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Existing RGB + depth (RGB-D) salient object detection methods mainly focus on better integrating the cross-modal features of
RGB images and depth maps. Many methods use the same feature interaction module to fuse RGB and depth maps, which ignores
the inherent properties of different modalities. In contrast to previous methods, this paper proposes a novel RGB-D salient object
detection method that uses a depth-feature guide cross-modal fusion module based on the properties of RGB and depth maps.
First, a depth-feature guide cross-modal fusion module is designed using coordinate attention to utilize the simple data rep-
resentation capability of depth maps effectively. Second, a dense decoder guidance module is proposed to recover the spatial
details of salient objects. Furthermore, a context-aware content module is proposed to extract rich context information, which can
predict multiple objects more completely. Experimental results on six benchmark public datasets demonstrate that, compared
with 15 mainstream convolutional neural network detection methods, the saliency map edge contours detected by the proposed
model have better continuity and the spatial structure details are clearer. Perfect results are achieved on four quantitative

evaluation metrics. Furthermore, the effectiveness of the three proposed modules is verified through ablation experiments.

1. Introduction

Salient object detection (SOD) [1-5] aims to locate the most
attractive objects in natural scene images and has been
widely used in various computer vision tasks, such as image
resolution [6], object detection [7], learning-based com-
pression [8], and image quality assessment [9]. In recent
years, benefiting from the rapid development of convolu-
tional neural networks (CNNs), SOD has achieved great
success. However, when dealing with some challenging
scenarios, such as when the contrast between the object and
background is low or there are multiple objects in the image,
many models have difficulty predicting the objects clearly
and completely. Microsoft Kinect sensors and Huawei
mobile phones are widely used tools that can capture depth
maps easily. Compared with previous models that only used
RGB images for training, models with depth maps as aux-
iliary information can achieve improved detection

performance, which has resulted in the development of
various RGB +depth (RGB-D) SOD algorithms [10-14].
However, because RGB images and depth maps contain
different modal information, it remains challenging to
achieve cross-modal feature fusion effectively, which sig-
nificantly impacts the robustness of the model. Although
many previous methods [15-18] have explored cross-modal
feature fusion, its application remains limited due to (1) the
effects of the RGB image background and (2) the effects of
illumination on the RGB image. Regarding (1), RGB images
provide rich color information, but the detection accuracy is
seriously disturbed by color information. For example, as
illustrated in the first row of Figure 1, the consistency of the
salient object color and background color causes the model
to generate incorrect detection results. The detected object (a
chair) is extremely similar in color to the background. A
small part of the chair is detected by the 3DCNN [3] and
LDCM [15], whereas the rest of the chair is swallowed by the
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background. Regarding (2), as shown in the second row of
Figure 1, because the images are affected by illumination, the
background area is high in brightness, whereas the object
area is low in brightness, so 3DCNN and LDCM misjudge
the background area as the object area, and the detected area
is blurred. Furthermore, although many methods predict the
complete object area, such as the carts generated by the
3DCNN and LDCM in the third row of Figure 1, the edge
spatial structure details of the salient objects are lost through
the upsampling convolution. Although encoder feature
maps are usually introduced into the decoder feature map
through skip connections to recover the spatial details of
salient objects more effectively and the ground truth map is
used to supervise the loss of the decoder stage in every layer,
it remains impossible to generate more complete detailed
features. There are multiple objects in the image, as shown in
the fourth row of Figure 1, and the saliency maps predicted
by both the 3DCNN and LDCM lose the object and generate
only a single object. The combination of the above shows
that the detection performance of the model is affected by
the color and illumination of RGB images, edge spatial
structure details, and number of salient objects.

