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Some time-consuming and labor-intensive techniques, like manual drawing or interactive modeling with an image editing system,
are often used to show how a desert area might look after being transformed into a green field (oasis) in an image way. In order to
improve the rendering efficiency of image style transformation and increase the variety of renderings, we can build an algorithm for
automatically generating style images based onmachine learning. In this paper, after comparing seven generative adversarial network
(GAN)models in the way of theory analysis, we propose a method for generating green fields using desert images as input data, and a
comprehensive comparison is presented on how GANs are currently applied to solve the desert-to-oasis problem. Experimental
results show that two GANmodels, geometrically consistent GAN and cyclic consistent GAN, have the best transfer effect of a desert
image to oasis one in the view of quantitative indicators, Fréchet inception distance, and learned perceptual image patch similarity.

1. Introduction

In recent years, image style transfer has been a hot research
topic [1, 2], especially using generative adversarial networks
(GANs) because GAN models increasingly support unsuper-
vised learning for image-to-image (I2I) translation [3, 4].
With the in-depth study of GANs, GAN models are increas-
ingly applied in various fields [5–10], including agricultural
production, environmental preservation, urban architecture,
etc. We mainly focus on the topic of image style transfer in
the context of environmental preservation.

In the environmental preservation problem, Nazki et al.
[7] used adversarial networks for improved plant disease
recognition; Xu et al. [10] employed geometric transforma-
tion methods and GAN to enhance the environmental micro
organizations image. However, few people pay attention to
the problem of desert-to-oasis. As one of the image style
transfer problems, the transfer from a desert image to a green
field (oasis) one not only has significant research meaning in
terms of environmental preservation and governance, for
example, showing the greening effect of a desert, but also is
a technical challenge because there is a big difference in styles
between the input and output images. If one wants to

visualize what a desert region will look like when it becomes
an oasis, one has to use manual drawing technology or some
specific software to generate a picture. This is not only less
efficient but also more costly in terms of human and financial
resources.

Recently, deep learning methods have been increasingly
applied to visualization applications in various fields [11–13].
The fundamentals, technologies, and applications have been
comprehensively summarized [14]. Although there are few
published methods for transferring the desert image to a
green field (oasis), we can treat it as a general image transla-
tion or style transfer problem. At first, we consider all desert
images as one domain and all oasis images as another. In
order to get the appearance of the specified desert area after it
becomes an oasis, it needs to learn a mapping between the
two domains, which is the problem of I2I translation. More
specifically, the desert images are used as the input content
image, and the oasis images are used as the input style
images. By this way, we can get the new images with the
oasis style and the desert content, which is also the problem
of style transfer. Currently, GAN models are the most popu-
lar models used in this field, and we now apply GAN models
to the problem of desert-to-oasis.
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To provide a comprehensive state-of-the-art review of
how GANs are currently applied to solve challenging tasks
in the desert-to-oasis problem, we select seven representative
GAN models and design appropriate experiments to find
which one of GAN models is suitable for image transfer
from a desert image into an oasis image. Since the desert
dataset and the oasis dataset cannot be obtained directly,
we created the original image datasets of deserts and oases
and used transfer learning technology to solve the problem.

The main contributions of the paper are as follows:

(1) An algorithm of transfer learning was carefully built.
Given that there are no pair images of the desert
image and oasis image, the pretraining strategy of
transfer learning from winter to summer is proposed.

(2) The experimental scheme was carefully designed for
testing the algorithm of desert-to-oasis with seven
GANmodels. By experimental comparison, it is found
that two GAN models are suitable for image transfer
from a desert image into an oasis image.

(3) A small dataset including both desert images and green
field images is also established for model training.

2. Related Work

2.1. GANs. The original GANs were initially proposed by
Goodfellow et al. [15]. The basic idea of GANs is to learn
the probability distribution of data from a training set of real
data. It is a powerful framework with a generator and a
discriminator that usually make use of deep neural networks
[16, 17]. Since GANs have multiple challenges in their train-
ing, such as convergence, stability problems, or pattern col-
lapse, a series of improvements have been presented in the
following years [18–20]. Additionally, GANs have been used
in research on various artificial intelligence subfields, such as
speech and language processing [21, 22], and malware detec-
tion [23].

GANs have also been successfully applied to different
computer vision tasks, such as text-to-image synthesis [24],
image colorization [25], super-resolution [26], and style trans-
fer [4, 27]. Although those GAN models have been successful
inmany specific applications, such as stylization and artistry, it
is still worth testing their effect on the task of transferring
desert image to oasis image.

