances the gradient
transfer in this part.

2.3.2. D-S Module. �e purpose of the D-S (downsampling)
module is to complete the mapping of upper-level features
to lower-level features, which contains two tasks: feature

map downsampling and channel expansion. �e tasks can
be accomplished in a variety of ways, such as average
pooling or maximum pooling often used in downsampling
with point convolution, directly using a 2 × 2 convolution
kernel to complete the mapping, or point convolution
(stride � 2) is used for residual connection downsampling
in the ResNet network. �e characteristics of these
methods are analyzed by comparative experiments on the
Cifar10 dataset. �e F-F module is uni�ed into addition,
and the results are shown as in the upper part of Table 2.
�e experimental results prove that the maximum pooling
and average pooling have a relatively obvious improve-
ment in classi�cation accuracy. When ignoring F-F, the
output features of each stage are associated with the �nal
features, which enhance the gradient propagation. �e
advantages of max pooling and average pooling lie in no
additional weights, nor increasing the di£culty of gradient
transfer. On the other hand, the point convolution needs to
a few weights to be trained and has less in§uence on the
gradient. �erefore, the network accuracy can also be ef-
fectively improved after the two are combined with point
convolution.

input

Stem

Stage-1

Stage-2

Stage-3

Stage-4

classifier

output

Figure 1: �e original structure of the ResNet.
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Figure 2: �e structure of SCFF.
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Next, we will analyze the e�ect of gradient transfer on
max pooling and convolution pooling. As shown in Figure 3,
we use the detach () method provided by PyTorch to cut o�
the gradient §ow passed by SCFF from stage 1 to stage 3 and
only release the gradient passed to stage 4 to train the pa-
rameters of ResNet. �e gradient §ow during back-
propagation is the same as the original ResNet. �e
experimental results are shown in the lower part of Table 2.
After losing the gradient gain brought by SCFF, the accuracy
of both average pooling and max pooling decreased, and the
accuracy of max pooling decreased more obviously. �is
veri�es the feature loss problem mentioned in the feasibility
analysis, that is, the feature loss during pooling will have a
negative impact on the network, but in practice, considering
the positive gain of gradient transfer, this negative impact
can be accepted.

From the experimental results of blocking gradients, the
accuracy of average pooling drops less, so less feature loss
occurs. �e reason is average pooling synthesizes all features
in the mapped range, while maxpooling ignores features
other than the maximum value. Our module design is to use
the upper-layer features to correct the lower-layer features,
hoping that the upper-layer features will minimize the loss of
e�ective features during downsampling, so the down-
sampling method in this paper uses average pooling. �e
structure of D-S module is shown in Figure 4.

2.3.3. F-F Module. For the features from di�erent stages,
how to fuse them needs analyzing. As described above, it is
hoped that the upper-level features closer to the initial
features can correct the lower-level features, so it is necessary
to assign di�erent weights to the feature maps according to
the requirements before their fuse. For this purpose, we use
the attention mechanism. After comparing various attention
mechanisms, we choose the structure shown in Figure 5
through experimental veri�cation. Firstly, the input features
are compressed by global average pooling to obtain channel-
level global features. �en, two fully connected layers (fc)
cooperate with the ReLU function to form a funnel structure
to model the correlation between channels. Finally, the
channel weights normalized between 0 and 1 are obtained
through the Sigmoid function. Compared with using only
one fully connected layer, the funnel structure using two
fully connected layers can make the extraction process more
nonlinear and better �t the relationship between channels.

�e classic achievement of the SE (squeeze and excita-
tion) mechanism in multiscale fusion is SKNet [9].�emain

purpose of SKNet is to give attention to the convolution
kernel level of the network. Unlike the SE module, which
targets single-channel feature maps, SKNet needs to process
multichannel features, so the focus is on how to generate
weights to fuse the information of feature maps of di�erent
scales. �e feature fusion structure of SKNet is shown in
Figure 6, where X and Y are the input feature maps of
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Figure 3: Gradient blocking in SCFF.

X

X’

avgpool

point-conv

Bn+Relu
C × H × W

 × 2H × 2WC
2

 × H × WC
2

Figure 4: �e structure of D-S module.
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Figure 5: SE module.

Table 2: Downsampling and gradient blocking tests.

Model Acc. (%)-Cifar10
ResNet50 [7] 92.32
ResNet50_avg 92.45
ResNet50_max 92.54
ResNet50_2× 2conv 92.24
ResNet50_res 92.34
ResNet50_avg_no_grad 90.84
ResNet50_max_no_grad 88.97
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di�erent scales.�e SKNet adopts the global average pooling
after adding X and Y to generate the sum of the global
features of X and Y, and then performs the �rst weight
extraction through the �rst layer of full connection with BN
(Batch Normalization) and ReLU; then, di�erent fully-
connected layer and the softmax activation function are used
to generate the channel weights corresponding to X and Y,
respectively. Finally, the weights are assigned toX and Y, and
the obtained results are added to complete the feature fusion.
In fact, looking at the data §ow of X or Y alone, it can be
found that this improved process is still the same as the SE
module, but in order to improve the correlation between the
weights, the global average pooling and FC1 operations are
combined.

