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Image dehazing is one of the problems that need to be solved urgently in the feld of computer vision. In recent years, more and
more algorithms have been applied to image dehazing and achieved good results. However, the image after dehazing still has color
distortion, contrast and saturation disorder, and other challenges; in order to solve these problems, in this paper, an efective
image dehazing method is proposed, which is based on improved color channel transfer and multiexposure image fusion to
achieve image dehazing. First, the image is preprocessed using a color channel transfer method based on k-means. Second, gamma
correction is introduced on the basis of guided fltering to obtain a series of multiexposure images, and the obtainedmultiexposure
images are fused into a dehazed image through a Laplacian pyramid fusion scheme based on local similarity of adaptive weights.
Finally, contrast and saturation corrections are performed on the dehazed image. Experimental verifcation is carried out on
synthetic dehazed images and natural dehazed images, and it is verifed that the method proposed is superior to existing dehazed
algorithms from both subjective and objective aspects.

1. Introduction

With the popularization and rapid development of com-
puter technology, computer vision is widely used in various
felds such as object detection [1–4], image segmentation
[5, 6], and face recognition. Afected by smoggy weather, the
images acquired by camera equipment usually show color
shift, low visibility, and decreased contrast and saturation,
which seriously afect the development of subsequent
computer vision tasks. Terefore, dehazing the images is an
important research direction in computer vision tasks. In
recent years, many researchers have studied image dehazing
algorithms from multiple directions. It is mainly divided
into three parts: dehazing algorithm based on image en-
hancement, physical model, and deep learning.

Te dehazing algorithm based on image enhancement
improves the quality of the image by enhancing the
contrast and strengthening the edge information and

detail information of the image, but there is a phenome-
non that the image information is lost due to excessive
enhancement. Tis kind of method is mainly divided into
two categories: global enhancement and local enhance-
ment. Among the globally enhanced methods, there are
algorithms based on histogram equalization, homomor-
phic fltering, and Retinex theory. In the localization
enhancement method, the wavelet transform algorithm
decomposes the image, and the image is localized through
local features to make the image enhanced at multiple
scales and then amplify the useful information [7].

Te dehazing algorithm based on the physical model
often relies on the atmospheric scattering model [8], which
mainly focuses on the solution of the parameters in the
model, and through the mapping relationship, the inverse
operation is performed according to the formation process
of the foggy image to restore the clear image. Te atmo-
spheric scattering model is the cornerstone of the

Hindawi
Advances in Multimedia
Volume 2023, Article ID 8891239, 10 pages
https://doi.org/10.1155/2023/8891239

https://orcid.org/0009-0000-0472-2316
https://orcid.org/0000-0002-2293-1004
https://orcid.org/0000-0003-2314-5272
https://orcid.org/0000-0003-4913-5371
mailto:ldtweiguo@buu.edu.cn
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2023/8891239


subsequent physical model-based dehazing algorithm, and
many researchers have carried out extensive and in-depth
research on the basis of the atmospheric scattering model to
continuously improve the level of image dehazing.

In recent years, the dehazing algorithm based on deep
learning has shown better performance. At present, there are
two types of deep learning-based dehazing algorithms that
are widely studied: one is to use deep learning methods to
estimate some parameters of atmospheric physical models to
restore images [9] and the other is to use the neural network
to directly restore the input foggy image to obtain the
dehazing image, which is often referred to as end-to-end
dehazing in deep learning [10, 11].

Diferent from the existing dehazing methods based on
atmospheric scattering models, the proposed method adopts
Laplace pyramid decomposition based on Laplace pyramid
decomposition to retain the structural information of the
image. In order to obtain a fog-free image, the area with the
best visual quality is collected from each image for image
fusion, and the color channel transfer algorithm is used to
efectively retain the color information in the image.