2.2. Unsupervised I2I (UI2I) Translation. GANs have been
used in a variety of image applications, especially for I2I
translation. The idea of I2I translation can be traced back
at least to the image analogies of Hertzmann et al. [28], who
used a nonparametric texture model [29] on a single input–
output training image pair. Typically, I2I translations can be
divided into two groups: supervised settings (paired) and
unsupervised settings (unpaired). Due to the unavailability
or difficulty of collecting paired data, unpaired I2I transla-
tion has received a lot of attention, and the GAN model
selected in this paper also complies with I2I translation in
unsupervised settings.

In the unsupervised learning setting, I2I uses two larger
but unpaired training image sets to convert images from one
representation to another, which makes the task more prac-
tical but more difficult. Some attempts have been made to
incorporate various constraint assumptions in subsequent
studies. Several representative’s methods are mainly based
on two constraints: the cyclic consistency constraint [30–35]
and the beyond-cyclic consistency constraint [36–38]. We, in
this paper, choose cyclic consistent GAN (CycleGAN) [35] as
one representative method among those methods with the
cyclic consistency constraint and choose geometrically con-
sistent GAN (GcGAN) [36] as one representative method
among those methods with the beyond-cyclic consistency
constraint.

The following works [39–42] further implemented mul-
timode and multidomain synthesis to bring diversity in the
translation output. What is more, studies have started to
propose methods for a few-shot in I2I [43–45], which are
still under further investigation.

2.3. Style Transfer and Domain Mapping. As one of the well-
known computer vision tasks, style transfer [46] is an alter-
native method for performing I2I translation. It usually
receives a style image and a content image as input and
creates a new image with the first style and the second con-
tent [35, 47]. Obviously, we are more concerned with the
mapping between two domains than the mapping between
two specific images. Although it is different between the
problem of image translation and domain mapping because
when mapping between domains, it is not limited to the
change of style, and some content will also be replaced; how-
ever, many examples of mapping across domains in the lit-
erature can be considered almost as style transfer [47].

3. GANs and Variants of GANs

Training supervised image translations are not practical due
to the difficulty and high cost of acquiring these large pairs of
training data in many tasks. For example, the actual photos
of desert and oasis in the same land. It is nearly impossible to
gather a sizable number of labeled paintings that match the
input landscape in the case of photo-to-painting translation.
Therefore, unsupervised methods are gradually gaining more
attention. The I2I approaches use two large but unpaired sets
of training images to transform images between representa-
tions in unsupervised learning. Unsupervised image trans-
formation models use unpaired data, which does not require
strict correspondence between the source and target domains
and is easier to obtain compared to paired data. As a result,
the field of unsupervised image transformation has given rise
to diverse transformation models.

In this section, we use CycleGAN [35] and GcGAN [36]
as representatives of cyclic consistency constraint and
beyond-cyclic consistency constraint. To reflect the timeli-
ness of the article, we select five methods from the past 2
years, CUT [48] and FastCUT [48], DCLGAN and SimDCL
[49], and F-LSeSim [50], for comparison. All of them are
shown in Table 1, and the characteristics and reviews of these
methods are presented in the following subsections.
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3.1. GANs. The basic structure of the GANmodel is shown in
Figure 1(a) [4]. In the training process of GANs, the genera-
tor and the discriminator are similar to a two-player zero-
sum game, and the optimization goal is to achieve Nash
equilibrium [51] through sufficient training to make the gen-
erated data of the generative network as real as possible. This
two-player model can be summarized as a min–max problem
between the generator G and the discriminator D, i.e.,

min
G

max
D

V G;Dð Þ ¼ Ex∼pdata xð Þ logD xð Þ½ �
þEz∼pz zð Þ log 1 − D G zð Þð Þð Þ½ �;

ð1Þ

where V G;ð DÞ is the value function, pdata xð Þ represents the
distribution of real data, and pz zð Þ denotes the model distri-
bution of the random noise input z.

Thus, we obtain a generator that can generate real sam-
ples, which is the reason why GANs are widely used for
image generation. Note that the adversarial discrimination
process in training can be considered as a special loss called
adversarial loss, which is one of the highlights of GANs.

Adversarial loss has been employed in numerous existing
methods for image transformation tasks, including style
transfer, picture super-resolution, and other restoration tasks
[4]. The general model of these tasks is shown in Figure 1(b)
[4]. For the input image y, the output of the generator net-
work and the actual image are fed to the discriminator to
compute the adversarial loss. Unfortunately, these methods
can only learn styles from a single image, which can lead to
rigid results. With recent advances in GANs, the results of
style transformation tend to be more realistic, where styles
are not learned from individual images but from a set of
images with the target style. This type of style transfer can
also be referred to as I2I translation.