As a remedy for the aforementioned problems, an RGB-D
SOD network is proposed that uses the depth-feature guide
cross-modal fusion module with coordinate attention filtering.
First, coordinate attention is used to filter invalid information
from the depth map and to strengthen the expressive ability of
salient objects, which can guide the model to learn more
advanced semantic features. It can also better locate the po-
sition of salient objects while significantly suppressing the
background information interference of RGB images. Second,
a dense decode guidance (DDG) module is proposed, which
can not only provide a more comprehensive semantic guidance
for the encoder features of skip connections but also com-
pensate for the loss of high-level semantic information in the
decoder stages, thereby better recovering the structural details
of salient objects. Finally, to remove the variation in the
number of objects, a context-aware content (CAC) module is
designed that aims to explore rich contextual feature in-
formation effectively and efficiently as well as to extract the
most discriminative salient features. Three encoder-decoder U-
nets are jointly trained in an end-to-end manner.

The main contributions of this study can be summarized
as follows:

(i) To suppress the effects of RGB image color and
illumination for model detection, a coordinate at-
tention filtering depth-feature guide cross-modal
fusion module is proposed that uses coordinate
attention filtering to enhance the feature repre-
sentation of salient objects in the depth map such
that the generated attention map can guide the
model to highlight the locations and contour fea-
tures of objects more prominently.

(ii) A dense decoder guidance module is designed to
compensate effectively for the loss of high-level
semantic features in the decoder process to re-
store the edge structural detail features of the salient
objects better.
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F1GURE 1: Saliency detection results generated by different models.

(iii) A context-aware content module is designed that
can effectively capture rich contextual feature in-
formation, which is used to improve the feature
capability to enhance the model performance in
detecting multiobject scenes.

(iv) Comprehensive experiments on six benchmark
datasets with four evaluation metrics demonstrate
that, compared to 15 other models, the proposed
model has superior detection performance, and the
generated saliency map has a better visual effect.

2. Related Work

2.1. Salient Object Detection. With the development and
popular application of deep learning, an increasing number
of studies [19-22] have utilized deep learning to detect
salient objects. Zhao et al. [19] developed a lightweight and
real-time model that directly uses the depth map to guide
early and middle fusion between an RGB image and the
depth map. Sun et al. [20] introduced a depth-sensitive
attention module to enhance RGB features effectively,
which can utilize the depth geometry feature to reduce
background distraction.

Multilevel feature aggregation and cross-modal feature
fusion strategies [23-26] are widely used in models to im-
prove detection performance. Wang et al. [23] proposed
cross-modality consistency of correlation for RGB-D SOD.
Zhang et al. [24] designed a cross-modality discrete in-
teraction network that includes an RGB-induced detail
enhancement module and depth-induced semantic en-
hancement of different layers. Zhou et al. [25] proposed
a crossflow and cross-scale adaptive fusion network to detect
salient objects in RGB-D images. Other methods have also
achieved good results, such as uncertainty learning [27],
collaborative learning [28], saliency prior [21], graph neural
networks [29], edge detection [30], and transformers
[31, 32].

2.2. Attention Mechanisms. Attention mechanisms have
been widely used in computer vision tasks, such as visual
tracking [33], image classification [34], video question an-
swering [35], person reidentification [36], and image seg-
mentation [37]. Zhang et al. [38] developed a selection
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attention mechanism to fuse multimodal information. Chen
et al. [4] introduced the channel-wise attention mechanism
to achieve a selectively cross-modal cross-level combination.
Because the attention mechanism has a strong feature se-
lection ability, its application is well suited to RGB-D SOD
[39-41].

Previous methods have directly added or multiplied RGB
and depth features when fusing them. The elaborate fusion
module also treats RGB features and depth features equally,
and only fused features are employed layer by layer in the
decoding stage. In this paper, inspired by the above methods,
the inherent characteristics of RGB images and depth maps are
rethought; moreover, it is argued that the advantages and
disadvantages of the inherent characteristics of each modality
should be considered in cross-modal feature interaction rather
than being treated equally. According to observations, the
performance of SOD is greatly affected by the background
information in the collected RGB images. Therefore, the
performance is reduced by extracting background noise from
the RGB features with the network. The objects in the depth
map are not disturbed by color; therefore, a CFD module is
proposed that uses coordinate attention filtering such that the
depth features can effectively suppress the interference of
background information, which improves the expressive ability
of salient objects. In addition, the three-branch decode
structure is adopted in this paper to preserve the original RGB
features and depth features for decoding to achieve effective
utilization of multimodal features and improve the detection
accuracy of the model.

