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With the rapid development of the national power grid, there is an increasing and strict demand for accurate intelligent
management. However, the current detection algorithms have limited abilities under adverse conditions, especially in regions like
Yunnan Province with complex terrain. To address this issue, we propose a method that utilizes infrared and visible images to
make the images more informative, thereby improving the accuracy of the detection algorithm for electric power construction site
safety. First, we design channel attention (CA) module and pixel attention (PA) module to focus on more important channels and
resist thick haze pixels that focus on the thick haze pixels andmore important channel information. Furthermore, we design a two-
stage discriminator which imposes two restrictions on the fused results. Finally, we conduct a large number of comparison
experiments with state-of-the-art methods, and the results show that our proposed fusion method achieves excellent performance
in infrared and visible image fusion. Tis method has good prospects for application in the safety supervision of power con-
struction sites and provides a line of defense for construction workers.

1. Introduction

Te purpose of power grid construction management is to
prevent and reduce power accidents, as well as to prevent
serious impacts on society. Tis serves as the guarantee for
power enterprises to fulfll social responsibilities and im-
prove economic benefts. Troughout the process, moni-
toring and early warning to ensure the safety of construction
workers have always been crucial but challenging [1].
Currently, there are two main approaches to power grid
construction management: traditional methods and deep
learning-based methods. Te former relies on manual in-
spection and screening by security guards, while the latter
employs deep learning algorithms to achieve automatic
detection [2, 3]. Specifcally, the traditional approach to
managing construction safety is to establish safety policies,

safety objectives, and safety culture based on safety theory, in
order to enhance the safety awareness of construction
workers.Tis approach mainly relies onmanual monitoring,
whereby workers are reminded to pay attention to safety and
comply with safety regulations through broadcast alarms
and remote calls to the person in charge, when violations are
detected during patrols. Tis method aims to create a safety-
conscious working environment and reduce the risk of
accidents. Power grid safety supervision and management
encompasses various aspects, such as historical event
management, current situation management, and task as-
signment. Most of these methods are postmanagement
measures, but they can efectively reduce the occurrence of
accidents, and more importantly, enhance the real-time
supervision and even early warning capabilities. Tere-
fore, in recent years, developing a power grid security
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supervision and management platform and promoting the
informatization level of power grid security management
have become a research hotspot.

Tanks to the breakthrough in deep learning for com-
puter vision tasks, it is now possible to utilize deep learning
based object detection technologies to enable intelligent
monitoring of power grid construction sites [4–6], safety
vests detection [7], unsafe behavior detection [8], and un-
authorized intrusion detection [9]. Tese can be further
analyzed to trigger security alarms. Te abovementioned
deep learning inspired detection algorithms are required to
recognize, interpret, and comprehend images in surveillance
video sequences. It is necessary to recognize complex scene
systems based on the semantic model representing the
monitored scene. Tis enables complex events to be iden-
tifed from the surveillance video obtained from the work
environment, which is critical in creating a safe work en-
vironment and tracking employees. To overcome these
challenges, image fusion techniques have been proposed,
which can combine complementary information sources
from multiple images of the same scene. Its purpose is to
enhance the information of a single generated image [10].
Image fusion can provide detailed and reliable images for
high-level visual tasks. It plays a crucial role in computer
vision, and have been applied in many aspects, including
object detection [11, 12], pedestrian recognition [13], face
recognition [14, 15], semantic segmentation [16], and
other areas.

In power grid construction, safety management is of
utmost importance, but the existing methods have several
limitations. Traditional management strategies rely on
manual inspection and screening by security personnel,
which may not be able to prevent accidents immediately. In
addition, these methods are labor-intensive and inefcient.
Tis is partly due to the unique characteristics of power
grids, including their extensive construction areas, complex
site backgrounds, and a large workforce. As a result,
implementing traditional methods on power grid con-
struction sites can be challenging [17].

With the wide application of surveillance video tech-
nology, power grid enterprises have begun to use video
recording to check for security risks. Although this strategy
can alleviate some of the problems associated with tradi-
tional methods, long-term manual monitoring is prone to
fatigue and can result in missed detection. Studies have
shown that when an individual observes two monitoring
screens simultaneously, they can miss 45% of useful in-
formation in 10minutes and 95% in 22minutes [18].
Terefore, artifcial naked eye monitoring has limitations in
accuracy and real-time performance.