Te main contributions of this paper are as follows:

(a) In order to prevent color dull and distortion that
may occur in the image after dehazing, we propose
a color transfer module to compensate for the color
loss of the dehazing image. Te color transfer
module converts the data of the image from RGB
space to lαβ space and then uses the color channel
transfer between images to restore the color in-
formation of the dehazing image.

(b) An image dehazing algorithm based on Laplace
pyramid fusion scheme via local similarity of
adaptive weights is proposed, which frst artifcially
underexposes haggy images through a series of
gamma correction operations. With a multiscale
Laplace fusion scheme, multiple exposure images are
combined into a fog-free result, extracting the best
quality areas from each image and merging them
into a single fog-free output.

(c) In order to prove the dehazing performance of the
proposed method, extensive experiments were car-
ried out on the dataset of indoor/outdoor synthetic
foggy images and natural foggy images, and better
results were achieved in both subjective and objec-
tive aspects.

2. Related Work

Foggy images lead to blurry image details, low contrast, and
loss of important image information, and preprocessing of
foggy images can often improve dehazing performance. Te
literature [12] proposes color channel shifting, which utilizes
a reference image from a source image to transfer in-
formation from an important color channel to an attenuated
color channel to compensate for the loss of information.
However, this method needs to be combined with other
dehazing methods to improve the dehazing performance of
these methods in special color scenes.

Te establishment of the atmospheric scattering model
[13] explains the formation process of images in foggy
weather and lays a foundation for the subsequent defogging
work [14, 15]. He et al. [8] proposed a dark channel prior
principle (DCP) based on the atmospheric scattering model
and using prior knowledge. In general, DCP has a good efect
on dehazing natural scene images, but this theory is in-
efective in bright areas, such as the sky, water, and the
surface of white objects, resulting in inaccurate transmission
rates calculated and excessive enhancement of the recovered
image and a darker efect. After that, He et al. [16] proposed
a guided fltering algorithm, which focuses on simple box
blurring and will not be afected by the degree and radius of
blurring, so the real-time performance has been greatly
improved, which is a conformal fltering algorithm. In the
feld of image deraining and denoising, guided fltering can
also achieve good results. Raanan [17] proposed a dehazing
method based on color lines from the perspective of image
color lines, assuming that the transmission in a local area is
consistent, and the color lines in the nonfoggy area need to
pass through the origin and move along the ambient light;
this characteristic is used to estimate local transmission and
global ambient light.

Compared with traditional methods, the methods of
deep learning mainly learn the transfer rate by labeling and
training datasets or directly learn the mapping of foggy
images to the corresponding fog-free images. For example,
Proximal Dehaze-Net [18] frst designed these two priori
iterative optimization algorithms using proximity operators
and then expanded the iterative algorithm into a dehazing
network by using convolutional neural networks to learn
neighboring operators. DehazeNet [9] uses a deep archi-
tecture based on convolutional neural networks to estimate
the transmission rate in atmospheric scattering models. Ren
et al. [19] proposed a multiscale deep convolutional neural
network for recovering foggy images. Tis process often
wastes a lot of calculation time; if the depth estimation of the
dehazing scene is not accurate, the image after dehazing is
prone to artifacts in the edge area, or it appears as color
distortion, afecting the visual efect. Zhang and Tao [20]
proposed a multiscale convolutional neural dehazing net-
work FAMED-Net with a global edge, which can quickly and
accurately calculate haze-free images end-to-end at multiple
scales. FFA-NET [21] is an end-to-end feature fusion at-
tention network in which attention mechanisms focus on
more efcient information. Hong et al. [22] proposed
a knowledge distillation network (KDDN) that uses the teacher
network as an image reconstruction task and enables the
student network to simulate this process. LKD-NE [23] im-
proves the performance of the convolution kernel by increasing
the size of the convolution kernel to use a larger acceptance
domain, thereby enhancing the efect of network dehazing.Te
deep learning-based dehazing method has shown excellent
performance and has achieved great success. However, training
deep learning models for good performance is cumbersome.
Not only is a large labeled dataset required, but also the training
process is time-consuming. Moreover, the debugging of
models in deep learning is also relatively difcult, which in-
creases the difculty of work.
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3. Proposed Method