3. Proposed Method

The proposed RGB-D SOD network is shown in Figure 2. In
the feature extraction stage, one ordinary convolution is
used to reduce the image resolution quickly, and the four
residual blocks of the ResNet-50 architecture are used as the
subsequent feature extractor, which uses two identical
backbone branches to extract the features of the RGB image
and the depth map. These extracted features are denoted as
FR and FP, respectively, where I € {1, 2, ..., 5} represents the
level of feature layers. At the low levels (first and second
layers), the RGB and depth feature maps are added to
generate a fusion branch feature map. Next, the CFD module
is embedded into the higher levels (third, fourth, and fifth
layers), and the fusion branch feature map is represented by
FPRP . For the decoder stage, DDG and CAC modules are
designed. Finally, the RGB, depth, and fusion branch
streams are designed as three encoder-decoder architectures
with the same structure for joint end-to-end training. The
final saliency map is generated by the fusion branch stream.

3.1. Depth-Feature Guide Cross-Modal Fusion Module with
Coordinate Attention Filtering. RGB images contain rich
colors and appearances. Compared with RGB images, depth
maps discard complex color information and can intuitively
describe the shapes and positions of objects, which means
the feature expression ability of objects is provided more

directly and effectively. At the low level of the encoder, the
detailed features of the object are learned by the model,
including the clear boundary, texture, and spatial structure,
but these also contain significant background noise. At the
high level of the encoder, the features learned by the model
contain more semantic information. The high-level semantic
features of the depth map are relatively simple; therefore,
they can be used to guide the fusion of cross modalities.
However, some images exist in which the collected depth
maps are of lower quality. Therefore, a CFD module is
designed and then embedded in the high levels of the
network to make better use of the depth map features. The
noise in the depth map is filtered by the coordinate attention,
which largely suppresses the nonsalient region features in
the RGB image, thereby helping the model locate and
identify the salient regions more accurately. The structure is
shown in Figure 3.

Specifically, the RGB feature map (FX) and the depth
feature map (FP) are fed into a convolutional layer with
a kernel size of 3 x 3 and stride of 1, which are aggregated to
generate the feature map (FXP) as follows:

F;P = Cov(Fy) + Cov(FY), (1)

where Cov represents the convolutional layer.

Coordinate attention is used to filter the noise of the
depth map to utilize the feature information of the depth
map more effectively. The coordinate attention module is
shown in Figure 4. Specifically, pool kernels of size (H, 1)
and (1, W) are selected to encode each channel along the
horizontal and vertical coordinate directions for the input
depth map, respectively, which correspond to X Avg Pool
and Y Avg Pool. Thus, the output features of channel ¢ with
height h and width w can be expressed as follows:

1
Zh=— FP (h, p),
w OSPZ‘W

(2)

1
ZE = I Z FP (g w).
0<q<H

The aforementioned transformations aggregate features
in two different directions. Two types of transformations
enable the coordinate vector to capture long-distance de-
pendencies in one spatial direction and preserve precise
location information in the other spatial direction, which
helps the network locate salient objects more accurately.

The coordinate vector is used to generate feature in-
formation with a global receptive field and an accurate
position to generate coordinate attention maps. The specific
operation of generating attention maps is described next.

First, the two feature vectors (Z! and ZY) are concat-
enated with a 1 x 1 convolutional layer and then divided into
two separate feature maps (Zy and Zy,) along the spatial
dimension. Next, two 1x1 convolutions are used to
transform the feature maps Zy and Zy to have the same
number of channels as the input depth map. The two at-
tention maps are generated using the sigmoid function,
expressed as follows:
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FIGURE 3: The coordinate attention filtering depth-feature guide cross-modal fusion module.

Z= Cov(Concat(Zg, Z‘(’:V)),
Zy» Zyy = Split(2),
Gy = 0(Cov(Zy)),
Gy = 0(Cov(Zy)).