Intelligent automatic image detection based on deep
learning can greatly enhance detection accuracy and ef-
ciency. However, the automatic detection algorithms used in
power grid construction are all based on visible light. Visible
light-based on-site operation video safety monitoring is
often subject to environmental light, posture, expression,
and ornaments, which lead to difculties in accurately
identifying and tracking specifc targets, especially in

complex working environments and harsh climate
conditions.

Yunnan Province is located in the southwest of China.
Due to the complexity of terrain and environment, Yunnan
power grid is most difcult to monitor and manage in
China and even in the world [19]. For instance, due to the
foggy mountain area, the quality of the acquired visible
image is unsatisfactory, which afects the subsequent high-
level visual tasks. Te use of infrared-visible image fusion
algorithm before detection can efectively improve the
accuracy of detection, but the application of infrared-
visible image fusion in power grid is rarely studied [20].
Tis paper presents a novel and efective fusion method
based on infrared and visible image fusion for power grid
construction management. We summarize our major
contributions as follows:

(i) Tis paper presents the frst application of the
infrared-visible image fusion method and explores
a multifeature infrared-visible light multisource
image enhancement technology. Te proposed
approach aims to improve the video monitoring
efect for remote monitoring personnel.

(ii) In this work, we design a shared convolution group
consisting of channel attention and pixel attention
in a two-branch generator network, which is
conducive to capturing the common modal fea-
tures of infrared and visible images and generating
stable and reliable fusion images. To address the
issue of foggy environments caused by moun-
tainous terrain in Yunnan, we have designed the
two-stage discriminator for GAN-based method in
the proposed method. Tis designment improves
the perceptual and interpretive qualities of visible
light images captured in foggy conditions, and
enhances the efectiveness of subsequent high-level
visual tasks.

(iii) Most power management algorithms currently in
use are based on postmanagement, which means
they can only detect and respond to security risks
after they have occurred. In reality, early warning
and real-time supervision are essential for truly
preventing accidents from happening. Te model
proposed in this paper will be integrated into the
power grid artifcial intelligence such as intelligent
video surveillance systems. Tis will allow for more
proactive and efective safety management in power
grid construction.

Te remainder of this paper is organized as follows:
Section 2 briefy describes the related works of existing deep
learning based power grid operation safety management
technology and multimodal image fusion algorithms. In
Section 3, we introduce our method in detail, including the
network architecture and function modules. Section 4
presents experiments to show the impressive performance of
our method in comparison with state-of-the-art methods,
followed by some concluding remarks in Section 5.
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2. Related Work

2.1. Deep Learning-Based Management Technology. On the
basis of artifcial intelligence technology, the power grid is
developing towards intelligentization, automation, digiti-
zation, and informatization. Existing research of power grid
management mainly focused on detecting unsafe factors in
construction based on deep learning algorithm. Faster
R-CNN and deep ResNet were used to quickly and accu-
rately detect workers against complex backgrounds in [21].
IFaster R-CNN approach is used to automatically detect
workers and heavy equipment in real-time in [22]. YOLO v3
algorithm is used to detect whether the helmet is worn by the
standard in [18]. An improved lightweight YOLOv4model is
used to detect the transmission line insulator defects in [23].
Immediately, Tang et al. [7] provide a method based on
YOLOv5 to resolve the problems of low detection efciency
and poor accuracy caused by complex background and
numerous personnel. Tan et al. [24] improved YOLOv5, the
functional detection scale is increased to realize the detection
of smaller targets. For the purpose of the lack of dataset in
power grid scenarios, Peng et al. [3] proposed a contrastive
Res-YOLOv5 network for intelligent safety monitoring on
power grid construction sites.

2.2. Multimodal Image Fusion Algorithm. Image fusion (IF)
is an emerging feld for generating a robust and informative
image through the integration of images obtained by dif-
ferent sensors, e.g., visible, infrared, computed tomography,
and magnetic resonance imaging [25, 26]. Among them,
infrared-visible image fusion has attracted much attention
[14, 27], and it is more informative than that of single mode
signal because visible image captures refected light, while
infrared image captures thermal radiation [28]. As men-
tioned above, the application of those fusion algorithms can
be mainly divided into the following categories:

2.2.1. Face Recognition. Li et al.[29] proposed a GAs based
infrared-visible image fusion to solve the problem of low face
recognition sensitivity caused by glasses occlusion. Heo et al.
provide two types of visual and thermal infrared images
fusion methods to enhance the robustness of face
recognition [10].