We make an adjustment to the parameters on the SCFF
model and compare various models of SE with additive and
concatenated combinations. Since there is no fusion model
that has a better overall structure than SKNet, this paper
chooses to improve it based on the SKNet model. For the
features after global pooling, we perform a softmax acti-
vation, then extract features, and keep the others as they are.
�e original full-connection operation is aimed at the sum of
the global features of X and Y at the channel level, and the
improvement is activated by softmax. �e sum of the global
features is mapped to a weight that sums to 1, and the full
connection operation is against the weight. Performing a
softmax activation is equivalent to initializing the weights,
instead of generating weight information until the end like
the original SKNet. �e experiments show that this method
can improve the classi�cation accuracy by 0.1–0.2 per-
centage. �e improved SKNet feature fusion module is
shown in Figure 7.

So far, the SCFF model design is completed. In general,
the advantages of the SCFF model lie in two aspects: First,
the pyramid-like layer-by-layer structure combined with
average downsampling can e�ectively alleviate the gradient

propagation. Second, the feature fusion algorithm based on
the SE mechanism can ensure that di�erent receptive �eld
features can be fused with di�erent weights; thus, the fea-
tures �nally input to the classi�er that contains all the ef-
fective information of the receptive �eld.

3. Experiment

We conduct comparative experiments on various network
structures based on multiple public datasets. �e training
strategy adopts simple random cropping, rotation, and
normalization. �e SGD optimizer is trained for 100 epochs.
�e initial learning rate is 0.1, and then it is reduced to 1/10
of the original value every 30 epochs.�e resulting data is the
average of more than three experiments.

3.1. Cifar10, Cifar100, and Tiny-Image Net Datasets. Cifar10,
Cifar100, and TinyImageNet-100 are three relatively mature
and widely used public datasets. �e image size of Cifar10
and Cifar100 is 32× 32, and the image size of Tiny-ImageNet
is 64× 64. We mainly conduct experimental comparisons of
the ResNet series on these three datasets.

ResNet’s bottleneck has high scalability. Many ResNet
series networks tend to improve the intermediate 3× 3
convolution kernel on the basis of maintaining their original
structure, such as ResNet [18], ResNetV2 [19], Res2Net [8],
and SKNet [9]. �is provides great convenience for our
experiments, as we only need to keep the previous design
structure and embed SCFF on each stage. �e experimental
results are shown as in Table 3 where the calculation amount
is for the Cifar10 dataset, and B is billion. �e SCFF model
has a very good performance, as the classi�cation accuracy of
each network has been signi�cantly improved, and the in-
crease in the amount of calculation is not large.
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Figure 6: SKNet fusion module.
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Figure 7: �e improved SKNet feature fusion module.
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3.2. 101_ObjectCategories Datasets. Considering that most
networks are more suitable for images with relatively large
sizes, 101_ObjectCategories are further used here for clas-
sification experiments. 101_ObjectCategories datasets con-
tain 101 categories, each of which contains about 30∼400
pictures, totally 8,677 pictures. We adjust the size into
224× 224 and divide them into training sets and test sets
according to the ratio of 8 : 2.

&e overall structure of the convolutional network is not
necessarily as regular as the ResNet series. When combining
with the SCFFmodule, the position of the combination needs
to be considered. &e testing proves that the position before
the size of the feature map decreases by an integer multiple is
the most suitable. Based on this, experiments are performed
on a variety of network structures against the 101_Object-
Categories dataset. &e classification experiment results are
shown in Table 4. Similar to ResNet, SCFF shows a good
accuracy improvementwhether it is InceptionV3with amore
complex structure or DenseNet121 with only 3 stages in the
stage, which further demonstrates the effectiveness of SCFF.

3.3. SIRI-WHU Datasets. To better analyze the impact of
SCFF on the classification task, we again conduct classifi-
cation experiments on the remote sensing image dataset
SIRI-WHU [20] and conduct in-depth analysis of the
training and testing data. SIRI-WHU dataset is a remote
sensing image dataset, which contains a total of 2,400 scene
images of 12 categories, of which each category has 200
images, the pixel size of each image is 200 ∗ 200, and the
spatial resolution is 2 meters. &e dataset resource comes
from Google Earth, mainly covering urban areas in China,
and the scene image dataset is designed by the RS-IDEA
Group of Wuhan University.