(3)

Finally, the two attention maps are multiplied together
and added to FRP to obtain the enhanced feature map:

FP®P = F{P x Gy + F{P x Gy, + F2. (4)

The CFD module can not only suppress the effects of
RGB image color and illumination but also effectively
capture the relationship among feature map channels, which
guides the effective information interaction among cross-
modal features to improve SOD performance.

3.2. Context-Aware Content Module. In the decoder stage,
existing methods directly use upsampling convolution to
generate the final saliency map. However, for the multiobject
case, the same convolutional layer cannot extract distin-
guishable features, causing the entire object to be lost.
Therefore, a CAC module is designed, which aims to explore
rich contextual information effectively and efficiently as well
as to deal with the changes caused by inconsistent numbers
of salient objects more effectively.

The CAC module is shown in Figure 5. Four 3 x 3 depth-
wise convolutions are used, with dilate convolution rates of
1, 3, 5, and 7 to enlarge the receptive field, capturing
multiscale features comprehensively. Meanwhile, the
number of channels and sizes of all feature maps are kept the
same. Subsequently, the input feature map and four feature
maps are added as follows to output more discriminative
salient features:
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FiGURE 5: The context-aware content module.

i}

FP¢ = DCov (Fy, 7 = 1),
F2¢ = DCov (Fyy, 7 = 3),
FP¢ = DCov (Fy, 7 = 5),

(5)
F5DC = DCov (Fy;, 1 =7),
Foyg = Cov(F{“ + FY° + FJ¢ + F°),
FAC = PO+ Fy,

Here, DCov and r represent depth-wise convolutions and
the dilate factor, respectively; Fys represents the input feature
map of the CAC module, and the j-th CAC is designated as
FJCAC and je{4, 3, 2, 1}.

In this way, the CAC module can obtain multiscale
information and bring powerful feature representation,
which is beneficial for producing multisalient objects and
results with high performance.

3.3. Dense Decode Guidance Module. Herein, the intrinsic
properties of the depth map are demonstrated as guiding the
learning of cross-modal interaction features during the
feature encoder stage, whereas the decoder is committed to
learning features related to saliency regions and predicting
the saliency maps of same size as the ground truth map. The
encoder features are introduced into the decoder stage by
skip connections, as is common in SOD models. The at-
tention module, which is applied between the encoder and
the decoder, is also a popular methodology. However, these
methods only establish relationships between the encoder
and decoder features of same size, ignoring the effects of
different levels of features. As high-level features provide
rich semantic information that can provide semantic
guidance for each layer of the decoder and compensate for
the loss of semantic information in layer-by-layer upsam-
pling, a DDG module is designed to enhance and refine the
saliency maps generated by each layer, which better restore
the edge structural detail features of the salient objects.
The DDG module considers the RGB branch flow as an
example (the other two branch flows adopt the same
strategy). First, the encoder feature map (FX) is fed into
a 3x 3 convolution kernel, and the feature map is output
with 256 channels. Similarly, the decoder feature map is



adjusted by convolution operation and upsampling in-
terpolation to obtain a feature map with the same size and
same number of channels as the encoder feature map. Fi-
nally, the decoder feature map of each layer is multiplied by
the encoder feature map and concatenated to be sent to the
CAC module. The entire process can be formulated as
follows:

Fgy = Conat(CAC(up(F5)), Fy),

s ( CAC(up(F?f)) x FX >

Fs; = Concat R >
CAC(usz( )) X

X

Fg)) x Fy

DS R (6)
CAC(up(Fs3)) x F3,

F x F

R
P B

F?g = Concat CAC(quz( Di))
CAC(up(F5)) x Fy

where up() represents bilinear interpolation, and the sub-
script numbers represent the upsampling times.

3.4. Loss Function. The binary cross entropy (BCE) and
intersection over union (IoU) loss functions are often used
to optimize SOD models.

The BCE loss function can be expressed as follows:

. 1 H W
e = AT Z Z |Gijlog(Py;) +(1 -G, ;)log(1 - P, )|
(7)

i=1 j=1
Moreover, the IoU loss function is defined as follows:
H «W
Zi:le:lPi,j : Gi,j
H W )
Zi:le:l(Pi,j +Gj ;- P Gi,j)

where H and W represent the width and height of the image,
respectively. The subscripts i and j represent the pixel value
coordinates. Additionally, P and G represent the predicted
saliency map and the ground truth map, respectively.