2.2.2. Object Detection. Han and Bhanu [30] proposed
a search scheme based on the hierarchical genetic algorithm
to achieve automatic registration color images and thermal
image sequences, and then further used multiple fusion
strategies to fuse registration and infrared images for human
contour detection. Ulusoy and Yuruk [31] conducted
background modeling and foreground detection for in-
frared, visual intensity, and visual color domains, re-
spectively, so that the complementary regions from the
domain were combined, the infrared foreground was cov-
ered by this fusion information, and the infrared foreground

was fused with the covered visual foreground. Finally, active
contour lines are applied to each connected part in the
infrared domain to detect the object boundary. Gao et al.
[32] proposed a fexible framework for visible and infrared
video fusion moving target detection based on the low rank
sparse decomposition method. Ma et al. [33] propose an
end-to-end STDFusionNet to realize salient target detection.
Zuo et al. [34] designed an attention fusion feature pyramid
network for infrared small target detection. Te network
focuses on the important spatial position and channel in-
formation of small targets by acquiring and utilizing the
global context information of images, and enhances the
feature representation of small targets, thus improving the
detection performance.

2.2.3. Pedestrian Recognition. Shopovska et al. [35] present
a learning-based fusion method to enhance pedestrian
visibility in variable conditions (day and night).

2.2.4. Semantic Segmentation. Te cascade of the ResNet
and improved CRFs are used to construct the semantic
segmentation module for the aluminum electrolyte image in
[36]. Hou et al. [37] proposed a semantic segmentation
strategy using infrared and visible image fusion method
based on GANs. Xu et al. present an AFNet based on deep
learning, which efectively improves the accuracy of mul-
tispectral image semantic segmentation [38]. Recently, Zhao
et al. [39] proposed a correlation-driven feature de-
composition fusion network, which utilizes various modules
to extract the high-frequency and low-frequency features of
an image.

In summary, in terms of current fusion performance,
image fusion methods based on deep learning generally
outperform traditional methods. In practical applications,
diferent model architectures should be designed in com-
bination with specifc image fusion task drivers to improve
the advanced visual application of fusion images in real
scenes.

3. Proposed Method

In this section, we proposed a fusion algorithm to enrich
image information and make detection more accurate for
intelligent safety monitoring on power grid construction
sites. Firstly, we introduce an overview of the proposed
fusion model, a feature fusion attention network based on
generative adversarial network (FFA-GAN). Ten, we in-
troduce the shared convolution group (SCG) module, the
channel attention (CA) module, and the pixel attention (PA)
module in order, which are designed in sequence for the
generator to deal with multimodal features fexibly. Finally,
we describe the discriminator dehaze (DDE) and discrim-
inator fusion (DFU) designed for the two-stage discrimi-
nator, in which they jointly guarantee the FFA-GAN to
achieve good performance on the infrared and visible image
fusion task.
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3.1. Overview. In the feld of image fusion, the generative
adversarial network (GAN)-based methods are usually used
as representative baselines, especially for infrared and visible
image fusion tasks. Te characteristic of GAN-based fusion
methods is the fused image containing abundant in-
formation, while retaining structural similarity between
fused image and source images. Tus, the GAN has great
potential to achieve success in the area of image fusion.
Inspired by the framework of the existing GAN-based image
fusion algorithms, we have designed a feature fusion at-
tention network based on the generative adversarial net-
work, as shown in Figure 1, which has been abbreviated as
FFA-GAN hereinafter.

As illustrated in Figure 1, the FFA-GAN consists of
a generator network and two discriminator networks. In this
work, the generator is designed to constantly explore the
feature fusion mapping function between infrared and
visible images to obtain fused images. Moreover, the two-
stage discriminator is designed in the FFA-GAN to provide
two constraints for the generator to get clean fused images
with both infrared and visible information. Specially, the
DDE is used to recognize whether images are clean while the
DFU is used to identify the proportion of infrared and visible
information in fused images. During the testing stage, since
the generator has learned to fuse images, the discriminator is
not required to provide constrains and only the generator is
needed to get the fusion image. Ten, we describe the ar-
chitecture of the generator and discriminators in detail.

Te fused images generated by the designed generator
network are used to fool the discriminator. Te discrimi-
nator network consists of three convolutional layers and
three fully connected layers to classify the input image. In
this paper, two discriminators are designed in the FFA-GAN
to identify haze images and normal images, respectively. Te
reason lies on to avoid information loss caused by single
countermeasure architecture when dealing with fog images
and normal images. At the same time, it forces the generated
image to retain more meaningful information from the
source image.