In this paper, an image dehazing algorithm based on color
channel transfer and multiexposure fusion is proposed as
shown in Figure 1, which efectively restores the satu-
ration and contrast information of the image while
retaining the color characteristics of the image. Te al-
gorithm frst uses k-means to cluster and color transfer
the pixel intensity of the image in the lαβ color space.
Second, guided fltering is introduced into the multi-
exposure image obtained by gamma correction, and the
dehazing image is obtained by Laplace pyramid fusion.
Finally, contrast and saturation are corrected by an
improved adaptive histogram equalization and spatial
linear saturation adjustment, respectively.

3.1. ImprovedColorChannel TransferMethod. In the process
of image dehazing, in order to avoid the interference of
a certain spectrum, the proposed method in this paper es-
tablishes a reference image by transferring the color channel
of the input image, and the formula is as follows:

R(x) � G(x) + D(x) + S(x) × I(x), (1)

where G(x) is the uniform grayscale image (50%) and D(x)

is the detail layer of the input image, in order to calculate the
signifcance mapping of the input image. We employ an
efective technique proposed by Aganta [24] to introduce
a bias against the dominant color between the feature map
and the initial image, helping to restore the initial color. Te
detail layer D(x) is obtained by subtracting the Gaussian
blurred image from the input image, as shown in the fol-
lowing equation:

D(x) � I(x) − Iwhc(x), (2)

S(x) � Iμ − Iwhc(x)
�����

�����, (3)

where Iwhc(x) is the image of the original image processed
by a Gaussian kernel of 5× 5, Iμ is the mean vector of the
initial image, and ‖ ‖ is the L2 norm.

Color channel shifting is used for dehazing image pre-
processing, with the most pronounced efect in extreme
conditions such as multilight sources, underwater images,
and night images. In order to improve the efect of pre-
processing of color channel transfer on daytime images, this
paper introduces the k-means algorithm to adjust the
standard deviation of the source image and the reference
image in the color channel transition and then cluster the
pixel intensity of each image in the color space and fnally
use the Euclidean distance to determine the centroid be-
tween the two most similar images and only calculate the
statistics in each region.

3.2. Gamma Correction. In computer vision, pixel intensity
values are proportional to the exposure level, so gamma
correction can adjust the image exposure level by using
diferent coefcients c [25]. Te gamma correction is shown
as follows:

gamma � ε × Ιc(x), (4)

where ε and c are the coefcients in gamma correction.
When the coefcient c< 1, as shown in Figure 2, over-
exposure makes the hue of high-brightness objects in the
image too bright, and the smoothness of the edges of the
object is prone to degradation.

When the factor c> 1, as shown in Figure 3, the contrast
of the underexposed image is enhanced, and more detail can
be obtained in the image. Terefore, we choose c values of 2,
3, 4, and 5 to artifcially generate underexposed images.

3.3. Laplace Pyramid Decomposition and Energy Local
Features. Laplace pyramid is a simple and efective, mul-
tiscale, multiresolution image processing method, which is
based on the Gaussian decomposition of the image and
contains the information diference between the adjacent
layers of two Gaussian pyramids. Te dehazing algorithm
using Laplace pyramid fusion can better improve the
dehazing efect [26] and contain higher spatial resolution
and image detail, as shown in the following equation:

J(x) � 􏽘
K

k�1
Wk(x) × Ek(x), (5)

where K is the number of available images with diferent
exposures in Ek(x) and J(x) is a well-exposed image pro-
duced by a combination of diferent correctly exposed re-
gions in Ek(x). Normalize the weights Ek(x).