BCE and IoU are combined for the optimization loss
function of the proposed model:

liou — 1 _ (8)

= lbce + liou. (9)

The auxiliary loss function is used to optimize the model
in the decoding stage and to prevent gradient vanishing
during the training process. Specifically, a 3 x3 convolu-
tional layer is applied to the feature map of each layer in the
decoder stage to convert the input feature map with 256
channels into a feature map with 1 channel. Simultaneously,
the feature map is bilinearly interpolated to the same scale as
the ground truth map, and the sigmoid function is used to
normalize the generated saliency map.

Next, the loss functions of the three branch streams are
as follows:
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RO = R 0.8 x B+ 0.6 x 2R+ 0.4 x Y,
erth — 1t 0.8 x BT+ 0.6 x 2+ 0.4 x 1), (10)
R = R 0.8 x PR 10,6 x 2R 4 0.4 x IR

Therefore, the total loss function of the model is as
follows:

ltotal _ lRGB + ldepth + le’ (11)

lRGB lDepth le
bl

where » and I"“ represent the loss functions of the
RGB, deep, and fusion branch streams, respectively. I3\, 14,
and '™ represent the CAC feature map of the i-th layer in

the RGB, deep, and fusion branch streams, respectively.

4. Experiments and Results

4.1. Dataset. To verify the effectiveness of the proposed
model, experiments were performed on six public datasets:
NJU2K [42], DES [43], NLPR [44], SSD [45], DUT-RGBD
[46], and SIP [47]. NJU2K contains 1985 image pairs col-
lected from the Internet and 3D movies. The DES
(RGBD135) dataset contains 135 RGB-D image pairs from
seven indoor locations. The NLPR dataset consists of 1000
image pairs collected by Kinect from 11 different scenes,
including more than 400 kinds of common objects. The SIP
dataset contains 1000 image pairs collected by smartphones
with camera resolutions of 992x744. The SSD dataset
contains 80 images extracted from three stereoscopic movies
for which the depth maps are generated by the depth es-
timation method. The DUT-RGBD dataset includes 1200
indoor and outdoor complex scenes, of which 800 and 400
image pairs are used for training and testing, respectively.

4.2. Evaluation Metrics. In this paper, the maximum F-
measure (F7*) [48], maximum E-measure (E;"‘a") [49], S-
measure (S,) [50], and the mean absolute error (M) [51] are
used as evaluation metrics. Fz is proposed to consider the
importance of precision and recall in a comprehensive
manner. Its calculation formula is as follows:

(1 + /32) X precision x recall (12)

>

F B~ 2 .
B° x precision + recall

where °=0.3, and the maximum F-measure is denoted as
FR.

M is the average of the absolute errors between the
predicted saliency map and the ground truth map:

1 H W
M & P66l

S« calculates the structural similarity between object-
aware and region-aware:

Se =aSo +(1-a)S,, (14)
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where Sp and S, represent object and region awareness,
respectively. Typically, « is set to 0.5. The larger the value of
Sa the more similar are the saliency and ground truth maps
in their spatial structures.

E, calculates the local pixel-level and global image-level
errors and is defined as follows:

H

w
0= W & L MG, (15)

i=

-
—

where ¢FM denotes the enhanced alignment matrix.

4.3. Experimental Details. The network in this study was
implemented using the deep learning framework PyTorch,
and the model was executed on a machine with an Nvidia
RTX 3090 GPU. There are 1985 image pairs in the NJU2K
dataset, of which 1485 and 500 images are used for training
and testing, respectively. There are 1000 image pairs in the
NLPR dataset, of which 700 and 300 images are used for
training and testing, respectively. In particular, when the
DUT-RGBD dataset is tested, an additional 800 DUT-RGBD
image pairs are supplemented for training. The Adam op-
timizer is used to optimize the model, and the batch size is
set to 10. The initial learning rate is set to 0.0001 and updated
every two iterations with a decay rate of 0.9. All training and
testing images are resized to 352 x 352. To prevent the model
from overfitting, the optimal model is selected based on the
validation dataset (800 image pairs), and the model saves the
best result in 126 epochs of training, taking approximately
10h. The proposed model does not require any pre-
processing or postprocessing.