3.2. CycleGAN. The pix2pix architecture proposed by Isola
et al. [52] can be used for these I2I translation tasks when
paired training data are available. However, it cannot be used
for unpaired data. The CycleGANs proposed by Zhu et al.
[35] in 2017 address this problem well and CycleGAN is also
considered an important advancement in the research of
image translation for unpaired data. DualGAN [34] and Dis-
coGAN [31] were proposed almost simultaneously with
CycleGAN, and their basic ideas are roughly the same, so

we only use CycleGAN as a representative of translation
using a cycle-consistency constraint.

The framework structure of CycleGAN is a ring structure
consisting of two symmetric GANs, or, to be more precise,
there are two generative networks and two discriminative
networks. Its generators use a residual network structure to
transform images to another domain through intermediate
representations, i.e., to convert one class of images to another
class of images. Instead of random noise, the input to the
generative network is the source domain image dataset X,
and the generated images have the characteristics of the tar-
get domain image dataset Y . In the network model of Cycle-
GAN, the actual training goal is to learn the mapping from
the source domain X to the target domain Y . Let this map-
ping be G, which corresponds to the generative network in
GANs, and G can convert the image x in the source domain
X into the image G xð Þ in the target domain Y . The adversar-
ial loss of this process is as follows:

LGAN G;D;X;Yð Þ ¼ Ey∼pdata yð Þ logD yð Þ½ �
þEx∼pdata xð Þ log 1 − D G xð Þð Þð Þ½ �; ð2Þ

where D is the discriminator of G, which aims to distinguish
the generated sample G xð Þ from the real sample Y .

To avoid the problem that mapping Gmaps all x into the
same image in the target domain Y , i.e., generating a single
sample with a collapsed pattern that does not truly reflect the
target domain features [53], CycleGAN introduces a cycle-
consistent constraint for image reconstruction. The cycle-
consistent constraint can be reduced from the target domain
Y to the source domain X. Given another generative map-
ping F, the image y in the target domain image dataset Y is
transformed into the image F yð Þ in the source domain X. In
a strict sense, G and F are identical, and the adversarial loss
of this process is similar to G. Also, to further reduce the
space of possible mapping functions, Zhu et al. [35] argued
that the learned mapping functions should be cyclically con-
sistent. For each image x from domain X, the image trans-
formation loop should be able to bring x back to the original
image. This is referred to as forwarding loop consistency.
Similarly, for each image y from domain Y , the reverse cyclic
consistency should be satisfied as well, from which the loop
consistency loss can be obtained as follows:

TABLE 1: List of selected methods, including model name, publication year, and the type of training data, whether multimodal or not and
corresponding insights.

Method Publication Data Multimodal Insights

CycleGAN 2017 Unpaired No Cyclic loss

GcGAN 2019 Unpaired No
One-sided UI2I; geometric
transformation preservation

CUT 2020 Unpaired No One-sided UI2I; contrastive learning
FastCUT 2020 Unpaired No One-sided UI2I; contrastive learning
DCLGAN 2021 Unpaired No Two-sided UI2I; contrastive learning
SimDCL 2021 Unpaired No Two-sided UI2I; contrastive learning
LSeSim 2021 Unpaired No One-sided UI2I; self-similarity
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Lcyc G; Fð Þ ¼ Ex∼pdata xð Þ G F xð Þ − xð Þk k1½ �
þ Ey∼pdata yð Þ F G yð Þ − yð Þk k1½ �: ð3Þ

The goal of the training is to make the content of the
forward and backward loops as consistent as possible, i.e., to
make the two approximately equal signs converge as closely
as possible to an equal sign.

The contribution of CycleGAN is that its proposed cyclic
consistency constraint can transform images from the source
domain X to the target domain Y without requiring paired
datasets as training sets, which greatly improves the flexibil-
ity of GANs model application scenarios. Meanwhile, Cycle-
GAN has become one of the typical representatives of
unsupervised learning models for GANs.

3.3. GcGAN. Although CycleGAN successfully employs
GANs in unsupervised learning, where the cyclic consistency

constraint removes the dependence on supervised pairwise
data, it tends to force the model to generate translated images
containing all the information of the input image to recon-
struct the input image. It is important to deal with more
variations and extreme transformations, especially geometric
variations [35]. When these two domains require substantial
clutter and heterogeneity rather than small and simple changes
in low-level shapes and backgrounds, the use of cyclic loss
methods is usually unsuccessful [54].