In the paper, a fusion method based on local energy
features is used to assign the weight values in the Laplace
pyramid. Te local energy features are defned as follows:

S(i, j) � 􏽘
m

􏽘
n

C(i + m, j + n)
2
. (6)

For the position of the image at (i, j), the local energy of
the point is the sum of squares of the pixel values in the m
window centered on the point. Local energy features can
efectively represent areas of an image with rich detail. In
general, areas of the image that contain detailed details have
a lot of energy. In the process of regional fusion, if the energy
diference between the two is too large, it means that the
matching degree is small, so we only choose the larger part.
Te specifc steps are as follows:

(a) Choose an appropriate threshold.
(b) Calculate the local energy graph of each image after

the decomposition of the Laplace pyramid.
(c) Calculate the local covariance of the fused image to

represent the similarity.
(d) If the matching degree of this point is less than the

threshold value, the graph with high energy of this
point is selected and the rest are discarded.

(e) If the matching degree of this point is greater than
the threshold value, the weight is assigned according
to the energy size. Te weight with small energy is
Wmin � 0.5 × (1 − (1 − cor)/(1 − e)) and the weight
with large energy is Wmax � 1 − Wmin.
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3.4. Local Similarity Fusion Method Based on Adaptive
Weights. Te fusion method based on local similarity is
a multiexposure image fusion method. According to this
method, if two pixels have similar local neighborhood in
diferent images, they can be regarded as the same pixel, and
they can be fused into a high dynamic range (HDR) image
[27, 28]. In this paper, a local similarity fusionmethod based on
adaptive weights is adopted. By adding adaptive weights to the
local similarity fusion method, the weights can be adjusted
adaptively according to the gradient information of diferent
pixels, so as to better balance the contributions of diferent
images and make HDR images more balanced and natural.

Te details of the algorithm are as follows:

(1) For each pixel, the Manhattan distance metric
method is selected to calculate its local neighborhood
in multiple images, and the gradient information of
pixel value is used to calculate the weight, so as to
better preserve the image details

(2) Te mean square error method is used to calculate
the similarity of each pixel’s local neighborhood in
diferent images

(3) Te pixel with the highest similarity in diferent
images is selected for fusion, and the weighted av-
erage method is used to obtain the fnal pixel value

Te adaptive weighting method takes into account the
gradient information of each pixel when calculating the
weight. Supposing that the gradient value in theNth image is

Gi, then the weight calculation formula of this method is as
follows:

wi,j �
Gi,j + ϵ􏼐 􏼑

α

􏽐
N
k�1 Gk,j + ϵ􏼐 􏼑

α , (7)

where i represents the frst image, j represents the position of
the pixel, and Gi,j represents a total of N images. ϵ is a small
positive number, which is used to avoid the case of zero
divisor. α is a hyperparameter that controls the degree of
nonlinearity of the weight, and Gi,j represents the gradient
value of the ith image at position j. Te greater the fnal
weight wi,j, the greater the contribution of the ith image in
position j.

On the basis of local similarity fusion, adaptive weight
method can be introduced to further improve the fusion
efect. In this method, gradient information is used to cal-
culate the weight in order to better preserve the image
details. In addition, the fusion method based on local
similarity can be combined with other extension methods,
such as multiscale fusion and local tone mapping, to further
improve the fusion efect.

3.5. Multiscale CLAHE Method. In order to further retain
more detailed information of the dehazed image, this
paper uses the CLAHE algorithm to process the dehazed
image. In CLAHE, multiscale processing can further
improve its enhancement efect. By analyzing the image at
diferent scales, extracting feature information at diferent
levels can efectively improve the contrast and details of
the image after defogging, while avoiding excessive noise
enhancement [29].