4.4. Experimental Comparison. The proposed method was
compared with 15 state-of-the-art CNN-based RGB-D
models: SSP [52], EENet [53], LDCM [15], DSN [54],
3DCNN [3], CDNet [14], CMDI [24], CCAF [25], DSAM
[20], BiANet [10], DQFM [55], DCF [56], JLDCF [57], and
ICNet [5]. For a fair comparison, all saliency maps were
directly obtained from the original author or generated from
the train model provided by the original author.

The results of various SOD methods on the six datasets
are listed in Table 1. According to the experimental results,
the proposed method notably outperforms the other
methods in multiple metrics. Compared with the other
methods, on the SIP and NLPR datasets, the proposed
method is superior in all metrics. For example, compared
with the second-best model (SSP) on the SIP dataset, Fg“”‘
E,™, Se and M are improved by 0.000, 0.004, 0.001, and
0. 001 respectively. The proposed model is also compared
with the 3DCNN model on the NLPR dataset, with Fg'*,
EJ™, Sq» and M improving by 0.002, 0.002, 0.004, and 0.002,
respectlvely On the DUT-RGBD dataset, the proposed and
3DCNN methods both added an additional 800 image pairs
for training, giving the same M, but the proposed method
outperforms the 3DCNN in terms of F3** and EJ®. In
addition, for the proposed method on the SSD dataset,
except for M, the other three metrics are far lower than those
of the DSN method, which is caused by the low quality of the

depth map. Because the proposed model relies on the quality
of the depth map, the detection performance on the SSD
dataset is relatively weak. However, a comprehensive
analysis of all datasets and evaluation metrics demonstrates
that the proposed detection method is better than the other
methods.

The precision-recall (PR) and F-measure curves are il-
lustrated in Figure 6. Note that the proposed model achieves
both better precision and recall than the other models. Some
visual saliency map results for the proposed and nine other
methods are shown in Figure 7. Next, several specific
challenging cases are summarized. When the background
information is similar to the color of the object (first, fifth,
and sixth rows), many models only detect a portion of salient
objects; in contrast, the proposed model performs well and
can detect salient objects clearly and completely. Addi-
tionally, for scenes with extremely low brightness (seventh,
eighth, and ninth rows), which is a very challenging situ-
ation, the shadow between the legs of the person in the
eighth row is not detected by the other methods, but the
proposed method can detect the complete object in low-light
scenes. This finding demonstrates that the CFD module can
use depth features to differentiate the object region clearly
from a similar background, whereas the objects detected by
other methods are submerged into the background.

Low-contrast and multiobject scenarios are also shown
in the bottom three rows, in which the other methods
wrongly miss objects when dealing with such cases. For
example, there are two objects in the penultimate row of the
image, but many methods can detect one person only,
whereas the proposed method detects two objects com-
pletely. This finding shows that the CAC module can ef-
fectively capture rich contextual feature information and
improve the detection performance in multiobject scenarios.
From the displayed visualization results, the saliency map
generated by the proposed method verifiably has a finer
spatial structure, which indicates that the DDG module
effectively makes the salient object more uniform and
clearer. On the whole, the objects detected by the proposed
method are more complete, the texture is clearer, and the
boundary contour is more prominent. The proposed model
gives better results visually, and the generated saliency map
is closer to the ground truth map.

4.5. Ablation Experiment. Ablation experiments were
mainly conducted to prove the effectiveness of each module,
and the experimental results on the NLPR and SIP datasets
are listed in Table 2.