Many constraints and assumptions have been proposed
to improve cycle consistency to solve the above problems.
We focus on methods to eliminate the cycle consistency
constraint by designing the model as a one-sided translation
process. These methods usually consider some geometric
distance as the content loss between the original source
image and the translated result. For example, DistanceGAN
achieves one-sided translation by maintaining the distance
between images in the domain [47]. GcGAN preserves a

FastCUTCUTGcGANCycleGANInput DCLGAN LSeSimSimDCL

FIGURE 1: Experimental results of image transferring from desert to green scene using seven GANs models.
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given geometric transformation between the input images
before and after translation [36]. Here, we use GcGAN as a
representative.

Fu et al. [36] argued that although CycleGAN and Dis-
tanceGAN successfully constrain the solution space, they
ignore the special property of images that simple geometric
transformations do not change the semantic structure of the
image. Based on this special property, the GcGAN was born.
GcGAN contains two generators GXY and GX̃ Ỹ . Given a
predefined common geometric transformation function
(e.g., vertical flip and 90° clockwise rotation), GcGAN feeds
the original image x and the corresponding image trans-
formed by the predefined geometric transformation into the
two generators correspondingly and generates two images
in the new domain in which the two images are generated
and combined with the corresponding geometric consistency
constraints, i.e.,

Lgeo GXY ;GX̃ Ỹ ;X;Yð Þ ¼
Ex∼pX GXY xð Þ − f −1 GX̃ Ỹ f xð Þð Þð Þk k1½ �
þEx∼pX GX̃ Ỹ f xð Þð Þ − f GXY xð Þð Þk k1½ �:

ð4Þ

This geometric consistency loss can be considered a
reconstruction loss that depends on a predefined geometric
transformation function f ⋅ð Þ. The geometric consistency
constraint reduces the space of possible solutions while keep-
ing the correct solution in the search space.

3.4. CUT and FastCUT. Although improved methods such as
DistanceGAN and GcGAN work well, they rely on the rela-
tionship between the whole image or usually on a predefined
distance function. In fact, in an I2I transformation, each
patch in the output should reflect the content of the corre-
sponding patch in the input, independent of the domain. For
example, for the generated zebra forehead, one should know
that it comes from the horse’s forehead and not from other
parts of the horse or other parts of the horse. Park et al. [48]
proposed a CUT that maximizes the mutual information
between input–output pairs by patch-based contrast learning
without relying on prespecified distances or operating on the
whole image, thus replacing cycle consistency.

The CUT needs to learn mappings in only one direction
and avoids using reverse auxiliary generators and discrimi-
nators. This can greatly simplify the training procedure and
reduce the training time. While using the traditional adver-
sarial loss (see Equation (1)), CUT uses a noisy contrast
estimation framework [55] to maximize the mutual informa-
tion between input and output. The basic idea of contrast
learning is to associate two signals, a “query” and its “posi-
tive” example in a dataset, and form a contrast with other
points which are considered “negatives.” The query, positive,
and N negatives are mapped to the K-dimensional vectors v,
vþ 2 RK and v− 2 RN×K , v−n 2 RK denoting the nth negative,
and then they are normalized, and an (N + 1)-way classifica-
tion problem is created. The probability of a positive example
being selected over negatives is expressed by calculating the

cross-entropy loss as follows:

ℓ v; vþ; v−ð Þ ¼ − log
exp v ⋅ vþ=τð Þ

exp v ⋅ vþ=τð Þ þ ∑N
n¼1exp v ⋅ v−n =τð Þ

� �
;

ð5Þ

where τ represents a temperature parameter that scales the
distance between the query and other examples, and the
default is 0.07. The goal of CUT is to correlate the input
and output data, where the query refers to an output, and
the positive and negatives are the corresponding input and
non-corresponding input.

In unsupervised learning, corresponding patches between
the input and output photos are just as important as the entire
image sharing the same content. Therefore, CUT uses a mul-
tilayer, patch-based learning objective. CUT decomposes the
generating function G into two components, an encoder
(Genc), then a decoder Gdecð Þ, and applies them sequentially
to get the generated image ŷ ¼ G zð Þ ¼ Gdec Genc xð Þð Þ.

Since extracting features through the encoder Genc yields
a feature stake, L layers are selected, and the feature map is
passed through a two-layer MLP Hl, which encodes an input
image into a stack of features as follows:

zlf gL ¼ Hl Gl
enc xð Þ� �� �

L; ð6Þ

where Gl
enc denotes the output of the selected lth layer. Simi-

larly, an output image ỹ is encoded as follows:

ẑlf gL ¼ Hl Gl
enc G xð Þð Þ� �� �

L: ð7Þ

Also, each layer and spatial location in the feature stack
represents a patch of the input image. Denote the spatial
locations in each selected layer as s 2 1;f …; Slg, where Sl
is the number of spatial locations in each layer. Each time
a query is selected from the output, the corresponding fea-
ture(“positive”) is called zsl 2 RCl , and the other features
(“negatives”) are called zSnsl 2 R Sl−1ð Þ×Cl , where Cl is the num-
ber of channels in each layer.