Te details of CLAHE are as follows:

(1) Te original image is divided into multiple scales,
which can be layered using methods such as the
Gaussian or Laplacian pyramid. At the bottom of the
pyramid, the size of the image is the largest and more
detail can be obtained, while as the number of layers
increases, the size of the image gradually decreases
and the details gradually become blurred:

Fi,j(x, y) � F(x, y) × hi,j(x, y), (8)

Figure 2: Image overexposure processing. Te c values from left to
right are 0.2, 0.3, and 0.4.

Figure 3: Image overexposure processing. Te c values from left to
right are 2, 3, and 4.
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Figure 1: Te proposed framework.

4 Advances in Multimedia



where F is the original image, Fi,j is the ith subimage
in the jth scale, and hi,j is the Gaussian kernel
function of scale I and subimage j.

(2) CLAHE processing was carried out for each scale
image. First, the image is divided into small blocks,

and then, the pixels within each block are histogram
equalized, and fnally, the values of pixels within the
block are interpolated:

H
′
i, j(k) � 0 Hi, j(k)≤Ci,j Ci,j +

Hi,j(k) − Ci,j

1 − Ci,j

· K − Ci,j􏼐 􏼑 Hi,j(k)>Ci,j􏼨 , (9)

where Ci,j is the cumulative distribution function of
pixel values in the subimage and K is the maximum
value of the histogram.

(3) In the locally enhanced subimages, the boundaries of
each subimage are smoothed using an interpolation
method:

Fi,j′(x, y) �
1

wi,j(x, y)
􏽘

(u,v)∈Si,j(x,y)

wi,j(u, v)

× Fi,j(u, v),

(10)

where Fi,j′ is the smoothed subimage, wi,j is the
interpolation weight, and Si,j is the interpolation
window.

(4) Te fnal enhanced image is obtained by combining
the enhanced results of all scales:

F
′
(x, y) � 􏽘

n

i�1
􏽘

m

j�1
Fi,j′(x, y), (11)

where, F′ is the fnal enhanced image, n is the
number of scales, and m is the number of neutron
images at each scale.

3.6. Spatial Linear Saturation Adjustment. Te multiscale
CLAHEmethod can take into account the detailed information
of images at diferent scales, making the contrast enhancement
more balanced and natural. At the same time, multiscale
processing can also avoid problems such as excessive en-
hancement or distortion that may occur during the processing
of the CLAHE algorithm. However, multiscale processing will
increase computational complexity and storage space, which is
what we will address next. According to the CAP dehazing
algorithm [15], it can be seen that, with the change of fog
concentration, the brightness and saturation diference of the
image also change. Based on this theory, Zhu [30] proposed
a method to enhance image dehazing performance and ro-
bustness and balance its color saturation during the dehazing
process, as shown in the following equation:

τs �
VF − (ωF/ωI) VI − SI( 􏼁( 􏼁

SF

, (12)

where VF � 􏽐
m,n
i�1,j�1v

F
ij and VI � 􏽐

m,n
i�1,j�1v

I
ij, in which vF

ij and
vI

ij are the brightness of pixel (i, j) in fused image F and
the brightness of pixel (i, j) in foggy image, respectively;

SF � 􏽐
m,n
i�1,j�1s

F
ij and SI � 􏽐

m,n
i�1,j�1s

I
ij, where sF

ij and sI
ij are the

saturation of pixel (i, j) in the fusion image F and the
saturation of pixel (i, j) in the foggy image F, respectively;
ωF is the diference between brightness and saturation of the
fusion image F; and ωI is the diference between brightness
and saturation of foggy image I.

4. Experimental Results and Analysis

4.1. Parameter Settings and Datasets. Te experimental
computer is confgured with Intel (R) Core (TM) i7-
10875UCPU@2.30GHz 16.00GB RAM. In the improved
color channel transition algorithm, equation (5) uses
a Gaussian kernel and takes the k value of 5 to initialize the
cluster center to ensure that the cluster center is in the data
space. During the gamma correction phase, the selection
value of artifcial exposure is fxed at c ∈ 2, 3, 4, 5{ }.