4.6. Effectiveness of CFD. In the feature encoder stage, an add
operation is used instead of the CFD module to concatenate
the RGB and depth modalities. Specifically, for the feature
maps of the two modalities of F} and FP, the enhanced
feature map is FRP (FRP = F{ + FP), which is denoted as w/o
CFD in Table 2. Considering the experimental results on the
SIP and NLPR datasets, the proposed CFD reduces M by
0.002 and improves S, by 0.003 and 0004, respectively. This
finding proves that the model detection performance can be
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FiGure 7: Comparison of saliency maps of our model with those of other RGB-D SOD models.
TaBLE 2: Ablation results of different components on the SIP and NLPR datasets.
SIP NLPR
MOdel Fm'dX Emax S M Fmax Emax S M
B ¢ a B ¢ «
Ours 0.908 0.931 0.889 0.045 0.932 0.967 0.934 0.020
w/o CFD 0.901 0.927 0.886 0.047 0.929 0.963 0.930 0.022
w/o DDG 0.903 0.927 0.887 0.046 0.928 0.964 0.928 0.021
w/o CAC 0.904 0.930 0.886 0.046 0.928 0.965 0.931 0.021
w/o D 0.905 0.927 0.886 0.046 0.923 0.960 0.928 0.024
w/o R 0.904 0.928 0.886 0.047 0.927 0.961 0.927 0.022
w/o RD 0.899 0.920 0.869 0.053 0.924 0.961 0.926 0.023

improved when using the CFD module instead of simply
adding feature maps. Some visual results are shown in
Figure 8. Without the CFD module, the models predict the
background information as salient objects of varying degrees
for illumination effects (first row), salient objects consistent
with background information (second row), and complex
background (third row). The model that uses the CFD
module can accurately predict the salient objects, which
effectively suppresses the influence of background in-
formation and accurately generates the salient objects.

4.7. Effectiveness of DDG. In addition, in the feature decoder
stage, the DDG module is deleted, like in the U-net method,
and only the encoder and decoder feature maps of the same
scale are concatenated. This map is referred to as w/o DDG
in Table 2. The DDG module improves EJ** by 0.004 and

0.003 on the SIP and NLPR datasets, respectively. The vi-
sualization results are shown in Figure 9. Considering the
saliency map, note that without the help of the DDG module,
although the salient object can be accurately detected, the
spatial structure is not sufficiently clear. With the help of the
DDG module, the model generates clearer salient objects
with more detailed spatial structures.

4.8. Effectiveness of CAC. To verify the effectiveness of the
CAC module, the CAC module is replaced with a 3x3
convolutional layer, which is denoted as w/o CAC in Table 2.
On the SIP dataset, Fg“‘" Emax, and S, increase by 0.004,
0.001, and 0.003, respectwely, moreover, M decreases by
0.001. The four metrics also have different degrees of im-
provement on the NLPR dataset. The visual saliency map for
comparison is shown in Figure 10. For multiobject scenes,
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F1GURE 8: Visual result comparison between our full model and our
model without the CFD module. The red boxes indicate the dif-
ferences between the two models.
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FIGURE 9: Visual result comparison between our full model and our
model without the DDG module. The red boxes indicate the dif-
ferences between the two models.
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FiGure 10: Visual result comparison between our full model and
our model without the CAC module. The red boxes indicate the
differences between the two models.

the saliency map generated by the model without the CAC
module either has missing objects or the objects are con-
siderably blurred and incomplete. However, the salient
objects generated by the proposed method are more com-
plete, which shows that the CAC module can effectively
explore rich contextual information.
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4.9. Effectiveness of the Three Branch Streams. The effec-
tiveness of jointly training the three branch streams is also
verified in the decoder stage. First, the RGB and depth
branch streams are removed from the decoder, which only
keeps the fusion branch stream for training, denoted as w/o
RD. The experimental results show that when the RGB and
depth branch flows are removed for training, the detection
performance is greatly reduced, which indicates that the
detection performance is considerably degraded when only
fusion branch flow is used. For example, on the SIP dataset,
compared with the full method, EJ** and S, are reduced by
0.011 and 0.020, respectively. Second, the depth and RGB
branch stream are removed separately, leaving only the
remaining two branch streams, denoted as w/o R and w/o D,
respectively. Note that whether the model with the deep or
RGB branch streams is removed, the detection metrics are
lower than those of the full model, which indicates that
training three branch streams together produces the best
results.