The goal of the CUT is to match the corresponding
input–output patches at a specific location. Other patches
in the input image can be used as negatives; thus, the
PatchNCE losses can be obtained as follows:

LPatchNCE G;H;Xð Þ ¼ Ex∼X ∑
L

l¼1
∑
Sl

s¼1
ℓ ẑsl ; z

s
l ; z

Sns
l

� 	
: ð8Þ

In addition, it is mentioned in the literature that PatchNCE
loss can be usedLPatchNCE G;ð H; YÞ for images from domain
Y as well to prevent unnecessary changes to the generator.
Thus the overall objective function is as follows:
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Ltotal G;D;X;Yð Þ ¼ LGAN G;D;X;Yð Þ
þ λxLPatchNCE G;H;Xð Þ þ λYLPatchNCE G;H;Yð Þ;

ð9Þ

where LGAN G;ð D; X; YÞ is as Equation (2). And when set
λX ¼ λY ¼ 1 to perform joint training, it is called CUT; when
set λX ¼ 10; λY ¼ 0 instead, it is called FastCUT and can be
thought of as a faster, lighter version of CycleGAN.

3.5. DCLGAN and SimDCL. Although CUT demonstrates
the efficiency of contrast learning, certain design choices limit
its performance. For example, one embedding is used for two
different domains, which may not capture domain gaps effi-
ciently. To further exploit contrast learning and avoid the
drawback of cycle consistency [35], Han et al. [49] proposed
a dual contrastive learning approach, called DCLGAN.

DCLGAN aims to maximize mutual information by
using two separate embeddings to learn the correspondence
between input and output image blocks. DCLGAN has two
generators, G and F, and two discriminators, DX and DY ,
similar to CycleGAN. The first half of the generators are
defined as encoders, denoted as Genc and Fenc, respectively,
while the second half is the decoder, i.e., Gdnc and Fdnc. For
each mapping, DCLGAN extracts the features of the image
from the four-layer encoder and sends them to the two-layer
MLP mapping head (HX and HY ). This mapping head learns
to project the features extracted from the encoder onto a
stake of features. At this point, Genc and HX are used as
embeddings of domain X, Fenc, and HY are used as embed-
dings of domain Y . In addition to bilateral adversarial
loss, DCLGAN, similar to CUT, also utilizes patch-based
multilayer contrast learning with a cross-entropy loss as
Equation (5). Additionally, it introduces similarity index sim
as follows:

sim u; vð Þ ¼ uTv
uk k vk k ; ð10Þ

which denotes the cosine similarity between u and v.
However, differently from CUT, for the generated fake

image G xð Þ belonging to the domain Y , DCLGAN takes
the advantage of double learning by using a different embed-
ding of domain Y , i.e., fẑ lgL ¼ HY Fl

enc G xð Þð Þ� �gL, and the
PatchNCE loss of the mapping can be obtained as follows:

LPatchNCEX G;HX ;HY ;Xð Þ ¼ Ex∼X ∑
L

l¼1
∑
Sl

s¼1
ℓ ẑsl ; z

s
l ; z

Sns
l

� 	
;

ð11Þ

where fzlgL ¼ HX Gl
enc xð Þ� �gL.

A similar loss is introduced for the reverse mapping
F :Y À! X:

LPatchNCEY G;HX ;HY ;Yð Þ ¼ Ey∼Y ∑
L

l¼1
∑
Sl

s¼1
ℓ ẑsl ; z

s
l ; z

Sns
l

� 	
:

ð12Þ
To prevent unnecessary changes to the generator, DCLGAN

adds an identity loss:

Lidentity G; Fð Þ ¼ Ex∼X F xð Þ − xk k1½ � þ Ey∼Y G yð Þ − yk k1½ �:
ð13Þ

Additionally, DCLGAN introduces similarity loss by tak-
ing advantage of the fact that images from the same domain
have a common style despite their semantic differences. The
similarity loss is calculated by projecting the real images and
the generated fake images belonging to the same domain into
a 64-dimensional vector by four lightweight networks Hxr;ð
Hxf ;Hyr;Hyf Þ:

Lsim G; F;HX ;HY ;Hxr;Hxf ;Hyr;Hyf

� �
¼ Hxr HX Genc xð Þð Þð Þ − Hxf HX Genc F yð Þð Þð Þð Þ

 

sum

1

� �
þ Hyr HY Fenc yð Þð Þð Þ − Hyf HY Fenc G xð Þð Þð Þð Þ

 

sum

1

� �
;

ð14Þ

where x; y; r, and f refer to the true and false images in the
domain X, the true and false images in the domain Y , respec-
tively, and sum means that they are added together. This
DCLGAN that adds similarity loss to the objective function
is called SimDCL, which can be a satisfactory solution to the
pattern collapse problem.