It is difcult to collect real fog-free and contrasting foggy
images in the research of the dehazing algorithm. In order to
solve this problem, artifcial synthesis of fog images is usually
required. In this paper, D − hazy artifcial synthesis of fog
data set [31] and fog images collected in real scenes are
mainly used to test and compare the performance of this
algorithm on outdoor images. D − hazy contains 35 pairs of
images with fog and corresponding outdoor images without
fog (ground reality). Te variation range of atmospheric
light is 0.8∼1.0, and the variation range of scattering pa-
rameters is 0.04∼0.2. To compare with the previous state-of-
the-art methods, we used PSNR, SSIM, GMSD, and FSIM
indicators for comparision tests on a dataset containing 500
indoor images and 500 outdoor images.

4.2. Subjective Evaluation. In this part, the algorithms of
CAP [15], AMEF [26], CODHWT [32], FADE [33], MAME
[34], and DePAMEF [35] are compared with the proposed
algorithm in this paper.

Compared with rows 2 and 7 of Figure 4, it can be seen
that the CAPmethod can show better dehazing performance
in the mist area, but in rows 1, 10, and 11 of Figure 4, with
the increase of fog concentration, the dehazing performance
of the CAPmethod gradually decreases, the texture details of
white objects (row 9) become blurred, and some details in
the image are difcult to read, such as the texture of branches
(such as rows 3 and 4). From the second and ninth lines of
Figure 4, it can be seen that the FADE method is accom-
panied by color distortion and loss of detail while dehazing,
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which reduces the visual efect of the image. Te AMEF and
CODHWT methods can efectively reconstruct sharp im-
ages from foggy images.Trough the sky area in rows 6 and 8
of Figure 4, the background color of the image after dehazing
by the AMEF method is closer to the original image com-
pared to the CODHWT method. Both the MAME and
DePAMEF methods achieved better performance in detail
visibility and preservation of fog-free areas, but the image
after DePAMEF dehazing had a mutilated haze, resulting in
an increase in color artifacts in the area where the house and
sky were connected.

Te algorithm proposed in this paper compensates for
the loss between each channel through the color channel
transfer method before dehazing and efectively reduces the
interference between each channel, and the essence of the
image is clearly restored after dehazing, and the buildings
and vehicles in the distance are clearly visible and the details
are obvious. Spatial linear saturation adjustment and

contrast correction are applied to multiexposure image
fusion, and the image after dehazing is more in line with
human visual observation.

4.3. Objective Evaluation. In order to analyze the subtle
diferences in the images, this paper uses the PSNR [36],
SSIM [37], FSIM [38], and GMSD [39] for objective
evaluation.

Zhang et al. [38] proposed FSIM, arguing that the human
visual system mainly understands images based on low-level
features and combines phase consistency, color features,
gradient features, and chromaticity features to measure the
local structural information of images. GMSD was discov-
ered by Xue [39] in 2014 which showed that gradient maps
are sensitive to image distortion, and distortion images with
diferent structures have diferent degrees of quality deg-
radation, so as to propose an image full reference evaluation

Figure 4: Comparison of real scene image dehazing efect. From left to right, the original image, the processed results of AMEF, CAP,
CODHWT, FADE, MAME, and DePAMEF, and our method.
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method, which has the characteristics of high accuracy and
low amount of calculation.

PSNR evaluates image quality by calculating the pixel
error between the original image and the dehazing image.
Te PSNR value is more signifcant when the error between
the dehazed image and the original image is smaller. Te
calculation of PSNR is shown in the following equation:

PSNR � 10 × log10
MAX2

MSE
, (13)

where MSE is represented by the mean squared error and
MAX2 is the maximum pixel value of the original image.

SSIM was used to measure the similarity between the
original image and the dehaze image. SSIM uses the mean
value to estimate brightness, standard deviation to estimate
contrast, and covariance to measure structural similarity, as
shown in the following equation. Te more signifcant the
SSIM value, the less distorted the image, indicating better
results after dehazing.