3.1.1. Generator. Firstly, the infrared and visible features are
extracted through two convolution layers. Secondly, these
features are fed into three SCGmodules to capture modality-
common features.Ten, the output of each group by channel
connection (CC) is integrated. In order to select and
reweight signifcant infrared and visible features, we adopt
two CA modules in dual branches of the generator. After
that, a PA module will be used to achieve fne-grained
modality fusion which aimed to blend dual-branch fea-
tures. Finally, a 3× 3 convolution layer and a 1× 1 convo-
lution layer are used to map the fusion features to the two-
dimensional plane, and the fusion results are obtained. Note
that, merging together CA modules and PA module con-
stitute a special structure, which can be helpful to handle
source images with complex distribution, like uneven haze
distribution.

3.1.2. Discriminator. Te DDE which is designed in the
FFA-GAN is used to identify whether the input image is
a fuzzy image or a clean image to avoid the loss of in-
formation caused by a single game architecture while pro-
cessing fog images and clean images. At the same time, the
DFU forces the generated results to retain more meaningful
information from the source image by balancing the pro-
portion of information between infrared and visible images.
Te structure of the DDE and DFU is similar, both consist of
three convolution layers and three fully connected layers.
Te DDE aims to obtain a one-dimensional class vector,
while the DFU tries to obtain a two-dimensional proportion
vector.

3.2. Designments in Generator

3.2.1. SCG Module. Te detailed structure of the SCG
module is shown in Figure 2. Tere are N contiguous
convolutional blocks (CBs), represented by grey squares,
which help to increase depth and expressiveness of the FFA-
GAN. Te detailed structure of the CB is shown at the
bottom of Figure 2. Te CB consists of skip feature residual
connections and cascaded CA and PA modules. Tese skip
feature residual connections are designed to reduce in-
formation loss and get around training difculty. And the
cascaded CA and PA modules are used to select more
signifcant features. Te key of the generator to obtain ef-
fective fused images is to select and reweight multimodal
features is CA and PA modules introduced next.

3.2.2. CA Module. Most existing deep learning-based fusion
strategies for combining features simply integrate them
equally through channel connections, without considering
the varying importance of diferent feature channels.
However, as the fusion network becomes deeper, it is likely
that only a small subset of features will respond meaning-
fully. To address this issue, we propose using CA modules to
assign appropriate weights to diferent features, based on
their similarity relationships across channels. Te structure
of the CA module is illustrated in Figure 3. To obtain
channel-level global information of input feature map which
be denoted as X, we frst apply global average pooling. Tis
operation calculates the average value of each channel
feature. Specifcally, it can be expressed as follows:

GAP Xc
( 􏼁 �

1
H · W

􏽘

H

i�1
􏽘

W

i�1
X

c
i,j, (1)

where Xc denotes the cth channel feature, and i and j rep-
resent the coordinate information of the feature value.H and
W are height and width of feature maps, respectively. Ten,
the compressed global feature weights obtained by the global
average pooling operation are transmitted to a 3× 3 con-
volution layer, followed by a ReLU activation layer, and
another 3× 3 convolution layer. Tese operations help to
refne and enhance the global features. Finally, a sigmoid
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Figure 2: Te structure of the shared convolution groups (SCGs).
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Figure 1: Te architecture of the proposed FFA-GAN contains a generator with the shared convolution groups (SCGs) and the pixel
attention module (PA), channel attention module (CA), and the two-category discriminator (i.e., discriminator dehaze and discriminator
fusion).

Advances in Multimedia 5



activation layer is used to obtain the channel weight, which is
then applied to reweight the input source features X. Tis
enables the FFA-GAN to focus on the most meaningful and
relevant features, which helps to improve its fusion per-
formance. We can express this whole process as follows:

CA(X) � Sigmoid Conv ReLU Conv 􏽘
C

c�1
GAP X

c
( 􏼁⎛⎝ ⎞⎠⎛⎝ ⎞⎠⎛⎝ ⎞⎠⎛⎝ ⎞⎠ · X,

(2)

where Conv(·) denotes a 3× 3 convolution operation.
ReLU(·) and Sigmoid(·) denote the ReLU and sigmoid ac-
tivation functions.