3.6. F-LSeSim. To alleviate the problem of scene structure
discrepancies, previous approaches have attempted to achieve
this by using pixel-level image reconstruction losses [52, 56, 57],
cyclic consistency losses, or feature-level perceptual losses
[58, 59] and PatchNCE losses, but the domain-specific nature
of these losses hinders the transformation across large domain
gaps. Zheng et al. [50] proposed F-LSeSim, which designs a
domain-invariant representation to accurately represent the
scene structure instead of using raw pixels or features of
coupled appearance and structure.

First, a simple network, for example, VGG16 [60], is used
to perform feature extraction on the image x in domain X
and the translated image ŷ to obtain fx and f̂y , respectively.
The self-similarity is calculated using the spatial correlation
mapping as follows:

Sxi ¼ fxi
� �

T fx∗ð Þ; ð15Þ

where fxi
� �

T 2 R1×C is the feature of the query point xi with
C channels, fx∗ 2 RC×Np is the corresponding feature con-
tained in the patch of Np points, and Sxi 2 R1×Np captures the
feature spatial correlation between the query point and other
points in the patch.
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Next, the structure of the whole image is represented as
a collection of multiple spatially correlated mappings Sx ¼
Sx1 ;
�

…; Sxs � 2 RNs×Np , where Ns is the number of sampled
patches. Then, the multiple structural similarity mappings
between the input x and the translated image ŷ are compared
as follows:

Ls ¼ d Sx; Sŷ
� �

; ð16Þ

where Sŷ is the corresponding spatially correlated mapping
in the target domain, d ⋅ð Þ can be considered in the form of L1
distance and cosine distance, resulting in fixed self-similarity
(FSeSim).

Due to the limited generality of FSeSim, Zheng et al. [50]
proposed learned self-similarity (LSeSim) to obtain a more
general spatially correlated mapping. LSeSim is represented
by using a form of contrast loss, similar to CUT andDCLGAN.
The difference is that LSeSim creates enhanced images xaug
by applying structure-preserving transformations to generate
similar-face slice feature pairs for self-supervised learning. Spe-
cifically, v ¼ Sxi 2 R1×Np represents the spatially correlative
map of the “query” patch. vþ ¼ Sx̂i 2 R1×Np and v− 2 RK×Np

are “positive” and “negative” patch samples, respectively. The
query patch is positively paired with a patch at the same loca-
tion i in the enhanced image xaug and negatively paired with
patches sampled from other locations in the image or with
patches in other images y. As a result, the contrast loss can
be obtained as follows:

ℓc ¼ − log
exp sim v; vþð Þ=τð Þ

exp sim v; vþð Þ=τð Þ þ ∑K
k¼1exp sim v; v−nð Þ=τð Þ

� �
;

ð17Þ

where K denotes the number of negative patches and defaults
to 255. It is worth noting that this contrast loss is only used to
optimize the structural representation of the network. The
spatially relevant loss of the generator is always the loss in
Equation (12).

In this paper, we directly use LSeSim to conduct experi-
ments, so we will refer to the abbreviation of the method as
“LSeSim” afterward.

4. Experiments and Results

We used an RTX A4000 graphics card from the AutoDL
cloud platform for our experiment. The experimental scheme
consists of three steps. First, considering the lack of paired
actual photos of desert and oasis of the same land, we employ
the above methods to pretrain the models on the winter À!
summer dataset [35]. Second, the desert-to-oasis application
is taken on a small sample desert-to-oasis dataset using the
transfer learning method. Finally, the effectiveness of each
method is evaluated by qualitative and quantitative analysis
of the generated results of each method.

4.1. Datasets and Implementation Details. Numerous data-
sets are unaligned, including the well-known horse to zebra,
apple to orange, winter to summer, etc. The difficulty of
implementing GAN models on small-scale datasets is com-
plicated since there is no publicly available dataset from
desert to oasis, and it is challenging to acquire enough data.

Then, we first pretrain each GAN model using the data-
set winter to summer [35] and then utilize the generated
models for transfer training and testing using the dataset
desert to oasis. The models are selected to be pretrained on
the winter-to-summer dataset due to the similar semantic
information properties that summer and oasis share.