SSIM �
2μx × μy + C1􏼐 􏼑 2σxy + C2􏼐 􏼑

μ2x + μ2y + C1􏼐 􏼑 σ2x + σ2y + C2􏼐 􏼑
, (14)

where μx and μy represent the means of x and y and μ2x and
μ2y represent the variance of x and y, respectively. σxy is
represented as the covariance between x and y, and C1 and
C2 are represented as constant coefcients.

FSIM is based on phase consistency and gradient am-
plitude.Te larger the value is, the closer the dehazing image
is to the original image. GMSD is designed primarily to
provide credible evaluation capabilities and use metrics that
minimize computational overhead.

We calculate the PSNR of diferent methods for pro-
cessing images. In Table 1, it can be seen from Figure 5 that
both MAME and the proposed method can achieve good
results in removing dense fog, and compared with MAME,
our proposed method can efectively remove dense fog while
restoring the color information of the sky area. In addition,
compared with other images, the method proposed in this
paper has achieved better results.

Te SSIM values for the image in Figure 5 are shown in
Table 2. As can be seen from the table, AMEF, CAP, and the
proposed method obtain higher SSIM values. It can be seen
from Table 2 that the SSIM value of the proposed method
reaches 0.9073, which has the best performance. For the
Tiananmen image in Figure 5, the SSIM value of the method
in this paper is 0.9192, second only to CAP.

Table 1: PSNR index comparison of dehazing algorithms.

Methods Bus Pavilion Viaduct Pedestrian Tiananmen Lake
AMEF 22.337 16.732 17.676 16.113 17.862 17.487
CAP 21.032 19.214 21.638 15.999 25.671 26.785
CODHWT 16.703 16.615 18.070 11.869 25.316 24.430
FADE 16.576 16.264 14.924 12.985 18.571 19.265
MAME 16.367 15.873 17.702 11.499 17.221 117.968
DePAMEF 21.169 16.469 18.531 17.461 20.997 18.580
Ours 22.963 20.199 22.764 17.899 23.271 21.253

Figure 5: Te visualization efect of dehazing in the synthetic haze scene. From left to right, the original image, the processed results of
AMEF, CAP, CODHWT, FADE, MAME, DePAMEF, our method, and real fog-free image.
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As shown in Table 3, the method proposed in this paper
is superior to other dehazing methods in recovering image
structure. Tis is because the multiexposure melting dehaze
method fuses images with diferent exposure levels and
better preserves the structural features of the image.

Table 4 shows the calculation results of FSIM values. It
can be seen from the table that the dehazing image proposed
by this method has a high similarity with the original haze-
free image, and the FSIM score is greater than 0.90. Tis is
because we use gamma correction to acquire images with
diferent exposure levels and multiscale fusion using the
classical Laplace pyramid method. Te method proposed in
this article attempts to obtain the best exposure for each area,
so the FSIM score of the image is high.

5. Conclusion

In this paper, an artifcial multiexposure image fusion al-
gorithm for single image dehazing is proposed. First, the
color channel transfer method based on k-means is used to
compensate for the channel with serious information loss.
Ten, artifcial gamma correction obtains a series of
underexposed images and fuses them into dehazing images
with the improved Laplace pyramid fusion scheme, and
fnally, in order to obtain better visual efects after dehazing,
contrast and saturation correction are applied to enhance the

dehazing images, so as to retain more image details.Trough
comparative experiments with other mainstream dehazing
methods, the results show that the proposed method can
obtain good dehazing efect in light fog and dense fog
images, and the method achieves good results in various
evaluation performance indicators. In future work, it is
necessary to further optimize the complexity of the algo-
rithm and improve the practicability of the algorithm. In
addition, it is also possible to start with fog and haze images
in various scenarios and perform targeted defogging pro-
cessing to obtain better efects.
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