3.2.3. PAModule. Due to the uneven distribution of haze on
diferent pixels in hazed images, it is necessary to use pixel
attention to focus on the features of each individual pixel. To
refne pixel feature fusion and reduce interference afected
by the haze, we consider employing the PA module, which is
illustrated in Figure 4. Unlike the channel CA module, the
PA module includes a 3× 3 convolution layer, a ReLU ac-
tivation layer, and another 3× 3 convolution layer that work
together to refne and enhance the features for each pixel not
channel. Ten, a sigmoid activation layer is used to weight
the feature weight of each pixel based on its importance.
Tese weights are then applied to the input features to obtain
the fnal output. We can express the complete PA module as
follows:

PA(X)Sigmoid Conv ReLU Conv 􏽘
C

c�1
GAP X

c
( 􏼁⎛⎝ ⎞⎠⎛⎝ ⎞⎠⎛⎝ ⎞⎠⎛⎝ ⎞⎠ · X.

(3)

3.3. Two-Stage Discriminator. Te proposed FFA-GAN in-
corporates a two-stage discriminator composed of a dis-
criminator dehaze (DDE) network and a discriminator
fusion (DDF) network, as illustrated in Figure 1.

3.3.1. DDE Network. Te DDE network serves as a simple
image classifer distinguishing whether input images are
hazed or clean. Te DDE network can take the fusion result

of the proposed generator or the source image as input. As
shown in Figure 1, the input of the DDF network is subjected
to three 3× 3 convolution operations and three ReLU ac-
tivations before being processed through three fully con-
nected layers. Finally, a sigmoid activation layer is used to
obtain the probability that the image is a clean image, which
produces a one-dimensional class vector.

3.3.2. DFU Network. Te structure of the DFU network is
similar to the DDE network. Tere are also three 3× 3
convolution layers, three ReLU combinations, and three
fully connected layers. However, unlike the DDE network,
the DFU network uses a Softmax activation layer to obtain
the proportion of infrared and visible image features, pro-
ducing a two-dimensional class vector.

3.4. Loss Function. In order to obtain desired fusion results
for our proposed FFA-GAN, we will describe the loss
function in detail from two parts: generator loss and dis-
criminator loss in the next.

3.4.1. Generator Loss. Te generator loss is defned as the
distance between the fused results and the desired results.
Tis can be measured using image pixel loss, image gradient
loss, perceptual loss, and adversary loss. Te formula is as
follows:

CA

Convolution layer
Pooling layer

Sigmoid

ReLu layer
Matrix multiplication

Figure 3: Te structure of the channel attention module (CA).

PA

Convolution layer
ReLu layer

Sigmoid
Matrix multiplication

Figure 4: Te structure of the pixel attention module (PA).
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LGenerator � Lpixel + Lgradient + Lperceptual + Ladversary. (4)

Te image pixel loss is designed to maintain suitable
pixels from infrared and visible images through Euclidean
distance. It can be represented as follows:

Lpixel �
1

H · W
Ifused − Ivi

����
���� + Ifused − Iir

����
����􏼐 􏼑, (5)

where Ifused, Ivi, and Iir are fused image, visible image, and
infrared image;H andW are height and width of images; and
‖·‖ indicates the adoption of L2 normal.

Te image gradient loss is proposed to calculate image
gradient to preserve texture information. It can be expressed
as follows:

Lgredient �
1

H · W
∇Ifused − ∇Ivi

����
���� + ∇Ifused − ∇Iir

����
����􏼐 􏼑,

(6)

where ∇ denotes the function to calculate image gradient
through Laplace operator. Te image perceptual loss is
proposed to calculate the distance of image features through
VGG. It can be expressed as follows:

Lperceptual �
1

H · W
VGG Ifused( 􏼁 − VGG Ivi( 􏼁

����
���� + VGG Ifused( 􏼁 − VGG Iir( 􏼁

����
����􏼐 􏼑, (7)

where VGG(·) denotes the function to get image feature
maps through VGG. Te adversary loss is the key for GAN-
based fusion methods, which can be denoted as follows:

Leqadversary � α DDE Ifused( 􏼁 − 1( 􏼁
2

−DDE Ivi( 􏼁􏼁
2

+ DDE Ivi( 􏼁 − 1( 􏼁
2
􏼑􏽨 􏽩

+ DFU Ifused( 􏼁 − Vfused
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + DFU Ivi( 􏼁 − Vvi
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + DFU Iir( 􏼁 − Vir
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼐 􏼑,
(8)

infrared image visible image DenseFuse PMGI RFN SeAFusion SwimFuse

infrared image visible image DenseFuse PMGI RFN SeAFusion SwimFuse

SwimFusion TarDAL FusionGAN GanMcC U2Fusion Res2Fusion Ours

infrared image visible image DenseFuse PMGI RFN SeAFusion SwimFuse

SwimFusion TarDAL FusionGAN GanMcC U2Fusion Res2Fusion Ours

SwimFusion TarDAL FusionGAN GanMcC U2Fusion Res2Fusion Ours

Figure 5: Comparison experiment on the INO dataset. Areas with large diferences are highlighted by red and green boxes, and enlarged
images of red boxes are in the lower right or left corner.
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where |·| denotes the function to calculate the vector length.
In addition, I�vi are clean visible images.

3.4.2. Discriminator Loss. Te discriminator loss consists of
DDE loss and DFU loss, which can be represented as follows:

LDiscriminator � LDDE + LDFU. (9)

Te DDE loss is designed to guide the DDE network in
identifying whether input images are clean or hazy. Hence,

there is a label of 0 or 1 to represent the hazy image or the
clean image. It can be expressed as follows:

LDDE � DDE Ifused( 􏼁 − 0( 􏼁
2

+ DDE Ivi( 􏼁
2

+ DDE Ivi( 􏼁 − 1( 􏼁
2
.

(10)

TeDFU loss is introduced to measure the proportion of
infrared and visible information. It can be expressed as
follows:

LDFU � DFU Ifused( 􏼁 − Vfused
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + DFU Ivi( 􏼁 − Vvi(
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + DFU Iir( 􏼁 − Vir(
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌. (11)

4. Experiment

In this section, we frst provide an overview of the dataset
used in our training and testing process. Ten, we briefy
introduce the fusion metrics used in our experiments and
compare them with 11 state-of-the-art fusion methods.
Ten, we present extensive experiments to demonstrate the
rationality and superiority of our method. Finally, we an-
alyze the results of our method from both qualitative and
quantitative perspectives. It is worth noting that only partial
results are given due to the page limits.

4.1. Dataset and the Implementation Details

4.1.1. Dataset. We use two datasets to conduct all experi-
ments. First, the INO dataset is the largest center of expertise
in optics and photonics in Canada. Tey collected many
mixed long-wave infrared videos and color visible videos as
part of the INO dataset (these data can be found in https://
www.ino.ca/en/technologies/video-analyticsdataset/videos/).
In addition, there are ground truths of corresponding objects.
Second, the M3FD dataset is designed by Liu et al. [40] to
consider the inconsistency of image properties and features

infrared image visible image DenseFuse PMGI RFN SeAFusion SwimFuse

infrared image visible image DenseFuse PMGI RFN SeAFusion SwimFuse

SwimFusion TarDAL FusionGAN GanMcC U2Fusion Res2Fusion Ours

infrared image visible image DenseFuse PMGI RFN SeAFusion SwimFuse

SwimFusion TarDAL FusionGAN GanMcC U2Fusion Res2Fusion Ours

SwimFusion TarDAL FusionGAN GanMcC U2Fusion Res2Fusion Ours

Figure 6: Comparison experiment on the M3FD dataset. Areas with large diferences are highlighted by red and green boxes, and enlarged
images of red boxes are in the lower right or left corner.
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presented by infrared and visible images under diferent
scenes.Tey collected high-quality infrared and visible image
pairs of campus, tourist resort, urban road, and other scenes.
Furthermore, there are six tagged targets including people,
cars, buses, motorcycles, lights, and trucks (these data can be
found at https://github.com/JinyuanLiu-CV/TarDAL).

4.1.2. Experimental Settings. Our work exploits the map-
ping function between source infrared and visible images
through the FFA-GAN. During the training phase, we use
the Adam algorithm to guide minimizing the generator
loss and discriminator. Te learning rate is set to 0.0001.
As we employ data augmentation by cutting source images
into patches, we select 30 strictly aligned infrared and
visible image pairs in the M3FD dataset. While more
image pairs could be used, there are enough infrared and
visible image patch pairs to make the proposed algorithm
efective. All experiments are conducted on a laptop with

a 3.60 GHz 11th i7-11700K CPU and GeForce RTX 3090.
Te code is implemented with Python and MATLAB. We
compare the proposed method with 11 state-of-the-art
fusion methods, including DenseFuse [41], PMGI, RFN
[42], SeAFusion [43], SwinFuse, SwinFusion [44], Tar-
DAL [40], FusionGAN [20], GANMcC [45], U2Fusion
[46], and Rse2Fusion. Tese are implemented based on
available codes.