Winter À! summer: the training set in this dataset con-
tains 1,231 summer images and 962 winter images, and the
test set contains 309 summer images and 238 winter images,
all collected from ImageNet [61].

Desert À! oasis: we downloaded 200 pictures about des-
ert and oasis respectively from the Internet, named deser-
t2oasis dataset, where the training set contains 100 pictures
of desert and 100 pictures of oasis, and the test set also
contains 100 pictures of deserts and 100 pictures of oasis.
Because these images are randomly downloaded desert
images from the Internet, the dataset we constructed has a
certain degree of randomness, diversity, and generalizability.

We perform a simple preprocessing on each desert image
before these images are input into the GAN model. The pre-
processing includes two steps: each image is cropped to a square
size and then scaled uniformly to the size of 256 × 256. The
advantages of using fixed-size images include improving the
robustness of the model, avoiding the overfitting of the model,
and making the model training time controllable.

4.2. Metrics. We focus on qualitative and quantitative analy-
sis to evaluate the quality and authenticity of the generated
green space images. On the one hand, we use two indexes,
Fréchet inception distance (FID) and learned perceptual
image patch similarity (LPIPS), to evaluate the generation
effect of GAN models. On the other hand, we conducted a
qualitative human evaluation, which can be found in the first
paragraph of Section 4.3.

FID [62] is a metric for evaluating the quality of the
generated images and is based on inception scores [63].
The main idea of FID is that since the pre-trained network
model can extract sample feature information, then extract
the real sample and the generated sample feature informa-
tion, respectively, assume that the features conform to a
multivariate Gaussian distribution, and then calculate the
Fréchet distance between the distributions. A lower FID
means a lower Fréchet distance between the real image and
the generated image, the higher the quality and diversity of
the generated image.

LPIPS [64] constructs a perceptual similarity dataset and
uses this dataset to train a perceptual network to calculate the
difference between the generated image and the real image
from different levels of features, respectively. The perceptual
similarity dataset contains both real and distorted images, so
LPIPS is more robust in evaluating the generated images with
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different degrees of realism. LPIPS measures the image qual-
ity in terms of the similarity between features, and a smaller
value indicates a more realistic generated image.

4.3. Result. Some experimental results obtained by the different
methods on the desert2oasis dataset are shown in Figure 1.
From the figure, we can find that although the final styles of
green space are very different, each method can effectively real-
ize image transfer learning from desert images to oases; the
images produced by the same model for various desert images
have diverse esthetics. Among the seven methods, only LSeSim
shows the incomplete greening effect. Because of the “Mode
collapse” problem, where the diversity of the generated image
samples gets low, and the style is homogeneous, LSeSim has the
output image style consistent for diverse input images.

From a quantitative point of view, the values of FID
metrics and LPIPS metrics using those seven methods are
listed in Table 2. From the table, we found that the FID
values of the green field images generated by GcGAN and
CycleGAN are the smallest among seven methods; according
to the index, LPIPS, these three methods, CycleGAN, CUT,
and GcGAN, perform well. Their LPIPS values are all less
than 0.708. In terms of runtime, FastCUT/CUT, CycleGAN,
and GcGAN all have relatively short runtimes, allowing for
faster training based on good results.

In general, GcGAN and CycleGAN have achieved better
experimental results than the other five methods in practic-
ing the transfer learning from desert to oasis. The generated
green space image represents a possible future state of this
place and can be at least applied to digital media, digital
entertainment, and virtual reality.

Compared to previous research in the field of image style
transformation and GAN model evaluation, the focus of this
paper is to pretrain the GAN model using existing datasets
with limited datasets and then train it on a small-scale desert
oasis dataset, thus using transfer learning to turn desert
images into oasis images. The significant improvement or
advancement in this paper lies in the establishment of the
algorithm for transfer learning in the application scenario of
a desert to an oasis. Given that desert images and oasis
images are not paired, a pretraining strategy for transfer
learning from winter to summer is proposed.

4.4. Discussion. Obviously, the experimental results of trans-
ferring deserts into oases using those seven methods show

some shortcomings. For example, among our experimental
results, three original desert images and their generated oasis
images under different GAN models are shown in Figure 2.
In the first row of Figure 2, Each GAN model generates a
different kind of oasis image, maintains the semantic details
of the original images, such as the shape and location of the
sky and desert, and generates the desired oasis style. How-
ever, in the second row, only the oasis images generated by
the FastCUT model keep the shape and location of the sky
and desert, while the other GAN models change the shape of
the sky, and some even generate the color of the desert. And
it can be found that this phenomenon is not isolated, but
many oasis images generated from the original desert images
have this problem.