4.10. Effectiveness of Our Model on the Three Datasets.
Additionally, image pairs were specifically collected for low-
illumination scenes, complex backgrounds, and multiobject
scenes. There are 122 image pairs for the low-light scenes, all
collected from the SIP dataset, defined as the low-
illumination (LI) dataset. A total of 255 image pairs with
complex backgrounds were collected from the NLPR
dataset, called the complex background (CB) dataset. The
multiobject (MO) dataset was collected from the NLPR and
SIP datasets and contains 38 and 327 image pairs from NLPR
and SIP, respectively. The experimental results are listed in
Table 3. Compared with the other methods, the proposed
method showcases better detection performances in these
three scenarios, far ahead of other methods in terms of M,
which further verifies the effectiveness of each proposed
module. All models find it more difficult to detect salient
objects effectively in multiobject scenes, which confirms the
need to improve the performance of multiobject detection in
RGB-D SOD.

4.11. Failure Cases and Analyses. As mentioned above, the
results of the quantitative and qualitative evaluations
demonstrate the superiority and effectiveness of the pro-
posed method. However, the proposed method still has
limitations in some cases. Some detection failures of the
saliency maps are shown in Figure 11. It can be seen that the
quality of the depth maps is very low, which not only makes
it difficult to characterize the salient objects but also causes
a lot of noise information. We can see that although the
object location is correctly predicted in the first and third
rows, redundant and erroneous object regions are generated
due to being affected by the noise of the depth map. As can
be seen from the second row, the locations of salient objects
in the RGB image are not obvious, and the depth map makes
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TaBLE 3: M and S, metrics of different models on three datasets.
Method L MO
M Sy M Sy M Sy

Ours 0.047 0.886 0.068 0.844 0.020 0.939
SSP 0.057 0.874 0.069 0.847 0.026 0.926
DSN 0.048 0.884 0.082 0.812 0.023 0.931
3DCNN 0.054 0.875 0.074 0.836 0.023 0.933
CDNet 0.062 0.862 0.092 0.804 0.025 0.934
CMDI 0.064 0.865 0.087 0.812 0.024 0.932
LDCM 0.068 0.866 0.089 0.821 0.028 0.930
CCAF 0.062 0.864 0.085 0.825 0.027 0.925
DSAM 0.071 0.848 0.095 0.789 0.023 0.926
BiANet 0.055 0.873 0.073 0.839 0.023 0.931
HAIN 0.051 0.886 0.087 0.817 0.024 0.928
DQFM 0.051 0.882 0.072 0.837 0.024 0.931
EENet 0.054 0.877 0.081 0.818 0.026 0.924
DCF 0.060 0.866 0.083 0.820 0.021 0.930
JLDCF 0.058 0.868 0.081 0.819 0.021 0.931
ICNet 0.077 0.845 0.108 0.786 0.026 0.931

RGB Dep;h GT Ours
FiGure 11: False cases of RGB-D SOD.

it difficult to provide effective saliency features, which leads
the model to misclassify the prominent background area as
the salient area. In summary, the proposed method is not
effective in generating objects with low-quality depth maps.
Now that the attention map generated by the depth map is
used in the feature encoder stage to guide the generation of
cross-modal features, low-quality depth maps can interfere
with the generation of valid cross-modal saliency features,
which can cause the model to produce incorrect object
regions. To address the problem of low-quality depth maps,
a depth map quality score can be used to determine the
proportion of depth maps in the model, and the detection
performance can be further improved by preprocessing.

5. Conclusion

In this paper, a novel depth-feature guide cross-modal fu-
sion method for RGB-D SOD is proposed. Unlike most
previous works, which mostly focused on learning to fuse
cross modalities, the proposed model is based on depth maps
of inherent simplicity, which guide the learning of shared
modal information to improve the detection performance.

In addition, the proposed DDG module can effectively re-
cover the spatial detail structure features of salient objects,
and the CAC module achieves effective multiobject de-
tection by extracting rich contextual information. Quanti-
tative and qualitative evaluations on six challenging
benchmark datasets demonstrate that the proposed model
outperforms the existing RGB-D SOD methods.
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