&e optimizer for this part of the experiment uses Adam
with an initial learning rate of 0.001. &e experimental re-
sults are shown in Table 5. Similar to the experimental results
above, various networks introduced with SCFF achieved
accuracy gains. We recorded the test results for each epoch
during training, as shown in Figure 7. Since SCFF establishes
a long connection from the intermediate layer to the clas-
sifier on the network, which enhances the gradient transfer,
it is also easier to train. As can be seen from the abscissa in

Figure 7, with the increase of training batches, the accuracy
of the network after the introduction of SCFF improves with
a faster initial speed and finally maintains a better accuracy
range than the original version.&e faster initial speed of the
network is due to the enhanced gradient transfer, making it
easier to train. &e network accuracy can be maintained in a
higher range in the end, because the attention mechanism is
introduced to fuse the features (Figure 8).

Next, we compared the correspondence between the
features extracted by the network to the classifier after the
introduction of SCFF and the original image by means of a
heat map. We used Grad-CAM++ [21] to generate a heat

Table 3: Comparative experiment.

Model &e calculation amount (B)
Acc. (%)

Cifar10 Cifar100 Tiny-ImageNet
ResNet50 [7] 0.328 92.39 68.14 54.84
ResNet50-SCFF 0.362 93.20 74.27 60.78
ResNext50 [18] 0.340 92.78 70.84 54.80
ResNext50-SCFF 0.374 93.35 75.79 62.08
Res2Net50 [8] 0.342 92.58 70.85 57.06
Res2Net50-SCFF 0.375 93.37 74.31 61.29
PreActResNet50 [19] 0.328 93.35 73.08 54.74
PreActResNet50-SCFF 0.362 93.98 76.14 54.54
SKNet50 [9] 0.622 92.59 67.36 57.22
SKNet-SCFF 0.656 93.64 72.56 61.34
VGG16 [16] 0.333 92.66 — —
VGG16-SCFF 0.339 93.30 — —

Table 4: &e experimental results of 101_ObjectCategories
datasets.

Model &e calculation amount (B) Acc. (%)
EfficientNet-b0 [17] 0.013 79.50
EfficientNet-b0-SCFF 0.019 84.17
DenseNet121 [12] 2.865 78.20
DenseNet121-SCFF 2.906 79.50
InceptionV3 [5] 2.845 82.35
InceptionV3-SCFF 2.995 85.48
Res2Net50 [8] 4.278 78.99
Res2Net50-SCFF 4.598 80.81
ResNet50 [7] 4.109 77.68
ResNet50-SCFF 4.421 79.44
ResNext50 [18] 4.257 80.24
ResNext50-SCFF 4.577 81.20
SKNet [9] 7.636 79.50
SKNet50-SCFF 7.955 83.37

Table 5: &e experimental results of SIRI-WHU dataset.

Model Acc. (%)
ResNet50 94.67
ResNet50-SCFF 95.66
ResNext50 [18] 95.83
ResNext50-SCFF 96.00
Res2Net [5] 95.83
Res2Net-SCFF 96.33
InceptionV3 [8] 93.00
InceptionV3-SCFF 94.50
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map of the features corresponding to the original image.�e
result is shown in Figure 9. On the overpass image, we
compared the heatmaps of the ResNet50, ResNext, and
InceptionV3 models before and after the introduction of
SCFF. As can be seen from Figure 9, after the introduction of

SCFF, the red part of the heat map covers more of the
overpass area. It shows that SCFF based on multilayer
feature fusion can well enhance the network’s attention to
the target object in the image, and the enhancement of
accuracy is reasonable.
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Figure 8: Comparison of the network accuracy curve before and after the introduction of SCFF model. (a) ResNet50 Model. (b) ResNext50
Model. (c) Res2Net Model. (d) InceptionV3 Model.
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4. Conclusion

�is paper analyzes the feasibility of long connections across
di�erent receptive �elds to improve the performance of
image classi�cation networks and designs a feature fusion
model SCFF using a similar pyramid structure combined
with a self-attention mechanism. SCFF can be embedded
into a convolutional neural network in a non-invasive
manner and selectively fused according to the characteristics
of di�erent receptive �elds. We conduct classi�cation and
comparison experiments on multiple datasets by embedding
multiple convolutional neural networks. �e results show
that SCFF can e�ectively improve the accuracy of network
classi�cation at the expense of a small increase in compu-
tational complexity. �e results of this paper show that
image classi�cation is not the only choice to extract features
in order from large to small. It is also important to think
from more dimensions and connect the features of high and
low layers. However, the fusion module of SCFF is an
improvement on the basis of SKNet, but SKNet was origi-
nally designed to fuse multichannel features of the same
layer, not for long-connected cross-layer features. Are there
other feature fusion algorithms that are more suitable for
SKNet? In addition, the SCFF fuses the features extracted by
the backbone. �e current strategy is to train SCFF and the
main network together. Will this have a certain negative
impact on the features extracted by the backbone network? If
the backbone network and the SCFF are trained separately,
or if the SCFF is directly introduced into the pre-trained
network for retraining, will the network be improved better?
We will further study these ideas in the future.
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