4.1.3. Fusion Metrics. We choose average gradient (AG),
cross entropy (CE), edge intensity (EI), entropy (EN),
mutual information (MI), peak signal-to-noise ratio (PSNR),
QAB/F, Qcb, Qcv, root mean squared error (RMSE), spatial
frequency (SF), structural similarity index measure (SSIM),
and standard deviation (SD) as fusion metrics based on
[47–49]. In all experiments, we use an up arrow or a down
arrow to indicate that the higher or lower the indicator, the
better the fusion.
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Figure 7: Quantitative analysis of 13 evaluation indexes on 133 image pairs from the INO dataset. High indexes of AG, EI, EN, MI, PSNR,
QAB/F, Qcb, SF, SSIM, and SD represent better fusion performance; low indexes of CE, Qcv, and RMSE represent better fusion
performance.
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4.2. Comparison with State-of-the-Art Methods. In order to
convincingly verify the performance of our fusion method,
we compare the FFA-GAN with other 11 fusion methods on
the public benchmarks INO dataset and the M3FD dataset.
Te qualitative and quantitative analysis of the fusion results
of diferent methods are presented below.

4.2.1. Qualitative Comparisons. In Figure 5, we frst present
the qualitative visualization of our FFA-GAN on the INO
dataset. We provide 3 sets of representative infrared and
visible images and their experimental results are shown in
Figure 5. In each set, the frst two subfgures present the
infrared-visible image pair, the third to thirteenth subfgures
show the results of the advanced fusion models mentioned
above, and the last subfgure presents the fused image of our
method.Temeaningful region is enlarged andmarked with
red boxes in each fused result. We can see that, the results of
our method is more clear and contain more texture and

contour information from the source images, which will be
advantageous for advanced visual tasks, such as object de-
tection in power grid.

Another qualitative analysis in this part is carried out on
the 3 groups ofM3FD dataset in Figure 6. Similar to Figure 5,
the frst two subfgures, the third to thirteenth subfgures,
and the last one, respectively, present the infrared-visible
image pair, the results of the comparison models, and the
fused image of our method in each set. It can be clearly
observed in Figure 6, our method is able to preserve rich
texture information, scene information, and unique contrast
information. In contrast, the target in the fusion result lacks
clarity and the background is blurred, indicating that the
target region in the infrared image and the typical features in
the visible image, such as license plate information and
human information, are not well preserved. It is worth
emphasizing that our method is highly robust in the pres-
ence of strong light interference during the night.
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Figure 8: Quantitative analysis of 13 evaluation indexes on 300 image pairs from theM3FD dataset. High indexes of AG, EI, EN, MI, PSNR,
QAB/F, Qcb, SF, SSIM, and SD represent better fusion performance; low indexes of CE, Qcv, and RMSE represent better fusion
performance.
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4.2.2. Quantitative Analysis. Afterward, 13 metrics men-
tioned above on the INO and M3FD dataset (100 image
pairs) are employed to quantitatively compare the above-
mentioned results, which are displayed in Figures 7 and 8.
Due to space constraints, we have not provided a detailed
introduction of each evaluation indicator in this paper.
Interested readers can refer to [47, 50], and [51] for more
information about these indicators. To quantify the com-
parison results, we introduce a ranking rule of ranking the
average of 13 evaluation indexes, as shown in Tables 1 and 2.

In a comprehensive perspective, our method obtains the
satisfactory performance in AG, CE, EI, EN, SF, and SD on
the INO dataset (as shown in Table 1). Besides, we obtain the
best performance in AG, CE, EI, EN, SF, and SD on the
M3FD dataset (as shown in Table 2). Tese are indicators
based on the feature of the image, indicating that our fused
images are informative and more consistent with the human

visual system. In addition, we have also found that the
Dense, U2Fusion, and Res2Fusion models have achieved
good results in the PSNR, RMSE, and SSIM indicators. Te
likely reason is that the authors of these algorithms were
more focused on specifc pieces of information during their
design. Tis phenomenon further suggests that an image
fusion algorithm should be evaluated using a variety of
indicators for comprehensive comparison, which demon-
strates the benefts of our FFA-GAN. Unfortunately, our
method did not perform well on the abovementioned PSNR,
SSIM, and RMSE indices. Te primary reason for this
outcome is the lack of a ground truth for fusing infrared and
visible light images. In particular, due to noise and other
factors, the fusion of infrared and visible light may result in
inaccuracies in the values of these three indicators, as they
are compared to reference images. Overall, our FFA-GAN
stably retains rich useful information from source images,

Table 2: Te ranking of thirteen evaluation indexes by diferent methods on M3FD dataset and the sort after a sorting rule.