Another noteworthy issue in the third row of Figure 2 is
that since our dataset is trained from the original desert to
the oasis, the dataset contains almost no images of people or
objects in the desert, so it leads to the situation that images of
people and objects in the desert are trained by the GAN
model to turn persons or objects into an oasis as well, which
is caused by the distribution characteristics of the training
dataset. When the dataset is too large, dimensionality reduc-
tion techniques [65] or random sampling techniques could
be taken into account.

In addition, the effect of the generated oasis images is not
as excellent as the expected effect since the FID metric value
of each GAN model is not less than 130, while the metric
value of LPIPS is not less than 0.7. To overcome some of the
aforementioned problems, one research direction worth try-
ing is to analyze image features [66] and identify objects in
desert scenes with adaptive histogram technique [67], as well
as global optimization [68].

Although the visual effect is worth celebrating, our
method still has its limitations. The one is that there are
no pair-wise datasets, and the dataset used in our model is
not large enough, which will reduce transfer learning effec-
tiveness and efficiency. The other is that it is not possible to
get the specific desired style because the images generated by
the model of GAN are random. When the used desert images
do not conform to the norm, the generated oasis may not
meet the expectations.

5. Conclusion and Future Work

In order to show the effect of turning a desert image into an
oasis image using transfer learning, seven GAN models are
selected and experimented. Experimental results show that
both GcGAN and CycleGAN are suitable for achieving this
goal according to the quantitative indexes, FID and LPIPS.
In addition, The strategy of transfer learning was carefully
designed; that is, the pretraining strategy of transfer learning
from winter to spring was adopted; a small data set, includ-
ing both desert images and green field images, was also
established for model training.

The application scenario of the desert-to-oasis in this
paper belongs to the small-scale dataset. GAN models work
mainly by learning real sample distributions and requiring
enough real samples for training to perform well [45], so

TABLE 2: Values of FID, LPIPS, and runtime of experimental results
of different GAN models.

Method FID LPIPS Runtime (each epoch) (s)

CycleGAN 135.3 0.7051 18
GcGAN 132.2 0.7078 20
CUT 153.2 0.7056 18
FastCUT 179.4 0.7221 14
DCLGAN 174.0 0.7333 25
SimDCL 174.2 0.7520 23
LSeSim 244.7 0.7101 22

LPIPS, learned perceptual image patch similarity. Bold numbers represent
the optimal values for the corresponding indicators.
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the research about using small-scale datasets to get better
results is challenging and significant. Although there has
been some research on GAN models for small dataset pro-
blems, such as transferring GAN (TGAN) [45], OST [43],
TuiGAN [44], etc., research on implementing unsupervised
learning with extremely limited data is yet to be further devel-
oped. In this paper, we choose the TGAN-like idea to pretrain
the GANmodels using an existing dataset and then train it on
a small-scale desert oasis dataset. Therefore it can be worth
discussing and investigating what kind of existing dataset is
selected for pretraining as a way to improve the generation
effect.

GAN models also have high requirements for the quality
of datasets; for example, in the desert-to-oasis scenario, a
high-quality dataset means that the pictures of the desert
and oasis should preferably have only desert and oasis rather
than other factors such as people or other objects. However,
high-quality datasets are often difficult to obtain. Thus it will
be a future research direction to investigate which factors
affect the model generation effect and how to circumvent
the poorer generated images from low-quality sample data
to reduce the high requirement for dataset quality [69]. In
the previous discussion, it was found that the sky, as well as
people or objects in the desert images, are factors that cause
poor generation results, so it can be considered to use the
image semantic information segmentation method to pro-
cess the images first and then train them, which may achieve
better results.

The style of the images generated by the GAN model is
not controllable. For example, some of the generated oasis
images have a lake, while others do not. Furthermore, in real-
scenario applications, there is a vast demand to control
image generation with specific attributes or features accord-
ing to the actual needs and combined with the user intention
[54]. For instance, in the desert-to-oasis scenario, the lake in
the oasis is generated at random since it may be discovered
that some generated images contain the lake while others do
not, depending on the outcomes. Alternately, create the
desired style of oasis, including the variety of flora, whether

the surrounding greenery is made up of grassland or shrubs,
etc. Consequently, there are two potential future research
directions for this study; the first is to investigate what factors
affect the model generation effect and how to circumvent the
poorer images generated from low-quality sample data to
reduce the high demand for dataset quality; the second is
to learn how to guide GAN methods to generate image sam-
ples with specific forms, effects, and effects.
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