Model AG↑ CE↓ EI↑ EN↑ MI↑ PSNR↑ QAB/F↑ Qcb↑ Qcv↓ RMSE↓ SF↑ SSIM↑ SD↑
Dense 11 4 11 9 3 1 10 6 7 1 11 2 9
PMGI 5 10 6 4 7 11 4 9 3 11 6 7 7
RFN_Nest 8 6 8 3 6 4 5 4 6 4 8 6 6
SeAFusion 2 7 2 5 2 6 1 5 11 5 2 5 5
SwinFuse 6 8 5 10 8 9 8 1 10 8 3 12 2
SwinFusion 3 5 3 6 1 7 2 8 12 7 4 4 4
Tardal 4 11 4 2 5 10 6 10 9 9 5 8 3
FusionGAN 12 12 12 12 10 5 12 12 2 6 12 9 12
GANmcc 9 9 9 7 11 8 11 11 1 10 9 10 11
U2Fusion 7 2 7 11 9 3 3 3 5 3 7 3 10
Res2Fusion 10 3 10 8 4 2 9 7 8 2 10 1 8
Ours 1 1 1 1 12 12 7 2 4 12 1 11 1
Bold values indicate the best result, italics values represent the second best result, and bold with italics values represent the third best result.

Table 1: Te ranking of thirteen evaluation indexes by diferent methods on INO dataset and the sort after a sorting rule.

Model AG↑ CE↓ EI↑ EN↑ MI↑ PSNR↑ QAB/F↑ Qcb↑ Qcv↓ RMSE↓ SF↑ SSIM↑ SD↑
Dense 10 1 11 10 7 1 10 9 6 1 10 1 10
PMGI 7 9 7 8 5 4 6 7 9 4 7 3 8
RFN_Nest 8 10 8 4 6 5 7 6 8 5 8 6 6
SeAFusion 3 9 3 4 3 9 1 2 2 8 3 7 3
SwinFuse 2 5 2 1 4 11 4 1 3 11 2 10 1
SwinFusion 5 7 5 5 2 12 2 3 1 12 4 4 5
Tardal 6 6 6 3 1 6 5 10 10 3 6 8 4
FusionGAN 12 12 12 11 11 10 12 11 11 10 12 11 11
GANmcc 9 11 9 12 10 8 11 12 12 9 9 9 12
U2Fusion 4 8 4 7 9 3 3 4 7 3 5 5 7
Res2Fusion 11 2 10 9 8 2 9 8 5 2 11 2 9
Ours 1 3 1 2 12 7 8 5 4 7 1 12 2
Bold values indicate the best result, italics values represent the second best result, and bold with italics values represent the third best result.
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and can describe the scene information of the whole image,
especially visible images are contaminated (such as strong
light and haze).

5. Conclusions

In this work, we have proposed a new generative adversarial
network called the FFA-GAN, which is based on feature
fusion attention.We have applied this network to power grid
security management. Te key design in our approach is
a shared convolution group (SCG) in the dual-branch
generator network. Tese are designed to extract
modality-common features from source images. To handle
multimodality information fexibly, each SCG contains both
channel attention modules and pixel attention modules.

We have also incorporated infrared and visible image
features into our network, using a CA and PA combination
structure to fuse these features. Our two-stage discriminator
includes both DDE and DFU to ensure that the proposed
FFA-GAN achieves good performance in infrared and
visible image fusion tasks. Experimental results demonstrate
that our fusion network performs well. It can be embedded
in the grid AI platform to provide services for related ap-
plications and provides a strong guarantee for power grid
safety.

However, there are some limitations to our approach due
to the lack of aligned infrared and visible data with haze. In
our experiments using the M3FD dataset, we used dark
channel prior to remove image haze. Although this approach
can efectively remove haze, the image may still be afected
by the distribution of the haze. Terefore, improving the
performance of our proposed method further is subject to
overcome these limitations.
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